

IET PROFESSIONAL APPLICATIONS OF COMPUTING SERIES 20

SysML for Systems Engineering

Other volumes in this series:

Volume 1 Knowledge Discovery and Data Mining M.A. Bramer (Editor)
Volume 3 Troubled IT Projects: Prevention and Turnaround J.M. Smith
Volume 4 UML for Systems Engineering: Watching the Wheels, 2nd Edition J. Holt
Volume 5 Intelligent Distributed Video Surveillance Systems S.A. Velastin and

P. Remagnino (Editors)
Volume 6 Trusted Computing C. Mitchell (Editor)
Volume 7 SysML for Systems Engineering J. Holt and S. Perry
Volume 8 Modelling Enterprise Architectures J. Holt and S. Perry
Volume 9 Model-Based Requirements Engineering J. Holt, S. Perry and M. Bownsword
Volume 13 Trusted Platform Modules: Why, When and How to Use Them Ariel Segall
Volume 14 Foundations for Model-Based Systems Engineering: From Patterns to

Models J. Holt, S. Perry and M. Bownsword
Volume 15 Big Data and Software Defined Networks J.Taheri (Editor)

SysML for Systems Engineering
A Model-Based Approach

3rd Edition

Jon Holt and Simon Perry

The Institution of Engineering and Technology

Published by The Institution of Engineering and Technology, London, United Kingdom

The Institution of Engineering and Technology is registered as a Charity in England &
Wales (no. 211014) and Scotland (no. SC038698).

† The Institution of Engineering and Technology 2019

First published 2008
Second edition 2013
Third edition 2018

This publication is copyright under the Berne Convention and the Universal Copyright
Convention. All rights reserved. Apart from any fair dealing for the purposes of research
or private study, or criticism or review, as permitted under the Copyright, Designs and
Patents Act 1988, this publication may be reproduced, stored or transmitted, in any
form or by any means, only with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those
terms should be sent to the publisher at the undermentioned address:

The Institution of Engineering and Technology
Michael Faraday House
Six Hills Way, Stevenage
Herts, SG1 2AY, United Kingdom

www.theiet.org

While the authors and publisher believe that the information and guidance given in this
work are correct, all parties must rely upon their own skill and judgement when making
use of them. Neither the authors nor publisher assumes any liability to anyone for any
loss or damage caused by any error or omission in the work, whether such an error or
omission is the result of negligence or any other cause. Any and all such liability is
disclaimed.

The moral rights of the authors to be identified as authors of this work have been
asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing in Publication Data
A catalogue record for this product is available from the British Library

ISBN 978-1-78561-554-2 (hardback)
ISBN 978-1-78561-555-9 (PDF)

Typeset in India by MPS Limited
Printed in the UK by CPI Group (UK) Ltd, Croydon

Contents

Author biographies xv
Preface to the Third Edition xvii

Part I Introduction 1

1 Introduction to model-based Systems Engineering 3
1.1 Introduction 3
1.2 Understand the concepts and terms that will be used

throughout the book 4
1.2.1 Systems engineering 4
1.2.2 Model-based Systems Engineering 6

1.3 Understand why we do what we do and define an approach 8
1.4 Understand the concept of the common language 9

1.4.1 The spoken language 9
1.4.2 The domain-specific language 10

1.5 Understand how to apply the approach for specific
areas of Systems Engineering 11

1.6 Understand how to implement such an approach in
real organisations 11

1.7 Using this book 11
References 13

2 Approach 15
2.1 Introduction 15

2.1.1 Writing conventions adopted in the book 15
2.2 The MBSE Mantra 17
2.3 The MBSE fundamentals 18
2.4 The MBSE approach 22

2.4.1 The ‘MBSE Ontology’ 22
2.4.2 The ‘MBSE Framework’ 25
2.4.3 The ‘View’ 27

2.5 Chapter summary 29
References 30

3 MBSE Concepts 31
3.1 Introduction 31

3.1.1 Provenance of the MBSE Ontology 31
3.1.2 The Systems Engineering Body of Knowledge 33
3.1.3 Disagreements with the MBSE Ontology 34

3.2 The MBSE Ontology 34
3.2.1 The System concept 36
3.2.2 The Need concept 42
3.2.3 The Architecture concept 46
3.2.4 The ‘Life Cycle’ concept 56
3.2.5 The Process concept 59
3.2.6 The Competence concept 63
3.2.7 The Project concept 69

3.3 Summary 74
References 76

Part II Modelling 79

4 Introduction to SysML and Systems Modelling 81
4.1 Introduction 81
4.2 Why we model? 81

4.2.1 The kennel (doghouse) 81
4.2.2 The house 83
4.2.3 The office block 84
4.2.4 The point 86

4.3 The three evils 87
4.3.1 Complexity 87
4.3.2 Lack of understanding 89
4.3.3 Communication 90
4.3.4 The vicious triangle 91

4.4 What is SysML? 91
4.4.1 SysML’s relationship with UML 91
4.4.2 A brief history of SysML 92

4.5 Modelling 93
4.5.1 Defining modelling 94
4.5.2 The choice of model 94
4.5.3 The level of abstraction 95
4.5.4 Connection to reality 95
4.5.5 Independent views of the same system 96

4.6 The SysML diagrams 96
4.7 Structural modelling 98

4.7.1 Adding more detail to relationships 103
4.8 Behavioural modelling 106

4.8.1 Behavioural modelling – a simple example 108
4.9 The relationships between behavioural diagrams and structural level 116
4.10 Identifying complexity through levels of abstraction 121

4.10.1 The systems 121
4.10.2 Structural view 121
4.10.3 Behavioural views 122

4.11 Chapter summary 127
References 127

vi SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

5 The SysML Notation 129
5.1 Introduction 129

5.1.1 Diagram ordering 129
5.1.2 The worked example 129

5.2 The structure of SysML diagrams 130
5.2.1 Frames 131

5.3 Stereotypes 131
5.4 The SysML meta-model 135
5.5 The SysML diagrams 135

5.5.1 Block definition diagrams 135
5.5.2 Internal block diagrams 150
5.5.3 Package diagrams 164
5.5.4 Parametric diagrams 169
5.5.5 Requirement diagrams 180
5.5.6 State machine diagrams 188
5.5.7 Sequence diagrams 197
5.5.8 Activity diagrams 209
5.5.9 Use case diagrams 220

5.6 Auxiliary constructs 232
5.7 Chapter summary 235
References 236

6 Diagramming Guidelines 237
6.1 Introduction 237
6.2 Naming conventions 237

6.2.1 Structural diagrams 237
6.2.2 Behavioural diagrams 240
6.2.3 Stereotypes 241

6.3 Diagram frame labels 241
6.4 Additional guidelines 245

6.4.1 Block and internal block diagrams – showing interfaces 245
6.4.2 Block and internal block diagrams – showing item flows 245
6.4.3 Activity diagrams 247
6.4.4 Default tool settings 247

6.5 Chapter summary 251
Reference 251

Part III Applications 253

7 Process Modelling with MBSE 255
7.1 Introduction 255

7.1.1 Background 255
7.2 Approach 258

7.2.1 The MBSE Ontology (revisited) 258
7.2.2 The Framework 258
7.2.3 The Viewpoints 260

Contents vii

7.3 The Process Modelling Framework 286
7.4 Using the process modelling framework 286

7.4.1 Analysing existing Processes 287
7.4.2 Creating a new process document from scratch 288
7.4.3 Abstracting tacit process knowledge for a new System 289
7.4.4 Abstracting tacit process knowledge for an existing System 291
7.4.5 Process improvement for existing Processes 292
7.4.6 Summary 293

7.5 Chapter summary 293
References 293

8 Expanded Process Modelling 295
8.1 Introduction 295

8.1.1 Background 295
8.2 Expanded Process modelling – standards modelling 296

8.2.1 Views 297
8.2.2 Summary 303

8.3 Expanded Process modelling – compliance mapping 303
8.3.1 Process Mapping Process (PoMP) 305
8.3.2 Using PoMP 309
8.3.3 Summary 314

8.4 Expanded Process modelling – competence 316
8.4.1 The expanded MBSE Ontology 316
8.4.2 The Framework 317
8.4.3 Views 317

8.5 Expanded Process modelling – Life Cycle modelling 328
8.5.1 The expanded MBSE Ontology 329
8.5.2 Summary 342

8.6 Expanded Process modelling – project management 343
8.6.1 The expanded MBSE Ontology 343
8.6.2 The Framework 345
8.6.3 Views 346

8.7 Summary 351
References 352

9 Requirements Modelling with MBSE 353
9.1 Introduction 353

9.1.1 Background 353
9.2 Approach 354

9.2.1 The MBSE Ontology (revisited) 354
9.2.2 The Framework 363
9.2.3 Viewpoints 365

9.3 The Requirements modelling Framework 399
9.4 Using the Requirements modelling Framework 400

9.4.1 The ACRE Process – Process Content View 400
9.5 Summary 402
References 402

viii SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

10 Expanded Requirements Modelling – Systems of Systems 403
10.1 Introduction 403

10.1.1 Background 403
10.1.2 Defining a System of Systems 406
10.1.3 Types of Systems of Systems 406

10.2 Approach 408
10.2.1 The MBSE Ontology (revisited) 408
10.2.2 The Framework 412
10.2.3 The Viewpoints 413

10.3 Summary 423
References 423

11 Architectures and Architectural Frameworks with MBSE 425
11.1 Introduction 425

11.1.1 Background 425
11.2 Approach 428

11.2.1 The MBSE Ontology (revisited) 428
11.2.2 The Framework 428
11.2.3 The Viewpoints 430

11.3 The Framework for Architectural Frameworks 455
11.4 Using the FAF 456
11.5 Chapter Summary 457
References 458

12 Value Chain Modelling 459
12.1 Introduction 459
12.2 Aims of the Value Chain Framework 460
12.3 Main Concepts – the Value Chain Framework’s Ontology 461
12.4 Viewpoints 463

12.4.1 Engagement Relationship Viewpoint 464
12.4.2 Engagement Definition Viewpoint 466
12.4.3 Business Value Viewpoint 469
12.4.4 Contact Information Viewpoint 471
12.4.5 Overview of Ontology Elements Covered by

the Viewpoints 473
12.5 Rules Governing the use of the Value Chain Framework 476
12.6 Implementation of the Value Chain Framework 477
12.7 Summary 479
Reference 480

Part IV Case Study 481

13 Case Study Introduction and Architectural Framework 483
13.1 Introduction 483

13.1.1 Background 483
13.2 The MBSE Architectural Framework 484

13.2.1 The AF Context View 484

Contents ix

13.2.2 The Ontology Definition View 486
13.2.3 The Viewpoint Relationships View 486
13.2.4 The Rules Definition View 490
13.2.5 Viewpoint Definitions 490

13.3 Defining Viewpoints using SysML Auxiliary Constructs 499
13.4 Chapter Summary 501
Reference 501

14 The Case Study 503
14.1 Introduction 503
14.2 The Need Perspective 503

14.2.1 The Source Element View 504
14.2.2 The Definition Rule Set View 504
14.2.3 The Requirement Description View 506
14.2.4 The Context Definition View 506
14.2.5 The Requirement Context View 506
14.2.6 The Validation View 510
14.2.7 The Traceability View 515

14.3 The System of Systems Perspective 519
14.3.1 The Context Interaction View 521
14.3.2 The Validation Interaction View 522

14.4 The Life Cycle Perspective 524
14.4.1 Life Cycle View 524
14.4.2 The Life Cycle Model View 527
14.4.3 Interaction Identification View 529
14.4.4 Interaction Behaviour View 530

14.5 The Process Perspective 531
14.5.1 Process Structure View 531
14.5.2 Requirement Context View 531
14.5.3 Process Content View 532
14.5.4 Stakeholder View 533
14.5.5 Information View 533
14.5.6 Process Behaviour View 535
14.5.7 Process Instance View 536

14.6 The Project Perspective 538
14.6.1 The Programme Structure View 538
14.6.2 The Project Schedule View 541

14.7 The Organisational Perspective 542
14.7.1 The Organisation Unit Structure View 542
14.7.2 The Organisation Unit Instance View 543
14.7.3 The Rank Hierarchy View 545
14.7.4 The Post Structure View 546
14.7.5 The Post Instance View 549
14.7.6 The Post to Role View 549
14.7.7 The Martian Instance View 550

x SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

14.8 The Competency Perspective 551
14.8.1 Framework View 551
14.8.2 Applicable Competency View 552
14.8.3 Competency Scope View 553

14.9 The System Perspective 554
14.9.1 System Identification View 555
14.9.2 System Structure View 558
14.9.3 Interface Definition View 561
14.9.4 System Configuration View 562
14.9.5 System State View 564
14.9.6 System Behaviour View 566
14.9.7 System Interaction View 569
14.9.8 System Parametric View 574

14.10 Chapter Summary 576
References 576

Part V Deploying MBSE 577

15 Benefits of MBSE 579
15.1 Introduction 579
15.2 ‘I know an Old Lady who swallowed a fly’ 579
15.3 ‘I know an Old Lady who swallowed a spider’ 586
15.4 ‘I know an old lady who swallowed a bird/cat/dog’. 588
15.5 ‘I know an old lady who swallowed a goat/cow’ 589
15.6 ‘I know an old lady who swallowed a horse’ 590

16 The ‘People’ 593
16.1 Introduction 593
16.2 The MBSE Ontology (revisited) 595
16.3 Teaching guide 596

16.3.1 Different types of teaching 597
16.3.2 Professional training 598

16.4 Teaching as part of an undergraduate or postgraduate course 600
16.4.1 Teaching Context – Stakeholder Roles and

Use Cases 600
16.4.2 A generic course structure 601
16.4.3 Summary 605

16.5 Competence 605
16.6 The MBSE Stakeholder Roles 607
16.7 Generic Competencies 613

16.7.1 Example Competency Scope 615
16.7.2 Generic Competency Scope – Evidence Types 616

16.8 Bespoke Competencies 617
16.8.1 Example Competency Scope 618
16.8.2 Bespoke Competency Scope – Evidence Types 619

Contents xi

16.9 Generic vs. specific Competencies 619
16.10 Defining a bespoke Competency Framework 620

16.10.1 The ‘Bespoke Competency Definition’ Process 622
16.10.2 The ‘Bespoke Framework Definition’ Process 627
16.10.3 Competency assessment 629

16.11 Summary 629
References 629

17 The ‘Process’ 631
17.1 Introduction 631
17.2 Defining the Process 634

17.2.1 The ACRE Process 634
17.2.2 The ACRE Process – the Process Content View (PCV) 634

17.3 Using the Process 637
17.3.1 Example use – quick and dirty Process 639
17.3.2 Example use – semi-formal Process 640
17.3.3 Example use – formal Process 642
17.3.4 Summary of process implementation 644

17.4 Deploying the Process 644
17.4.1 ‘Make process available’ 644
17.4.2 ‘Make process accessible’ 646
17.4.3 ‘Ensure awareness of process’ 646
17.4.4 ‘Ensure appropriate presentation’ 646
17.4.5 ‘Ensure value of process’ 647
17.4.6 ‘Provide feedback mechanism’ 647
17.4.7 ‘Ensure consistency’ 648
17.4.8 ‘Contribute to wider initiative’ 648

17.5 Compliance mapping with best practice 648
17.5.1 Automated compliance 653

17.6 Summary 653
References 654

18 The ‘Tool’ 655
18.1 Introduction 655
18.2 Considering the types of Tools available 657

18.2.1 The ‘Individual Tool’ 658
18.2.2 The ‘Tool Chain’ 658
18.2.3 ‘Tool Capability’ 660
18.2.4 Summary 662

18.3 Understanding the Need for the Tool 663
18.3.1 Pemberton’s cooking analogy 663

18.4 Using Tools with existing Processes 664
18.4.1 Example Tool realisation – quick and dirty Process 665
18.4.2 Example Tool realisation – semi-formal process 667

xii SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

18.4.3 Example Tool realisation – formal Process 670
18.4.4 Guidance for using Tools 674

18.5 Considering Tool selection 675
18.5.1 ‘Provide modelling capability’ 676
18.5.2 ‘Ensure compatibility with modelling language’ 676
18.5.3 ‘Understand operational environment’ 676
18.5.4 ‘Provide interoperability’ 677
18.5.5 ‘Ensure vendor’s quality of service’ 677
18.5.6 ‘Ensure compatibility with the process model’ 678
18.5.7 ‘Provide capability’ 678
18.5.8 ‘Provide application functionality’ 679
18.5.9 ‘Decide on tool’ 679

18.6 Tool evaluation 679
18.6.1 The MonTE Processes 679
18.6.2 MonTE – the Process Content View 680
18.6.3 Information View 681
18.6.4 Process Instance View 682

18.7 Summary 684

19 Model Structure and Management 685
19.1 Introduction 685
19.2 Model structure 685
19.3 Model management 688

19.3.1 Version management 688
19.3.2 Model access 690
19.3.3 Sandboxing 691
19.3.4 Correctness through scripting 691

19.4 Chapter summary 693
Reference 694

20 Model Maturity 695
20.1 Introduction 695
20.2 Maturity 695

20.2.1 Technology maturity 695
20.2.2 Process maturity 696
20.2.3 Individual maturity 697

20.3 Modelling for TRLs 697
20.4 Readiness levels for models 699
20.5 Assessment approach 702
20.6 Applying Model Maturity 703
20.7 Conclusions 704
References 704

Contents xiii

Part VI Annex 705

Appendix A Ontology and Glossary 707

Appendix B Summary of SysML Notation 715

Appendix C Process Model for ISO15288:2015 747

Appendix D Competency Framework 787

Appendix E The MBSE Memory Palace 839

Index 843

xiv SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Author biographies

Prof Jon Holt is an internationally recognised expert in the field of Model-based
Systems Engineering (MBSE). He is an international award-winning author and
public speaker and has authored 13 books on MBSE and its applications.

Since 2014 Jon has been a Director and consultant for Scarecrow Consultants,
who are ‘outstanding in the field of MBSE’.

Jon is also Professor of Systems Engineering at Cranfield University, where he
is involved with teaching of and research into MBSE. He is a fellow of both the IET
and the BCS and is a Chartered Engineer and Chartered IT Professional. He is
currently the Technical Director of INCOSE UK where he is responsible for all
technical activities and, in 2015, was identified as one of the 25 most-influential
Systems Engineers in the last 25 years by INCOSE.

Jon is also actively involved in the promotion of Science Technology Engi-
neering and Mathematics (STEM) where he uses magic, mind-reading and occa-
sional escapology to promote Systems Engineering at Science Festivals, the IET
Pythagorean Cabaret, radio shows and other STEM events. He has also authored
the children’s STEM book ‘Think Engineer’ which is published by INCOSE UK.

Simon Perry has spent over 30 years working in all aspects of software and
systems engineering and is the co-author of eight books in the field of applied
Model-Based Systems Engineering (MBSE). He is the Director and Principal
Consultant for Scarecrow Consultants Ltd, providing consultancy, training and
conducting research in the application of systems engineering. He is a member of
the IET and INCOSE.

This page intentionally left blank

Preface to the Third Edition

In writing, as in life, sometimes progress is through revolution and sometimes
through evolution. While the previous edition of this book was somewhat of a
revolutionary change from the first edition, this third edition is, thankfully, an
evolution of the second edition. Much of the content remains unchanged, apart from
correcting the errors that crept in during publication of the second edition and an
update to most of the diagrams to both reflect our current SysML tool of choice and
to reflect our implementation and use of frameworks in the tool. We have also taken
this opportunity to update the chapters on the SysML notation to version 1.5 of the
language (released in May 2017 and, at the time of writing, the latest version) and
to update our model of the international standard ISO 15288 to its latest version
(published in 2015).

We have, however, taken this opportunity to add some new content, with new
chapters on the benefits of Model-Based Systems Engineering, on model manage-
ment, on model maturity, and on value chain modelling. In order to make room
for this new content, something had to be deleted, and so three of the appendices
from the second edition have been removed. For those readers who would like the
removed appendices, they are available via the authors’ company website
(discoverable through all good search engines!).

We hope that you enjoy this new edition of ‘‘SysML for Systems Engineering’’
as much as we enjoyed writing it.

This page intentionally left blank

Part 1 – Introduction

P1.1 Overview

This part of the book is structured according to the diagram in Figure P1.1.

Part 1 introduces and describes all of the basic concepts that will be used in this
book, and comprises three main chapters.

● ‘Chapter 1 – Introduction to Model-Based Systems Engineering’. This chapter
provides a high-level general introduction to the field of systems engineering,
with a particular emphasis on model-based systems engineering.

● ‘Chapter 2 – Approach’. This chapter introduces the standard approach that
will be adopted in the rest of the book by introducing and discussing the con-
cepts of ‘Ontology, Framework and Views’. This chapter also covers the
writing conventions that will be used throughout the book.

«block»
Part 1 – Introduction

«block»
Part 1 – Overview

«block»
Chapter 1 – Introduction to

Model-Based Systems
Engineering

«block»
Chapter 2 – Approach

«block»
Chapter 3 – MBSE Concepts

Figure P1.1 Structure of ‘Part 1 – Introduction’

● ‘Chapter 3 – MBSE Concepts’. This chapter identifies all of the key concepts
that are relevant for model-based systems engineering and that will form the
backbone of everything in this book. Each concept is identified, based on a
number of source references, and then defined in terms of the terminology and
the meaning of the concept. All of these concepts are then brought together into
the so-called MBSE Ontology.

It is essential to obtain a good understanding of the concepts introduced in Part 1
before moving on to the rest of the book. It is impossible to implement the
approaches and techniques taught in this book without understanding the chapters
in this part.

2 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Chapter 1

Introduction to Model-Based
Systems Engineering

1.1 Introduction

The world of Systems Engineering is changing. In recent years, the whole field of
Systems Engineering has been seen as no longer an emerging discipline but as a
valid approach to realising successful systems. Systems Engineering is a broad field
that encompasses many disciplines, can be utilised in many industries and can be
applied across many and varied life cycles.

If you have read this far into this book (the first two sentences) and find
yourself agreeing with the basic, common-sense statements in the previous para-
graph, then consider the following:

● What do we mean by systems? For example, technical systems, social systems
and economic systems.

● What disciplines do we include when we refer to ‘many disciplines’? For
example, engineering, management, acquisition and quality assurance.

● What life cycles do we refer to? For example, the product life cycle, the project
life cycle and the programme life cycle.

There are only three questions here, but they are certainly significant ones. Before
progressing any further and trying to define some of these terms more fully con-
sider that even with the simple statements in the first paragraph and subsequent
three questions, there are three properties that can be applied to everything stated so
far, which are:

● Complexity. There is clearly much complexity here with regard to the number
of questions that may be asked.

● A need for understanding. What exactly do we mean by these terms?
● A need for effective communication. Can we convey this information to

interested parties?

The main aim of this book is to address these three properties of Systems Engi-
neering by the application of effective modelling. In fact, this will be just the
starting point as we will then use the same modelling techniques to drive every
aspect of systems engineering that falls within the scope of this book.

We will be using modelling to:

● Understand the concepts and terms that will be used throughout the book,
● Understand why we do what we do and define an approach,
● Understand the common notation that we will be adopting throughout the

book,
● Understand how to apply the approach for specific areas of Systems

Engineering,
● Understand how to implement such an approach in real organisations.

When we use the model to drive the whole approach of Systems Engineering, we
will term this Model-Based Systems Engineering or MBSE. When we apply MBSE
properly, the model becomes the collected knowledge associated with the project or
system and, ideally, should be considered the single source of truth. The aim of this
book is therefore to help people implement MBSE effectively and efficiently.

1.2 Understand the concepts and terms that will be used
throughout the book

It is crucial for the success of any Systems Engineering endeavour that we can
communicate and understand one another at a basic level. One aspect of this is
having a clear and concise definition of all the key concepts and terms that will be
used. This is a book that is concerned with MBSE, so it would seem appropriate
that before we go any further we define a few basic concepts. As with many key
concepts in life, there is no single definition; therefore, we shall look at a few of the
main definitions and then abstract our own working definition for the purposes of
this book.

1.2.1 Systems engineering
In order to understand MBSE, it is important to have a good definition of the
meaning of Systems Engineering.

There are many definitions of Systems Engineering, all of which tend to differ
depending on the context of the systems and the point of view or background of the
author. This section presents a few of the more widely recognised definitions and
then discusses each in turn.

The first definition comes from the legendary Simon Ramo as part of the
Aviation Authority Systems Engineering Manual:

‘Systems engineering is a discipline that concentrates on the design and
application of the whole (system) as distinct from the parts. It involves
looking at a problem in its entirety, taking into account all the facets and
all the variables relating the social to the technical aspect.’ [1]

Notice that, in this definition, there is an emphasis on looking at the bigger
picture and this is brought up several times: ‘whole system’, ‘problem in its

4 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

entirety’ and ‘all the facets’. This is a key concept in Systems Engineering, where a
system is looked at across its whole life cycle and not just at one small part. Also
notice here that non-technical facets of the system are mentioned as having an
influence on the system.

The next definition comes from Howard Eisner:

‘Systems engineering is an iterative process of top-down synthesis,
development and operation of a real-world system that satisfies, in a near
optimal manner, the full range of requirements for the system.’ [2]

There are a few concepts introduced here that are not seen in the previous defini-
tions. The first is the concept of an iterative process. Real-life systems are rarely
developed in a linear fashion as, even with what may be perceived as a linear life
cycle model, for example, there will be much iteration involved inside each stage.
The second interesting point here is that requirements have been mentioned for the
first time in any of the definitions. Indeed, this definition talks about satisfying
requirements, which must be one of the basic goals of any systems engineer. This is
also qualified, however, by stating that this should be in a near-optimal manner.
Obviously, in an ideal scenario, all requirements should be met in an optimum
fashion but, in the real world, it is often the best that can be achieved given the
resources and technology at one’s disposal. This definition also includes a rather
contentious statement in that the development is said to be ‘top-down’, which could
be interpreted as being rather limited.

Perhaps, the most widely acknowledged authority on Systems Engineering is
the International Council on Systems Engineering (INCOSE), which has a very
pragmatic definition.

‘Systems engineering is an inter-disciplinary approach and means to
enable the realisation of successful systems.’ [3]

The INCOSE definition of Systems Engineering is rather more terse than the pre-
vious two, yet no less accurate. This statement simply states what must be the
highest level need for any systems engineer, which is to realise successful systems
by using any appropriate means necessary.

The final definition is an early definition from the pre-SysML days of mod-
elling from one of the authors.

‘Systems engineering is the implementation of common sense.’ [4]

The final definition that is looked at here is definitely from the ‘less is more’
camp and makes a rather bold statement about Systems Engineering generally,
in that it is mostly good common sense. But, of course, as any school child will
tell you, the strange thing about common sense is that it is not at all that
common!

So, there have been four definitions presented here, each of which is correct,
yet each of which is very different. This is, perhaps, symptomatic of a discipline
that includes all other disciplines, which cannot be bounded and which can be
applied to any system in any domain!

Introduction to Model-Based Systems Engineering 5

The definition that will be used for the purposes of this book is:

Systems engineering is a multi-disciplinary, common-sense approach that
enables the realisation of successful systems.

Having established this definition, let us see how modelling fits in with Systems
Engineering.

1.2.2 Model-Based Systems Engineering
Similar to the term ‘Systems Engineering’ there are also several definitions of the
term ‘MBSE’. The first definition is taken from INCOSE and is arguably the most
widely accepted of all the definitions in the world today:

‘Model-based Systems Engineering (MBSE) is the formalized application
of modelling to support system requirements, design, analysis, verification
and validation activities beginning in the conceptual design phase and
continuing throughout development and later life cycle phases.’ [3]

The definition here states that modelling is used in a supporting role for what
basically amounts to engineering activities within the development life cycle. This
statement is not wrong but it is far too narrow definition for the purposes of this
book. First, the statement that modelling is a support role plays down the potential
impact that modelling can have on Systems Engineering. The modelling should
drive the Systems Engineering activities, rather than merely support them. The
second point that the definition here states is that the activities cover the whole of
the development life cycle. Again, this is true but not nearly comprehensive
enough. Many types of life cycle exist, such as development life cycle, project life
cycle, acquisition life cycle, etc., and we can apply our modelling approach to all
of these.

The next definition is taken from Joe Jenney’s recent book on Systems Engi-
neering methods:

‘Traditional Systems Engineering is a mix of prose based material, typi-
cally requirements and plans, and models such as functional diagrams,
physical diagrams and mode diagrams. Eventually design documentation
ends in drawings, which are models. MBSE can be thought of as replacing
the prose documents that define or describe a system, such as require-
ments documents, with models. We are not concerned as much with plans
although plans like test plans are greatly improved by including many
diagrams, photos and other models with a minimum of prose.’ [5]

The definition here raises a few important points but, once more, does not go far
enough. One point is that prose may be replaced by models, which is true, but there
seems to be a fundamental misunderstanding of what a model is here. There is a
suspicion here that when this definition talks about models, it really refers to dia-
grams. This is then confirmed with the second half of the definition that states that
things can be greatly improved by the introduction of ‘diagrams, photos and other
models’. Diagrams do not equate to a true model. One of the main points that will

6 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

be made throughout this book is that using diagrams, even with a standard notation
such as SysML, does not necessarily result in a model.

For the next definition, we return to INCOSE, but this time to their long-term
vision for the future of Systems Engineering:

‘MBSE is part of a long-term trend toward model-centric approaches
adopted by other engineering disciplines, including mechanical, electrical
and software.

In particular, MBSE is expected to replace the document-centric
approach that has been practiced by systems engineers in the past and
influence the future practice of Systems Engineering by being fully inte-
grated into the definition of Systems Engineering processes.’ [6]

This statement, although not strictly speaking a definition for MBSE, makes a very
important point in much stronger terms – mainly, the use of the terms ‘model-
centric’ and ‘fully integrated’. This really goes to reinforce the importance of
MBSE and is far closer to what we propose in this book, rather than that in the
original INCOSE definition.

This was the prediction for MBSE that was made by INCOSE as part of their
2020 Vision. Five years later, as part of their 2025 Vision, INCOSE has this to say:

● ‘Systems modelling will form the product-centric backbone of the
digital enterprise which incorporates a model-centric approach to
integrate technical, programmatic, and business concerns.

● Model-based approaches will extend beyond product modelling to
enterprise-level modelling and analysis

● Tool suites, visualization and virtualization capabilities will mature to
efficiently support the development of integrated cross-disciplinary
analyses and design space explorations and optimizations, compre-
hensive customer/market needs, requirements, architecture, design,
operations and servicing solutions

● Model-based approaches will move engineering and management
from paper documentation as a communications medium to a paper-
less environment, by permitting the capture and review of systems
design and performance in digital form

● Model-based approaches will enable understanding of complex
system behaviour much earlier in the product life cycle

● Model-based visualization will allow seamless navigation among
related viewpoints such as system, subsystem, component, as well as
production and logistics

● Models will be used not only to capture design but to embody design
rationale by linking design to top level customer and programmatic
concerns.’ [7]

Not only is this a lot more discussion concerning MBSE but, very importantly, the
true scope and potential of MBSE is identified which shifts the emphasis away from
simply designing products, as was done in the past, towards an all-encompassing
approach that embraces all aspects of the business.

Introduction to Model-Based Systems Engineering 7

The definition of MBSE that will be used for the purposes of this book is:

Model-based Systems Engineering is an approach to realising successful
systems that is driven by a model that comprises a coherent and consistent
set of views that reflect multiple viewpoints of the system.

The term ‘‘systems’’ here refers not just to technical systems but people systems,
social systems, financial systems, management systems, enterprise systems – in fact
just about any system that you can think of!

These definitions will be used throughout the book and will provide the drive
behind everything that is presented and discussed.

1.3 Understand why we do what we do and define an approach

It has been established that it is difficult to pin down an exact definition for Systems
Engineering. However, it is not so difficult to pin down why we need Systems
Engineering. To put it as simply as possible, many systems end in failure or dis-
aster. The term ‘failure’ here refers to a system where the project never reached
delivery and where time and money were wasted because time or cost overran. The
term ‘disaster’ here refers to a system where people were hurt or the environment
was damaged as a result of the system failure.

The fundamental reason, therefore, why we need Systems Engineering is
that it is very easy for things to go wrong, resulting in disasters or failures.

We need to understand how likely it is that something will go wrong and the
severity of the consequences of it going wrong. To put this into other words – we
need to understand the risk.

In order to understand how likely it is that something will go wrong, we need to
understand why things go wrong. Luckily for us, this has been done many times
before, and almost all disasters and failures can be attributed to the three evils of
engineering, which are complexity, lack of understanding and poor communications.

Traditional Systems Engineering provides an approach that can be applied to
minimise the risk, such as understanding requirements, analysis, design, testing, etc., but
this approach itself is complex and requires understanding and good communications.

The main aim of modelling, as will be discussed in more detail throughout this
book, is to address these three evils. We can apply modelling to the projects and
systems, of course, but we can also apply the modelling to the fundamental approach
itself, and this forms the heart of the philosophy of this book and of MBSE.

The approach described in this book forms part of an overall MBSE approach.
There are many benefits associated with the application of effective MBSE (note
the use of the word ‘effective’ here), which are:

● Automatic generation and maintenance of system documents. All system
documents may be generated automatically from the model, resulting in sim-
pler document maintenance, more consistent document content and drastically
reduced documentation effort and time.

8 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● Complexity control and management. Models may be measured and, therefore,
controlled. This measurement may be automated and the results may be used to
control and manage the complexity of the model, hence the project or system.

● Consistency of information. A true model results in consistent and coherent
views across the whole system architecture.

● Inherent traceability. When the model is correct, then traceability between all
the system artefacts, across all life cycle stages, is contained within the model.

● Simpler access to information. The model represents the knowledge of the
project or system and, as the previous point mentioned, traceability exists to all
project or system information. Without a coherent model knowledge of the
system is potentially spread across multiple sources, such as heterogeneous
models, spread sheets and documents.

● Improved communication – language. When a model is in place and it has been
defined using an established modelling notation, then it is possible to use this
notation as a common language.

● Improved communication – concepts and terminology. A consistent and
coherent model will have an underlying definition of all the relevant concepts
and terms, referred to later in this book as an ontology, which is used as basis
for the views that make up the model. This Ontology may be thought of as the
domain-specific language.

● Increased understanding. The very act of modelling, particularly with small
teams of people, provides an excellent way to achieve a common under-
standing and obtain consensus.

When trying to sell the idea of MBSE to other people in an organisation, it is
essential that the above benefits are related directly back to saving cost, time or
resources. Each of these points should be tailored to reflect the way that you work
in your organisation to achieve the full impact of the benefits. This is described in
more detail in Chapter 15.

1.4 Understand the concept of the common language

A common language is an essential part of any MBSE endeavour as it allows people
to communicate with one another in an unambiguous way. This is a great idea but, in
practice, often fails as people do not realise or recognise that there are two aspects to
the common language: the spoken language and the domain-specific language.

It is essential that we consider both aspects before we can even come close to
having a true common language.

1.4.1 The spoken language
When we communicate with one another on a daily basis, we need a common
spoken language to allow us to talk to one another at a basic level. This book, for
example, is written in English, so having a working knowledge of English is
essential for being able to read the book in the first place. Knowing English,

Introduction to Model-Based Systems Engineering 9

however, will not guarantee that you will understand all the technical terms in the
book, as this requires a domain-specific language.

The various modelling Notations that we have at our disposal such as SysML,
UML, etc. provide us with the spoken language, but not the domain-specific lan-
guage. For the purposes of this book, we will be using the SysML, the Systems
Modelling Language, as our chosen spoken language. The justification for the
choice of SysML is fully discussed in Part 2, so it will not be dwelt on here. In
summary, SysML is an excellent general-purpose modelling language that may be
used, through the use of a defined set of diagrams, to visualise the views that make
up the model. The SysML also provides mechanisms to integrate with other mod-
elling techniques and notations, for example mathematics and formal methods. This
means that the SysML notation does not preclude the use of any other notations.

You can think of any Notation as a visual modelling language that comprises a
set of Diagrams. The Diagrams that are available will depend on the Notation, for
example, SysML has nine types of Diagram defined whereas the UML has 13 types
of Diagram defined. One point worth noting is that each Diagram will relate in
some way to the other Diagrams, which provides consistency in the Model.

Consistency is king in modelling. Any Notation will have pre-defined syntax,
semantics and rules and be underpinned by its own Model that defines these. In
SysML, this Model is referred to as the ‘SysML meta-model’ which is, just to add
fuel to the fire, defined using UML class diagrams.

It is this definition of the SysML through its meta-model that provides the basis
for all of the consistency checks that will allow us to verify that we have a correct
SysML Model.

In one sense, it does not matter which Notation you choose, as long as it
provides the modelling capability that you need, but it is important to choose one. It
is of course possible to choose multiple Notations, so some people will choose
SysML for their Systems Engineering and UML for their Software Engineering and
there is nothing wrong with this per se; however, the more languages that we use,
the more we encounter the classic Tower of Babel problem of multiple languages.

1.4.2 The domain-specific language
The spoken language is essential but it does not include any domain-specific defini-
tions of terms. In order to understand this, try this simple exercise: talk to some of your
English-speaking (common language) colleagues and ask them to define exactly what
they mean by the words: ‘‘function’’, ‘‘process’’, ‘‘component’’ and ‘‘system’’. It is
assured that everyone will have an answer, but it is also very likely (close to 100%)
that you will get more than one definition for each term. Try this with people from
different teams, different divisions in the company and different companies.

In order to use our spoken language effectively we need a domain-specific
language that identifies the terms for each concept and provides definitions for each
one. We also need to know how each of these concepts relates to one another which
will form part of its definition.

We also use the spoken language (SysML) to define our domain-specific lan-
guage (Ontology) and we can produce a number of Views that form the Ontology.

10 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The Ontology is much more than just a data dictionary and, as we will see later
in the book, forms the cornerstone of all of your MBSE activities.

1.5 Understand how to apply the approach for specific areas of
Systems Engineering

Systems engineering covers a multitude of areas of work and activities. It would be
impossible to address every area of application of Systems Engineering, even given
a life time of work. There are a number of specific areas of application that fall
within the scope of this book, which are intended to reflect areas that most prac-
tising systems engineers will be familiar with. These areas are processes (including
standards), competence, needs, systems, life cycle, architectures, architecture fra-
meworks and projects.

These broad areas cover many aspects of Systems Engineering and the use of
modelling will be demonstrated for each.

1.6 Understand how to implement such an approach in real
organisations

One of the biggest problems that face most people in the real world is that of how to
implement MBSE in a real organisation. There are three fundamental aspects of the
business that need to be addressed for implementing MBSE, which are:

● People, by which we mean competent people with the right skills,
● Process, by which we mean having an effective approach,
● Tools, by which we mean enablers to achieve the people and processes.

This book will cover how to understand, define and implement each of these in
order to start to realise the benefits of MBSE in your organisation. This is covered
in Part 5 of this book.

1.7 Using this book

This book is intended to be both educational and practical at the same time. It is
intended that the readers can use the book as both a source for learning new tech-
niques and a reference for remembering existing knowledge.

It should come as no surprise to the readers that the content of the book itself
has been modelled to satisfy a set of needs that were identified by the authors. The
full model of the book would test the patience of any sensible systems engineer, so
only a single view from the model will be used as an overview and guide to the
structure and content of the book.

The diagram in Figure 1.1 not only shows the content and structure of the book
but is also the first SysML diagram of the book! Do not worry if you are not yet
familiar with the notation, as this will be explained as we progress through the book.

Introduction to Model-Based Systems Engineering 11

The diagram shows that the ‘Book’ is made up of six ‘Part’, which are:

● ‘Part 1 – Introduction’, where we introduce the book (this bit!), define the
approach and define the concepts and terms that will be used throughout the
book and that will form the basis for all the modelling.

● ‘Part 2 – Modelling’, where we introduce the concept of modelling, why we
need to model, the needs for modelling and then provide a description of the
SysML and how it should be used to maximise its effectiveness.

● ‘Part 3 – Applications’, where we discuss a number of specific uses of SysML
for specific applications, including process modelling, advanced process
modelling (standards, competencies and life cycles), requirements, systems of
systems requirements, architectures and architectural frameworks.

● ‘Part 4 – Case study’, where we apply the techniques discussed so far in the
book to a somewhat bizarre and terrifying case study.

«block»
Book

«block»
Part

«block»
Part 1 - Introduction

«block»
Part 2 - Modelling

«block»
Part 3 - Applications

«block»
Part 4 - Case Study

«block»
Part 5 - Deploying MBSE

«block»
Annex

6

Figure 1.1 Overview of the structure and content of the book

12 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● ‘Part 5 – Deploying MBSE’, where we discuss how to implement MBSE in
your business, by considering people, process and tools.

● ‘Annex’, where we provide a summary of the notation including crib-sheets
and a glossary, present models that can be used in practice and even a memory
palace to help you to remember all of the key concepts and terms used in
the book.

This book represents the combined knowledge of our work and experience in the
field of MBSE over the course of both our careers. These experiences have more
often than not been good but have also been egregious in many ways. One of the
hopes that we have for this book is to enable people to make the right decisions,
shorten their learning curves and help them to avoid some of the many mistakes,
disasters and farces that we have seen (and occasionally been involved in) over the
last two decades.

References

[1] FAA. Federal Aviation Agency (USA FAA) Systems Engineering Manual
[definition contributed by Simon Ramo]; 2004.

[2] Eisner H. ‘Essentials of Project and Systems Engineering Management’.
3rd edition. Chichester, UK: Wiley; 2008.

[3] INCOSE. INCOSE Systems Engineering Handbook – A Guide for System
Life Cycle Processes and Activities, Version 4.0. International Council on
Systems Engineering (INCOSE); 2015.

[4] Holt J. ‘UML for Systems Engineering – Watching the Wheels’. 2nd edition.
Stevenage, UK: IEE; 2003 [reprinted by IET; 2007].

[5] Jenney J. Modern Methods of Systems Engineering: With an Introduction to
Pattern and Model Based Methods. CreateSpace Independent Publishing
Platform; 2011.

[6] INCOSE. International Council on Systems Engineering, Systems Engineering
Vision 2020. INCOSE-TP-2004-004-02, Version/Revision: 2.03; September
2007.

[7] INCOSE. International Council on Systems Engineering, A World in Motion,
Systems Engineering Vision 2025. INCOSE, 2014.

Introduction to Model-Based Systems Engineering 13

This page intentionally left blank

Chapter 2

Approach

2.1 Introduction

This short chapter introduces the basic approach that will be taken in all of the
following chapters that discuss specific applications of MBSE using Systems
Modelling Language (SysML).

When adopting model-based systems engineering, MBSE, in any organisation,
there are three considerations that must be taken into account:

● The MBSE mantra that considers ‘‘people, process and tools’’ that will form
the basis of MBSE implementation throughout this book.

● The MBSE foundations that consider ‘‘goals, approach and visualisation’’.
● The MBSE approach itself promotes the use of three concepts: ‘‘Ontology,

Framework and Views’’, which is an established approach to MBSE – see [1–3]
for example.

Each of these will be discussed in the following sections.

2.1.1 Writing conventions adopted in the book
When thinking about MBSE and describing and discussing the different aspects of
MBSE, there is a lot of potential for confusion. Some terms that are used in the
SysML notation, for example, are also widely accepted MBSE terms and are also
everyday words. Therefore, when using a specific term, we want to differentiate
between the MBSE term, the SysML term, specific elements from diagrams and
everyday usage of such terms. In order to minimise this confusion, the following
writing conventions are adopted in this book.

● All terms from the SysML notation that form part of the standard are written in
italics. Therefore, the use of block refers to the SysML construct, whereas the
same word without italics – block – refers to an impediment (or piece of cheese).

● All terms that are defined as part of the overall model presented in this book,
such as the MBSE Ontology, MBSE Framework, etc., are presented with
capitalised words. Therefore, the use of Project refers to the Ontology Element,
whereas the same word without capitals – project – refers to a non-specific
usage of the term as a noun or verb.

● All words that are being referenced from a specific diagram are shown in
quotes. Therefore, the use of ‘Ontology Element’ is referring to a specific
element in a specific diagram.

● All View names are shown as singular. Therefore, the term Process Behaviour
View may refer to any number of diagrams, rather than a single one.

● Any word that requires emphasis is shown in ‘‘double quotes’’.

Some examples of this are described in Table 2.1.

Table 2.1 shows some example sentences, the convention adopted and how
they should be read. In summary, look out for ‘Quotes’, Capitalisation and italics as
these have specific meaning. Finally, remember that the use of ‘‘double quotes’’
simple represents emphasis.

The only exceptions to this will be when the typesetters think that they know
more about the book than the authors and introduce their own special conventions.

In terms of the diagrams that are presented in this book, and there are very
many, they are used for two different purposes and may be easily differentiated
between:

● Diagrams used by way of an explanation, such as all of those found in this
chapter, are presented without frame, represented visually by a named box
around the border of the diagram.

● Diagram used as specific examples, such as those found in Part 4 that presents
a case study, will each have a frame around them.

The concept of a frame is discussed in more detail in Section 2.4.

Table 2.1 Example sentencing to illustrate the convention

Example sentence Meaning

A Use Case may be visualised as a use case Use Case – term from the MBSE Ontology
Use case – the term from SysML notation

Engineering activity can be shown as an
Activity on a Process and may be visua-
lised as an activity

Activity – the everyday usage of the word
Activity – the term from the MBSE Ontology
Activity – the term from the SysML notation

The diagram here shows that the ‘MBSE
Process Framework’ is made up of one or
more ‘Process Behaviour View’

‘MBSE Process Framework’ – a specific
term from a specific diagram that is being
described

‘Process Behaviour View’ – a specific term
from a specific diagram that is being
described

When defining Processes, it is typical to
create a number of activity diagrams that
will visualise the Process Behaviour View

Processes – the term from the MBSE
Ontology

Activity diagram – the term from SysML
notation

Process Behaviour View – the term from the
MBSE Framework

It is important to understand the ‘‘why’’ of
MBSE

‘‘why’’ – emphasis of the word

16 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

2.2 The MBSE Mantra

When implementing MBSE, there are three vital aspects that must be taken into
account, which are illustrated on the following diagram.

The diagram in Figure 2.1 shows the three crucial aspects of MBSE that must
be considered when implementing MBSE into any organisation, which are

● ‘Person’ (people), by which we mean competent people with the right skillset
to do their job properly. The competence of each ‘Person’ must enable the
‘Process’.

● ‘Process’ by which we mean the overall approach to MBSE. This term can lead
to confusion as it actually refers to the overall MBSE approach but, for his-
torical reasons, the term ‘Process’ is used in the Mantra. It is essential that this
overall approach drives the ‘Tool’ so that we are master of the Tool, and not
the other way around.

● ‘Tool’ by which we mean anything that we use to implement our MBSE which
may include CASE tools, pen and paper, notations, office tools, drawing
packages, simulation packages, management tools and so on.

Key to achieving successful MBSE is achieving the right balance between these
three. Too much emphasis on the Tool and not enough on Process will lead to very
limited results, having highly skilled people but with no underlying Process will
lead to limited results, having the perfect Process but no skilled people to imple-
ment it will lead to limited results – you get the idea.

These three aspects form the basis of Part 5 of this book where there is a
chapter devoted to each.

«ontology element»
Process

«ontology element»
Person

«ontology element»
Tool

1..*

enables

1..*

1..*

drives

1..*

Figure 2.1 The MBSE Mantra

Approach 17

2.3 The MBSE fundamentals

The fundamental approach taken in this book hinges on three fundamental concepts
that you absolutely must have clear in your mind before embarking on any MBSE
endeavour. These three concepts are the goals, the approach and the visualisation.

One of the main goals for any MBSE endeavour is to produce a Model that
abstracts the System. This System may be the organisation, its project, its projects
or any aspect of the business.

The diagram in Figure 2.2 shows that one or more ‘Model’ abstracts a ‘System’.
This ‘Model’ is made up of a set of one or more ‘View’. These Views all interact with
one another (not shown for clarity on the diagram) to make up the Model.

Each of these Views is visualised using some sort of Notation, which will
typically comprise a number of Diagrams.

The diagram in Figure 2.3 shows that a ‘Notation’ is made up of one or more ‘Dia-
gram’. The actual Notation that is used is almost irrelevant and may be a visual notation
(such as SysML, UML, BMPN, etc.), mathematical notations, text, tables, charts, free-
from graphics, etc. The term ‘Diagram’ here is used very loosely and may refer to
diagram, text, tables, etc. For the purposes of this book, we shall be using the SysML.

Combining the goals with the visualisation, we can create the following diagram.
The diagram in Figure 2.4 shows the relationship between the goal and the visua-

lisation. The key part here is the relationship between the ‘View’ and the ‘Diagram’.

«ontology element»
View

«ontology element»
Model

«ontology element»
System

1..*

1..*

abstracts

1

Figure 2.2 Goal

18 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

«ontology element»
Notation

«ontology element»
Diagram

1..*

Figure 2.3 Visualisation

VisualisationGoal

«ontology element»
View

«ontology element»
Model

«ontology element»
System

«ontology element»
Notation

«ontology element»
Diagram

1..* 1..*

1..*0..*

1..*

abstracts

1

visualises

Figure 2.4 Combining goals and visualisation

Approach 19

Very importantly, it must be very clear that there is a difference between a View and
a Diagram:

● A View forms part of the Model and has a purpose, a set of interested Stake-
holder Roles and will yield some sort of benefit to these Stakeholder Roles. Also,
a single View may be visualised using a number of notations, for example, a
block diagram may be used to visualise a View, but that same View may also be
visualised using text. The View is the same, but the visualisation may change.

● A Diagram is the mechanism that we use to visualise the View and may be
graphical, text, tabular, etc.

It is crucial not to confuse the View with the Diagram.
It is relatively easy to create a set of Views using a Notation, but this does not

necessarily mean that we have a Model. In order to be considered a Model, all of
the Views must be consistent. Also, when creating the Views, we want them all to
be created in the same way by anyone who wants to create them, even if they are
using different Notations. The creation of Views must be consistent, repeatable and
add value, otherwise we are in danger of creating a set of pictures and we are
interested in Modelling, not drawing pictures!

In order to ensure that we are modelling, rather than drawing pictures, we need
some sort of approach in place that will form the basis for the Views that make up
our Model.

«ontology element»
Ontology

«ontology element»
Viewpoint

«ontology element»
MBSE Framework

«ontology element»
Process Set

1..*
uses elements from

1

1..*

shows how to implement

1..*

1 1..*

Figure 2.5 Approach

20 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 2.5 shows a high-level representation of the overall
approach, which will be discussed in more detail in the following section.

The approach has two main elements in it, which are:

● The ‘MBSE Framework’ that comprises the ‘Ontology’ that provides our
domain-specific language and a set of one or more ‘Viewpoint’ each of which
may be thought of as providing a template for a number of Views. Consistency
of the Viewpoints is assured by using elements from the Ontology.

● The ‘Process Set’ that is a set of Processes that enable us to implement the
MBSE Framework.

It should be noted that the MBSE Framework is independent of the Process Set and,
indeed, we may have a number of different Process Sets that show us how to
implement the same MBSE Framework in different ways, depending on the nature
of the work at hand.

Combing the approach with the goal and the visualisation, we can now produce
the following diagram.

The diagram in Figure 2.6 shows the MBSE Fundamentals that we must burn
into our minds in order to understand MBSE properly [4]. There are a few key
points to always remember:

● The Goal is to produce a Model that abstracts a System.
● The Model comprises a set of Views that are visualised using any number of

Diagrams from any number of Notations.

Approach VisualisationGoal

«ontology element»
Ontology

«ontology element»
Viewpoint

«ontology element»
View

«ontology element»
Model

«ontology element»
MBSE Framework

«ontology element»
System

«ontology element»
Notation

«ontology element»
Diagram

«ontology element»
Process Set

1..*11..*
uses elements from

1

1..*

shows how to implement

1..*

1 1..* 1..*1..*

1..*0..*

1..*

abstracts

1

conforms to visualises

Figure 2.6 The MBSE Fundamentals

Approach 21

● Consistency of the Views is assured by using a set of Viewpoints as templates.
● Consistency of the Viewpoints is assured through use of the Ontology.
● The same Framework may be used for any number of Process Sets.

Finally, the Approach and the Visualisation are not the same thing. The Notation is
not an Approach.

The MBSE Approach is described in more detail in the following section.

2.4 The MBSE approach

In this section, we shall focus on the MBSE Approach and, in particular, the MBSE
Framework.

From Figure 2.5, we know that we have one or more MBSE Frameworks that
comprise an Ontology and a number of Viewpoints. We shall consider each of these
in more detail.

● ‘Ontology’ – that identifies and defines the concepts and terms to be used for
the entire book and that defines the domain-specific language for MBSE.

● ‘MBSE Framework’ – that describes a specific use of the ‘Ontology’, such as
model-based processes, model-based requirements, etc.

● ‘Viewpoint’ – that focuses on a subset of the ‘Ontology’ and that has a specific
purpose. Each Viewpoint is used to define Views that are used throughout
this book.

Each of these main elements is discussed in detail in the following sections.

2.4.1 The ‘MBSE Ontology’
The MBSE Ontology forms the heart of the MBSE endeavour. It is the approach
that is both advocated by this book and that has also been used to drive all of the
content of this book. In this book, the so-called MBSE Ontology is used for the
following activities:

● Defining concepts and terms. The MBSE Ontology provides a visualisation of
all the key concepts, the terminology used to describe them and the inter-
relationships between said concepts. The MBSE Ontology, however, plays a
pivotal role in the definition and use of any rigorous MBSE Framework as it
provides the domain-specific language upon which all of the MBSE activities
are based.

● Defining frameworks that can be used for different aspects of MBSE. Exam-
ples of these frameworks in this book include Processes, Needs, Architectures,
etc. Whenever any Framework is defined in terms of a set of Viewpoints, then
an Ontology is essential. It is the MBSE Ontology in this book that enforces the
consistency and rigour demanded by such Frameworks. See Part 3 of this book
for several examples.

● Defining MBSE Competencies. When defining Competencies for MBSE activ-
ities, there needs to be a core knowledge base that underpins the Competencies,

22 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

and this is realised by the MBSE Ontology. See Chapter 5.1 for a full discussion
on how the MBSE Ontology may be used to define Competencies.

● Course content generation. The MBSE Ontology may be thought of as the
heart of the body of knowledge for MBSE and, therefore, is an ideal basis for
any course content that must be developed. See Chapter 5.1 for a full discus-
sion on how the MBSE Ontology may be used to define course content.

● Process implementation. Many aspects of the Process, such as the Process
model, the Artefacts and the execution in Life Cycles, will be based directly on
the MBSE Ontology. See Chapters 3.1 and 3.2 for example of how the MBSE
Ontology may be used as a basis for Process modelling and advanced Process
modelling, and Chapter 5.2 for example of Process deployment.

● Tool implementation. In order to optimise the use and therefore benefits of tool
implementation of MBSE, a full understanding of the MBSE Ontology is
essential. This is described in more detail in Chapter 5.3.

● Applications – this basic approach of ‘Ontology, Framework and Views’
is used in all the example applications in this book in Chapters 3.1–3.5 and
Chapters 5.1–5.3.

The structure of the MBSE Ontology is introduced in the following diagram
(Figure 2.7).

«ontology element»
Ontology

«ontology element»
Ontology Element

«ontology element»
Core Element

«ontology element»
Cross-cutting Element

1..*

1

1..*

applies to

1..*

Figure 2.7 Breakdown of the MBSE ontology

Approach 23

The ‘Ontology’ is made up of one or more ‘Ontology Element’ each of which
may be classified as one of two types: a ‘Cross-cutting Element’ or a ‘Core
Element’.

● A ‘Core Element’ represents a specific MBSE concept and has its relationships
to other Ontology Elements shown on the MBSE Ontology.

● A ‘Cross-cutting Element’, however, has more complex relationships and may
be applied to several basic elements.

Examples of these special types of ‘Cross-cutting Element’ are shown on the fol-
lowing diagram and are elaborated upon in the subsequent detailed descriptions
(Figure 2.8).

Some of the concepts that are used in this book have applications across the
whole of the MBSE Ontology. Due to the fact that they apply to multiple elements
from the MBSE Ontology, they are either not explicitly shown on the MBSE
Ontology or do not have all of their relationships shown, simply because the full
MBSE Ontology would become totally unreadable.

● ‘Testable Element’. Any Ontology Element in the MBSE Ontology may be
tested and, therefore, may be thought of as a Testable Element.

● ‘Traceable Element’. Any Ontology Element in the MBSE Ontology may be
traced to another Ontology Element in the model and, therefore, may be
thought of as a Traceable Element.

«ontology element»
Cross-cutting Element

«ontology element»
Context

«ontology element»
Testable Element

«ontology element»
Traceable Element

«ontology element»
Interface

«ontology element»
Process

Figure 2.8 Examples of ‘Cross-cutting Element’

24 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● ‘Interface Element’. Many Ontology Elements in the MBSE Ontology may
have interfaces, such as Process, Stage, View, etc., and, therefore, may be
thought of as an Interface Element.

● ‘Context’. Many Ontology Elements in the MBSE Ontology may have their
own Context, such as Need, Project, Product, Life Cycle, Process, Stakeholder
and Programme, and, therefore, may be thought of as a Context element.

● ‘Process’. Many Ontology Elements in the MBSE Ontology have Processes
associated with them, such as Need, Life Cycle, Architecture and so on, and,
therefore, may be thought of as a Process element.

It should be noted that it is possible for an Ontology Element to be both a Cross-
cutting Element and a Core Element, such as Context and Process, whereas others
will be one or the other, such as Traceability Element.

It should be clear now that if all of these relationships were shown on the
MBSE Ontology, then the diagram would be completely unreadable.

2.4.2 The ‘MBSE Framework’
There are some very pragmatic reasons why the definition of the MBSE Framework
is important:

● Coverage. It is important that the whole of the MBSE Ontology is realised.
Each Viewpoint considers a small set of the MBSE Ontology and the totality of
the Viewpoints covers the whole MBSE Ontology.

● Rigour. By generating all the Views (see the description in the next section),
based on the defined Viewpoints, applying the appropriate Rules for each
Viewpoint and ensuring consistency, we produce a true model. This true model
provides the rigour for underlying approach. Realising all the Views provides
the highest level of rigour, whereas realising only some of the Views provides
less rigour. This means that the approach is flexible for projects of different
levels of rigour.

● Approach. The approach defines how we do things, or to put it another way,
the Process that we follow to realise the MBSE Framework by creating Views
based on the Viewpoints.

● Flexibility of scale. The MBSE Framework defines a number of Viewpoints but,
depending on the type of Project being undertaken, not all of these Viewpoints
need to be realised as Views. This ability to realise some or all Views makes the
MBSE approach very flexible in terms of the size of the Project.

● Flexibility of realisation. The Viewpoints defined by MBSE approach may be
realised as Views, each of which may be visualised in any number of different
ways. The approach promoted in this book is primarily through using the
SysML notation, but any suitable notation may be used to realise the Views.
In the same way, any suitable tool may also be used.

● Integration with other processes. The MBSE Framework allows integration
with any other systems engineering Processes providing that the Information
Views for the Processes are known. This allows the MBSE approach to be used
with many other methodologies and systems engineering approaches.

Approach 25

● Automation. The MBSE Framework provides the basis for automating MBSE
approach using sophisticated systems engineering tools. One of the main
benefits of an MBSE approach is that it saves a lot of time and effort as many
of the Process Artefacts may be automatically generated.

All of these points will be covered in greater detail in Section 5 where imple-
menting an MBSE approach on real Projects is discussed.

There is also a special type of Framework that may be identified that is a very
powerful construct, as shown in the following diagram (Figure 2.9).

The diagram here shows that there is a special type of ‘Framework’ known as a
‘Pattern’. A Pattern is essentially the same as Framework in terms of its structure
and the way that it is defined, but it has a subtle difference in its usage and it is
defined as

A Pattern is a defined set of Viewpoints and associated Views that may be
re-used for a number of different applications. [5]

The key difference between a Framework and a Pattern, therefore, is that Frame-
work is bespoke for a specific application, whereas Patterns may be re-used. For
example, a bespoke set of Views that applies to a specify implementation of Needs

«ontology element»
Viewpoint

«ontology element»
Viewpoint Element

«ontology element»
MBSE Framework

«ontology element»
Pattern

1..*

0..*

1..*

1

Figure 2.9 The ‘Framework’ vs the ‘Pattern’

26 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

modelling is defined using a Framework, whereas a generic set of Views to define
interfaces at any level in the business, will be defined using a Pattern.

Also, it is possible, and indeed quite common, to see a Framework that is partly
composed of Patterns.

2.4.3 The ‘View’
The third of the main concepts is that of the ‘View’. The concepts and terminology
used here are very important because of the similarity and, therefore, potential
confusion between the terms ‘View’ and ‘Viewpoint’. The relationship and dif-
ferences between them is shown in the following diagram (Figure 2.10).

The diagram here shows that the ‘MBSE Framework’ is made up of one or
more ‘Viewpoint’ and that each of these, in turn, is made up of one or more
‘Viewpoint Element’. The following definitions apply to this diagram:

● A ‘Viewpoint’ defines the template of one or more ‘View’ and, therefore, each
‘View’ must conform to its associated ‘Viewpoint’. The ‘Viewpoint’, there-
fore, is defined as part of the ‘MBSE Framework’.

● A ‘Viewpoint Element’ is the basic unit of the ‘Viewpoint’ and corresponds
directly back to an ‘Ontology Element’ which ensures consistency.

● A ‘View’ represents an actual artefact, usually visualised by a diagram, which
is produced as part of a project. Each ‘View’ must conform to its associated
‘Viewpoint’ that defines its template.

● A ‘View Element’ represents a visualisation of a ‘Viewpoint Element’, usually
realised by an element on a diagram.

Therefore, to summarise, each ‘Viewpoint’ is defined as part of the ‘MBSE Fra-
mework’ and provides the template for one or more ‘View’ which is created as part
of the MBSE activities on a Project. A Viewpoint is a definition and a View is the
realisation of its defining Viewpoint.

«ontology element»
Ontology

«ontology element»
Ontology Element

«ontology element»
Viewpoint

«ontology element»
Viewpoint Element

«ontology element»
View

«ontology element»
View Element

«ontology element»
MBSE Framework

1..*

conforms to

1

1..*

1

1..*

1

1..*

uses elements from

1

1..*

1..*

corresponds to

1 1..*

visualises

1

1..*

1

1

Figure 2.10 The concepts of a ‘Viewpoint’ and ‘View’

Approach 27

2.4.3.1 Defining Viewpoints and creating Views
In order to create Views effectively, it is important that the Viewpoint is well
understood and well defined. Therefore, throughout this book, each Viewpoint will
be defined in the following manner:

● Rationale. The rationale of why the View is needed, which will drive the
definition of the Viewpoint, will be described.

● Ontology. The areas of the MBSE Ontology that are important for the View
and therefore that appear on the Viewpoint will be identified.

● Relationships with other Views. The relationships to other Views will be
defined.

● Visualising the View. How each Viewpoint may be visualised as one or more
View showing examples of graphical notations, text, mathematics, etc.

● Rules. The rules that must be enforced on the view to ensure correctness and
consistency.

● Discussion. Any point of consideration associated with the View, such as
usage, pitfalls and general advice, will be discussed here.

Chapter 3.4 defines a number of Viewpoints that can be used to capture the above
information when defining a Framework.

An important aspect of getting the MBSE Framework right is the application of
Rules to the MBSE Framework that enforce the points raised above (Figure 2.11).

The diagram here shows that ‘Rule’ constrains the ‘MBSE Framework’. It should
also be noted that because of the structure that sits below the ‘MBSE Framework’, the
‘Rule’ may apply at the ‘Viewpoint’ or ‘Viewpoint Element’ level (Figure 2.12).

«ontology element»
Viewpoint

«ontology element»
Viewpoint Element

«ontology element»
Rule

«ontology element»
MBSE Framework

1..*

1..*

constrains

1

1..*

1

Figure 2.11 The concept of a ‘Rule’

28 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram here brings together all of these concepts and will be referred to,
from this point on, as the MBSE Meta-model. A meta-model may be thought of as a
model of a model, and everything from this point forward in the book will corre-
spond to and therefore be consistent with the MBSE Meta-model.

All of the information in this book has been defined according to an MBSE
approach. This chapter has introduced the three main concepts of Ontology, Frame-
work and Views that dictate the MBSE approach. Each concept was expanded and
discussed before being brought back together in the form of the MBSE Meta-model.

All subsequent information in this book is consistent with this meta-model.

2.5 Chapter summary

There are three main considerations that have been discussed in this chapter, which
are the MBSE Manta, the MBSE Fundamentals and the MBSE Approach.

● The MBSE Mantra states the three considerations for implementing MBSE:
People, Process and Tools.

● The MBSE Fundamentals state three key concepts that you must understand
for successful MBSE: the Goal, Approach and Visualisation.

● The MBSE Approach describes the key elements that make up the approach,
namely the Process Set and Framework that comprises the Ontology and the set
Viewpoints.

In the rest of this book, we explore all of these in more detail.

«ontology element»
Ontology

«ontology element»
Ontology Element

«ontology element»
Core Element

«ontology element»
Viewpoint

«ontology element»
Viewpoint Element

«ontology element»
View

«ontology element»
View Element

«ontology element»
Rule

«ontology element»
Cross-cutting Element

«ontology element»
Model

«ontology element»
MBSE Framework

«ontology element»
System

«ontology element»
Pattern

1..*

conforms to

1

1..*

1

1..*

1..*

1

1..*

uses elements from

1

1..*

1..*

constrains

1

1..*

corresponds to

1

1

interacts with

1..*

1..*

visualises

1

1..*

abstracts

1

0..*

1..*

applies to

1..*

1..*

1

1

Figure 2.12 The MBSE Meta-model

Approach 29

References

[1] Holt J. ‘A Pragmatic Guide to Business Process Modelling’. 2nd edition.
Chippenham, UK: BCS Publishing, 2009.

[2] Dickerson C.E. and Mavris D.N. ‘Architecture and Principles of Systems
Engineering’. New York: CRC Press, 2009.

[3] Holt J. and Perry S. ‘Modelling Enterprise Architectures’. Chippenham, UK:
IET Publishing, 2010.

[4] Holt J. and Perry S. ‘Don’t Panic! The Absolute Beginner’s Guide to Model-
Based Systems Engineering’. Ilminster, UK: INCOSE UK Publishing, 2017.

[5] Holt J. and Perry S. ‘Foundations of Model-Based Systems Engineering –
From Patterns to Model’. Croyden, UK: IET Publishing, 2015.

30 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Chapter 3

MBSE Concepts

3.1 Introduction

This chapter discusses the main systems engineering concepts that were introduced
briefly in Chapter 1.

Understanding the concepts is essential for a number of different reasons, some
of which are obvious and some of which are more subtle:

● Clearly, by not understanding the basic concepts, actually performing any work
in the world of systems engineering is going to be very difficult, to the point of
impossibility. The only way to succeed while not understanding the concepts is
through pure chance. This is not a good approach!

● In order to address the ‘‘three evils’’ of systems engineering, understanding is
crucial. It is one of the basic evils, as was discussed previously, that drives the
other two evils.

● The basic approach that is advocated in this book for Model-Based Systems
Engineering (MBSE) is that of ‘Ontology, Framework and Views’. The con-
cepts needed for MBSE are defined in the so-called MBSE Ontology, which
forms the cornerstone of any MBSE exercise.

Understanding the concepts is, therefore, essential, and these concepts will be
defined using the MBSE Ontology. This Ontology will then be used throughout
the rest of this book for all of the examples, approaches and applications
of MBSE.

3.1.1 Provenance of the MBSE Ontology
The MBSE Ontology itself is based on a number of best practice sources that are
used throughout the world of systems engineering. The problem with trying to
define the MBSE Ontology is that there is no single definitive set of terms for
MBSE; therefore, a number of sources were considered. The list of information
sources is not intended to be exhaustive but is intended to represent a good cross-
section of current thought on MBSE. Each of the information sources has its own
strengths and weaknesses and, therefore, the approach was to take a consensus of
terms wherever possible and where not possible to give priority to information

sources that specialise in a specific area of MBSE. Examples of these information
sources include the following:

● ‘ISO 15288 – systems and software engineering life cycle Processes’ [1]. This
standard is the most widely used systems engineering standard in the world.
The standard itself is now considered to be quite mature as its first version was
published in 2002 and its current version was published in 2015. The standard
considers four main areas of Processes that ISO suggests should exist in any
organisation: technical, project, organisational and agreement. The emphasis of
the standard focuses on the technical and project Process areas, rather than the
organisational and agreement Process areas. Indeed, this standard is considered
to be particularly weak in depth for both of these areas. Having said that,
however, ISO 15288 is an excellent start point for any systems engineering
endeavour and should always be considered when looking for good systems
engineering source information.

● ‘INCOSE systems engineering handbook’ [2]. The International Council on
Systems Engineering (INCOSE) produces a best practice guide for systems
engineering in the form of a handbook. The handbook itself is based directly on
ISO 15288 and, therefore, uses many of the same concepts and terminology.
The INCOSE handbook expands greatly on all of the Processes in ISO 15288
and also discusses different techniques and approaches to systems engineering.
The handbook also has a rich appendix with many examples and case studies of
applying systems engineering best practice.

● ‘CMMI – Capability Maturity Model Integration’ [3]. The CMMI comprises a
suite of documents that allow any given set of Processes to be assessed in terms
of its capability and maturity. The CMMI has an excellent pedigree and is the
result of a colossal volume of work. The CMMI is particularly strong when
concerned with Processes, but rather weaker in other areas, such as architecture.

● ‘DoD – systems engineering guide for systems-of-systems’ [4]. This set of
guidelines represents current best practice in the US Department of Defense
(DoD) (sp). This is a particularly valuable source of information as there is a
dearth of good, accepted knowledge concerning systems of systems since it is a
relatively new area.

● ‘ISO/IEC/IEEE 42010 Systems and software engineering – Architecture
description’ [5]. This is an evolution of ‘IEEE 1471 – Architectures for soft-
ware-intensive systems’ [6] and, bearing in mind the history of IEEE 1471, this
is now a mature standard. This is an excellent information source for archi-
tectures, architecture descriptions and architecture Frameworks.

● Various Architectural Frameworks, including Zachman [7,8], MODAF [9],
DoDAF [10], NAF [11] and TRAK [12]. Architectural Frameworks are
widely used in today’s industry and provide a good source of information for
architectures, architecture descriptions and Architectural Frameworks. Also,
other useful knowledge sources include common notations for Frameworks,
such as the Unified Profile for DoDAF and MODAF (UPDM) [13] and
development Processes, such as The Open Group Architectural Framework
(TOGAF) [14].

32 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● Various competency Frameworks, including UKSPEC [15], the INCOSE sys-
tems engineering competencies Framework [16], SFIA [17] and APM [18,19].
Competency Frameworks are widely used in today’s industry in order to
demonstrate the ability of people in an organisation.

● Various modelling notations, including SysML [20,21], UML [22,23],
SOAML [24] and BPMN [25]. There are a number of different modelling
notations that may be used for MBSE. This book is concerned with the use of
SysML. However, there are some concepts and definitions that are used in
other notations that may be of value to the MBSE Ontology.

● Various best practice books. In terms of methodologies and approaches, there
are a number of books that contain valuable knowledge concerning performing
MBSE [23,26–28].

● Various papers and other publications such as [29,30].

For each of the main concepts that will be used in the MBSE Ontology, a number of
source references will be discussed. The references chosen will vary, depending on the
nature of the key concept. For example, CMMI focuses mainly on Processes and is
therefore an excellent source reference for the Process concept, whereas it does not even
mention Systems of Systems and is therefore not a good reference for that concept.

3.1.2 The Systems Engineering Body of Knowledge
There is an excellent project that is concerned with creating a body of knowledge for
systems engineering, known as systems engineering body of knowledge (SEBoK)
[31]. This project began in 2009 as part of the larger Body of Knowledge to
Advance Systems Engineering project [32] with the goal of creating a SEBoK.
There were 70 contributors to the project, and one of the goals was to provide a
comprehensive set of key references and resources that are relevant to systems
engineering and systems engineers.

Released as version 1.0 in 2012, the SEBoK brings together a set of definitions
and terms and provides discussion points around them. The goal of SEBoK was not
to develop a definite set of terms but to highlight best practice and to point out
differences between them.

It can be plainly seen that there are obvious parallels with this chapter, but with
a few notable differences:

● The main focus of this book is specifically MBSE rather than systems engineering.
● The aim of the MBSE Ontology presented in this chapter is, just like SEBoK, to

identify any differences of opinion between source references. Unlike SEBoK,
however, the MBSE Ontology resolves these discrepancies by making a judge-
ment call and going as far as providing a single definition for each concept, while
maintaining a mapping back to the source references.

● All of the analysis of source concepts and terms in this book were performed
using modelling techniques.

Both the SEBoK and this chapter use many of the same references and, therefore, there
is not a graphical representation of SEBoK shown for each of the concepts, as the
SEBoK definitions are based directly on source references. Thus, to avoid repetition,

MBSE Concepts 33

the reference to SEBoK is provided once here and not in each section. The SEBoK
contains an excellent glossary where the source references for each term can be found.

3.1.3 Disagreements with the MBSE Ontology
This chapter is intended to define the set of concepts and terms that will be used in
this book. They are all based on best practice definitions but, inevitably, different
people in different organisations will disagree with some of the concepts and terms
here. The idea of a single Ontology that will be directly and exactly applicable to
every organisation can only exist in a Utopian world and is simply not realistic in
real life. It should be remembered, however, that disagreeing with what is presented
here is fine, bearing in mind the following points:

● Disagreeing with terms. It is perfectly natural to disagree with the actual terms
that are being used. People working in different organisations, in different
industries and even in the same organisation will often use different words to
describe the same concept. This is not a problem as long as people are aware of
the different terms being used. This is the same as two people speaking two
different languages – it does not mean that they cannot communicate but does
mean that there is a requirement for translation between them. The use of an
Ontology is an excellent mechanism to achieve this translation.

● Disagreeing with concepts – wrong definition. In some cases, there may a concept
that is used in the MBSE Ontology, which is considered to be completely wrong.
Again, this is not necessarily a problem, but it does mean that the concept will
need to be redefined. This is achieved by modifying the MBSE Ontology and
ensuring that the meaning is still consistent with the rest of the MBSE Ontology.

● Disagreeing with concepts – irrelevant concepts. In some cases, there may be
concepts on the MBSE Ontology that are considered irrelevant or superfluous
to the need of your business. In this case, simply remove them. For example, if
your business does not consider Systems of Systems, then there is no value in
having that concept on the MBSE Ontology.

● Disagreeing with concepts – missing concepts. In some cases, there may be
organisation-specific or industry-specific concepts that do not exist on this
generic MBSE Ontology. In this case, the new concepts need to be added to the
MBSE Ontology. Obviously, care must be taken to ensure that the new con-
cepts are consistent with the original MBSE Ontology.

Remember, the MBSE Ontology provided here is not intended to be definitive for
every organisation or industry but, rather, is intended to be a good starting point for
creating and tailoring an ontology for your own MBSE activities.

3.2 The MBSE Ontology

This section provides the main definition for the MBSE Ontology along with a
discussion of each of the concepts, including the provenance of each.

The basic MBSE Ontology was introduced and described briefly in Chapter 1.
The same high-level overview is presented again here for reference.

34 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Architectural
Framework

Architecture

Ontology ViewViewpoint

Rule

Enabling System

Constituent System

System Context

System of Interest

System of Systems

System Product

Service Process

Process Execution
Group

Context

Use Case

Competence

Competency Scope

Competency Profile

Person

Life Cycle

Life Cycle
Interaction

Life Cycle
Interaction Point

Life Cycle Model

Stage

Project

Programme

Organisational Unit

Organisation

NeedSource Element

Need Description Scenario

Stakeholder
Context

Project Context Organisational
Context

Process Context

Stakeholder Role

Activity

Artefact

..*produces/consumes

1..*

1

is related to

0..*

1..*

1

1..*

describes the need for
1

1..*

constrains

1

1..*

realises

1..*

1..*

describes m
easured

1

1..*

represents the need for 1

1
requires

1

interacts
with

1..*

1..*

describes desired

1

1..*

is executed during

1

1..*

1..*

1

1..*

describes the evolution of

1

1..*

is executed during

1

1describes

1

1..*

de
sc

rib
es

 th
e

ev
ol

ut
io

n
of

1

1..*

1

1

is assessed against

1

1

represents the need for

1

1..*

interacts with

1

1

describes structure of

1

1

describes measured
abilities of

1

1

is responsible for

1..*

1..*

describes the context of

1..*

1

exhibits

1

1

represents the need for

1..*

1..*

0..1

1..*

1

produces

1..*

{incomplete}

1..*

holds
1..*

1..*

is elicited from

1..*

1

1..*validates

1..*

1..*

runs

1..*

1..*

has an
interest in

1

1

interfaces with

1..*

1..*

describes

1..*

1..* 1

1..*

1

1..*

shows behaviour of

1

1

interacts
with

1..*

1..*

constrains

1..*

1
is realised as

1..*

1

shows the order of execution of1..*

1

describes interactions between

1

1..*

1

1

Figure 3.1 The high-level MBSE Ontology used throughout this book

The diagram in Figure 3.1 shows the high-level overview of the MBSE
Ontology that was introduced in Chapter 1. This chapter will take each of the high-
level concepts and consider them in more detail. Each concept is grouped with
similar and related concepts and presented, described and discussed in its own
section. These major groupings are as follows:

● System concepts, which cover the basic concepts associated with System,
Systems of Systems, Constituent Systems, etc.

● Need concepts, which cover all concepts associated with System Needs, such
as Requirements, Capabilities and Goals.

● Architecture concepts, where the description and structure of Architectures
using Architectural Frameworks are discussed.

● Life Cycle concepts, where different Life Cycles and Life Cycle Models are
discussed, along with the interactions between Life Cycles.

● Process concepts, where the structure, execution and responsibility of Pro-
cesses are discussed.

● Competence concepts, where the ability of people associated with Stakeholder
Roles is defined.

● Project concepts, where Project- and Programme-related concepts are defined.

It is the combination of all these detailed views that will make up the MBSE
Ontology in its entirety and which will be presented as a single diagram, showing
these major groupings, at the end of this chapter. The MBSE Ontology shown in
this chapter is a simplified version of the full MBSE Ontology, which itself is
shown in Appendix A. Each of the major groupings focuses on a number of key
concepts that are abstracted from a variety of the source references. These source
references are described, discussed and where necessary a model is shown. The
concepts are then compared and contrasted, and a fully traceable description is
defined that will be used throughout the rest of this book.

3.2.1 The System concept
One of the most fundamental terms that are used in MBSE is that of the System.
This forms the core definition at the heart of systems engineering and around which
the whole MBSE Ontology is based.

3.2.1.1 System-related concepts as described by the International
Standards Organisation (ISO)

‘ISO 15288 – systems and software engineering life cycle Processes’ [1] defines a
system as a:

combination of interacting elements organised to achieve one or more
stated purposes.

And then goes on to qualify this with an additional note that states:

a system may be considered as a product or as the services that it provides.

36 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The standard then continues with a definition of system element as follows:

member of a set of elements that constitutes a system.

With a qualifying note that states:

. . . a system element can be hardware, software, data, humans, Pro-
cesses . . . procedures . . . facilities, materials and naturally-occurring enti-
ties . . . or any combination.

In terms of thinking about the System at a conceptual level, ISO defines that a
System may be considered as one of two types: a System of Interest or an Enabling
System, which are defined as:

system of interest (is a) system whose life cycle is under consideration in
the context of this International Standard.

enabling system (is a) system that supports a system of interest during
its life cycle stages but does not necessarily contribute to its function
during operation.

This standard is particularly weak when it comes to defining a System of Systems,
but does hint at one by stating:

for a more complex system of interest, a prospective system element may
itself need to be considered as a system (that is in turn comprised of sys-
tem elements) before a complete set of system elements can be defined
with confidence.

Therefore, in summary, the ISO 15288 System-related concepts may be visualised
by the diagram in Figure 3.2.

«ontology element»
System

«ontology element»
System of Interest

«ontology element»
Enabling System

«ontology element»
Product

«ontology element»
Service

«ontology element»
System Element

«ontology element»
Software

«ontology element»
Hardware

«ontology element»
Process

«ontology element»
Person

«ontology element»
Material

1

interacts with

1..* 1

is realised by

1..* 1..*

provides

0..*

1..*

1 is realised by

1..*

Figure 3.2 Summary of System-related concepts for ISO 15288

MBSE Concepts 37

The concepts shown in this diagram will be used as a basis for the definitions of
the concepts in the MBSE Ontology that will be used for the remainder of this book.

3.2.1.2 System-related concepts as described by the International
Council on Systems Engineering (INCOSE)

The ‘INCOSE systems engineering handbook’ [2] is based directly on ISO 15288 but
expands on all of the points made in it, including definitions, Processes and life cycles.
As a result of this, the definitions for System, Enabling System, System of Interest and
System Element are exactly the same as the definitions provided in ISO 15288. INCOSE
does not explicitly define the terms Products or Services but does allude to the fact that
systems engineering is intended to ‘establish agreement for the creation of products and
services’, which may be interpreted as a similar definition to that provided in ISO 15288.

INCOSE, however, does enter into more detail when defining a System of
Systems, using the definition:

systems of systems (SoS) are defined as an interoperating collection of
component systems that produce results unachievable by the individual
systems alone.

This provides a difference from the loose definition provided in ISO 15288 and
introduces the idea that a System of Systems has its own ‘results’ – this is not
explicit in the ISO 15288 definition.

Therefore, in summary, the INCOSE System-related concepts may be visua-
lised by the diagram in Figure 3.3.

«ontology element»
System

«ontology element»
Product

«ontology element»
Service

«ontology element»
Component System

«ontology element»
System of Systems

«ontology element»
System of Interest

«ontology element»
Enabling System

«ontology element»
System Element

1 is realised by

1..*

1

interacts with

1..*

1

is realised by

1..*

1

interacts with

1..*

1..*

1..*

provides

0..*

1..*

Figure 3.3 Summary of the System related concepts for INCOSE

38 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The concepts shown in this diagram will be used as a basis for the definitions of
the concepts in the MBSE Ontology that will be used for the remainder of this book.

3.2.1.3 System-related concepts as described by the US Department
of Defense

The US DoD has issued a set of systems engineering guidelines that are aimed
specifically at Systems of Systems [4]. The guidelines define a System as:

a functionally, physically and/or behaviourally related group of regularly
interacting or interdependent elements; that group of elements forming a
unified whole.

This definition, while using different terms, is very similar to that used in both ISO
15288 and the INCOSE handbook. The emphasis of these guidelines is on the
concept of Systems of Systems; therefore, the definition used should be particularly
interesting.

An SoS is defined as a set or arrangement of systems that results when
independent and useful systems are integrated into a larger system that
delivers unique capabilities.

The relationship between the concepts of System and System of Systems is further
elaborated on by the statement:

. . . although an SoS is a system, not all systems are SoS.

This definition really states that there is a generalisation relationship between sys-
tem and system of systems.

The guidelines then continue by identifying four main types of System of
Systems, as defined by Maier [30], which are as follows:

● Virtual – Virtual SoS lack a central management authority and a centrally
agreed upon purpose for the system of systems. Large-scale behaviour emerges –
and may be desirable – but this type of SoS must rely upon relatively invisible
mechanisms to maintain it.

● Collaborative – In collaborative SoS, the component systems interact more or
less voluntarily to fulfil agreed upon central purposes. The Internet is a colla-
borative system. The Internet Engineering Task Force works out standards but
has no power to enforce them. The central players collectively decide how to
provide or deny service, thereby providing some means of enforcing and
maintaining standards.

● Acknowledged – Acknowledged SoS have recognised objectives, a designated
manager, and resources for the SoS; however, the constituent systems retain
their independent ownership, objectives, funding, and development and sus-
tainment approaches. Changes in the systems are based on collaboration
between the SoS and the system.

● Directed – Directed SoS are those in which the integrated system of systems is
built and managed to fulfil specific purposes. It is centrally managed during

MBSE Concepts 39

long-term operation to continue to fulfil those purposes as well as any new
ones the system owners might wish to address. The component systems
maintain an ability to operate independently, but their normal operational
mode is subordinated to the central managed purpose.

Therefore, in summary, the US DoD System-related concepts may be visualised by
the diagram in Figure 3.4.

The concepts shown in this diagram will be used as a basis for the definitions
of the concepts in the MBSE Ontology that will be used for the remainder of
this book.

3.2.1.4 The MBSE Ontology definition for System-related concepts
The concepts and definitions that will be used in this book are shown in the diagram
in Figure 3.5.

The diagram here shows the MBSE Ontology for the main concepts that are
related to the System. The structure of the diagram is very similar to those of
ISO 15288 and the DoD guide. The main structure of the ‘System’ is taken from
ISO 15288, whereas the ‘System of Systems’ structure is taken mainly from the
DoD guide.

«ontology element»
System

«ontology element»
Individual System

«ontology element»
System of Systems

«ontology element»
Virtual

«ontology element»
Collaborative

«ontology element»
Acknowledged

«ontology element»
Directed

«ontology element»
Element1

interacts with

1..*

1..*1..* 1

interacts with

1..*

Figure 3.4 Summary of System-related concepts for the DoD

40 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

These concepts are defined as follows:

● ‘System’ – set of interacting elements organised to satisfy one or more ‘System
Context’. Where the ‘System’ is a ‘System of Systems’, its elements will be
one or more ‘Constituent System’ and where the ‘System’ is a ‘Constituent
System’, its elements are one or more ‘System Element’. A ‘System’ can
interact with one or more other ‘System’.

● ‘Constituent System’ – a special type of ‘System’ whose elements are one or
more ‘System Element’.

● ‘System of Systems’ – a special type of ‘System’ whose elements are one or
more ‘Constituent System’ and which delivers unique functionality not deli-
verable by any single ‘Constituent System’.

«ontology element»
Enabling System

«ontology element»
Constituent System

«ontology element»
System Element

«ontology element»
System Context

«ontology element»
System of Interest

«ontology element»
System of Systems

«ontology element»
Architecture

«ontology element»
System

«ontology element»
Virtual System

«ontology element»
Collaborative System

«ontology element»
Directed System

«ontology element»
Acknowledged System

«ontology element»
Product

«ontology element»
Service

0..*

1..*

describes 1..*

1

represents the need for

1

1..*

1..*

1

interacts
with

1..*

0..*

1

is realised as

1..*

1..*

interacts with

1

1

interacts with

1..*

Figure 3.5 MBSE Ontology focused on System concepts

MBSE Concepts 41

● ‘System of Interest’ – a special type of ‘System’ that describes the system
being developed, enhanced, maintained or investigated.

● ‘Enabling System’ – a special type of ‘System’ that interacts with the ‘System
of Interest’ yet sits outside its boundary.

● ‘System Element’ – a basic part of a ‘Constituent System’.
● ‘Product’ – something that realises a ‘System’. Typical products may include,

but are not limited to software, hardware, Processes, data, humans, facilities,
etc.

● ‘Service’ – an intangible ‘Product’ that realises a ‘System’. A ‘Service’ is itself
realised by one or more ‘Process’.

● ‘Virtual’ – a special type of ‘System of Systems’ that lacks central manage-
ment and resources, and no consensus of purpose.

● ‘Collaborative’ – a special type of ‘System of Systems’ that lacks central
management and resources, but has consensus of purpose.

● ‘Acknowledged’ – a special type of ‘System of Systems’ that has designated
management and resources, and a consensus of purpose. Each ‘Constituent
System’ retains its own management and operation.

● ‘Directed’ – a special type of ‘System of Systems’ that has designated man-
agement and resources, and a consensus of purpose. Each ‘Constituent System’
retains its own operation but not management.

This subset of the MBSE Ontology has direct relationships to the ‘Need’, ‘Life
Cycle’ and ‘Process’ subsets that are described in this chapter.

3.2.2 The Need concept
The concept of a Need that is used here is a generalisation of a number of terms,
including the terms Requirement, Capability and Goal. This section will therefore
look at several definitions of these terms and then define exactly what is meant by
them for the purposes of this book.

3.2.2.1 Need-related concepts as described by the Oxford English
Dictionary

The basic definition of a Requirement in the Oxford English Dictionary is:

‘(noun) a thing that is needed or wanted’ [33].

This definition, albeit a very high-level one, is very interesting for two main
reasons:

● A Requirement is basically defined as a ‘thing’ – not the most unambiguous of
definitions.

● This ‘thing’ is either ‘needed’ or ‘wanted’. This is particularly interesting as
there is often a big difference between what a Stakeholder Role wants and what
stakeholders actually need. Indeed, part of any Requirements analysis activity
should concern itself with the difference between these two terms.

This is a somewhat ambiguous definition of the term.

42 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

3.2.2.2 Need-related concepts as described by the International
Council on Systems Engineering (INCOSE)

The next definition that will be considered is taken from the world of systems
engineering. The whole area of systems engineering advocates that requirements
must be understood so much so that the areas of Requirements engineering and
systems engineering are often confused. The next definition, therefore, is taken
from the INCOSE handbook [2].

A statement that identifies a system, product or Process characteristic or
constraint, which is unambiguous, clear, unique, consistent, stand-alone
(not grouped), and verifiable, and is deemed necessary for stakeholder
acceptability.

This definition is more complex than the previous one but also shares some char-
acteristics with it. Consider the following:

● For the first time, this definition states explicitly that a Requirement takes the
form of a ‘statement’.

● This definition then states that a Requirement is a ‘system, product or Process
characteristic or constraint’. This is, essentially, putting a better definition to
the term ‘thing’ that was used in the first definition.

● The definition then goes on to qualify this statement, by stating that it must be
‘unambiguous, clear, unique, consistent, stand-alone (not grouped) and ver-
ifiable’. This set of basic characteristics will be discussed throughout this
book but, suffice to say, there exists a set of desirable characteristics for any
Requirement.

● The final part of the INCOSE definition states that the Requirement is ‘deemed
necessary for stakeholder acceptability’. This is very much in the ‘needed’
rather than ‘wanted’ camp when compared to the OED definition.

In conclusion, therefore, this is a fuller definition of the term that adds more detail
when compared with the OED definition.

3.2.2.3 Need-related concepts as described by the Modelling
Community

The next definition of the term Requirement is taken from the world of modelling.
This is an important definition as modelling is core to the whole approach taken in
this book. This definition is taken from the Unified Modelling Language definition:

‘a desired feature, property or behaviour of a system’ [34].

This definition is certainly simpler that the INCOSE one and has a number of
noteworthy aspects.

● The term ‘desired’ is used here, which really sits somewhere between ‘wanted’
and ‘needed’.

● The term Requirement is defined in the Context of being a property of a Sys-
tem, rather than the Context of the Stakeholder.

MBSE Concepts 43

In conclusion, therefore, this is another simple definition and, again, one that is very
similar to both the INCOSE and OED definitions.

In the seminal book ‘Model-based requirements engineering’ [26], the idea of a
Need is taken further by considering the Context and also how it will be validated.
The key terms are shown in the diagram in Figure 3.6.

The concepts here consider the ‘Requirement’ as an abstract concept that has
a ‘Requirement Description’ but that also has its ‘Context’ defined in terms
or one or more ‘Use Case’. Each ‘Use Case’ may then be validated by one or
more ‘Scenario’. This is the first definition where the concepts of a basic
need (shown here as ‘Requirement’) are taken further and related to other
established modelling concepts (the ‘Use Case’ and the ‘Scenario’). This is
further extended by considering traceability back to one or more ‘Source Element’
and the concept of a ‘Rule’ that may be defined in order to constrain one or more
‘Requirement’.

«ontology element»
Requirement

«ontology element»
Source Element

«ontology element»
Requirement Description

«ontology element»
Rule

«ontology element»
Business Requirement

«ontology element»
Functional Requirement

«ontology element»
Non-functional
Requirement

«ontology element»
Use Case

«ontology element»
Scenario

«ontology element»
Semi-formal Scenario

«ontology element»
Formal Scenario

«ontology element»
Context

«ontology element»
System Context

«ontology element»
Stakeholder Context

1..*

validates

1..*

1

describes

1 1..*describes context of1..*

0..*

constrains

1..*1..*

is elicited from

1..*

Figure 3.6 Summary of Need-related concepts as described in ‘Model-based
requirements engineering’

44 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

3.2.2.4 Need-related concepts as described by the International
Standards Organisation (ISO)

The next definition that will be considered is taken from the generic quality-based
standard – ISO 9001 [35], which defines a Requirement as:

need or expectation that is stated, generally implied or obligatory.

Again, this may appear to be a simple definition, but there are some interesting
points to be made here.

● For the first time, the term ‘expectation’ is used here as an alternate to ‘need’.
The main difference between these two terms is that one is more specific than
the other. A need must be stated, whereas an expectation may be viewed as
more assumed than stated.

● Following directly on from the previous point, this definition provides three
qualifiers on the term ‘requirement’. It states that a Requirement may be ‘stated’
explicitly, ‘generally implied’ implicitly or ‘obligatory’ in that it is mandatory.

In conclusion, therefore, this definition has similarities with the previous defini-
tions, but adds more detail with the nature of the Requirement.

3.2.2.5 The MBSE Ontology definition for Need-related concepts
Based on these information sources, the section of the MBSE Ontology shown in
Figure 3.7 was defined.

«ontology element»
Rule

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
System Context

«ontology element»
Concern

«ontology element»
Need

«ontology element»
Source Element

«ontology element»
Need Description

«ontology element»
Scenario

«ontology element»
Capability

«ontology element»
Goal

«ontology element»
Requirement

«ontology element»
Stakeholder Context

«ontology element»
Project Context

«ontology element»
Organisational Context

«ontology element»
Semi-formal Scenario

«ontology element»
Formal Scenario

«ontology element»
Process Context

1

is related to

0..*

1..*

is elicited from

1..*

1..*

is needed to deliver 1

1

is related to

0..*

1..*
describes the context of

1..*

1..*

validates

1..*

{incomplete}

1..*

constrains

1..*

1

describes

1

1..* meets

1..*

1..*
traces to

1..*

Figure 3.7 MBSE Ontology focused on Need concepts

MBSE Concepts 45

The diagram here shows the MBSE Ontology for the main concepts that are
related to need concepts. These are defined as follows:

● ‘Need’ – a generic abstract concept that, when put into a ‘Context’, represents
something that is necessary or desirable for the subject of the Context.

● ‘Need Description’ – a tangible description of an abstract ‘Need’ that is
defined according to a pre-defined set of attributes.

● ‘Goal’ – a special type of ‘Need’ the ‘Context’ of which will typically repre-
sent one or more ‘Organisational Unit’ (as an ‘Organisational Context’). Each
‘Goal’ will be met by one or more ‘Capability’.

● ‘Capability’ – a special type of ‘Need’ the ‘Context’ of which will typically
represent one or more ‘Project’ (as a ‘Project Context’) or one or more
‘Organisational Unit’ (as an ‘Organisational Context’). A ‘Capability’ will
meet one or more ‘Goal’ and will represent the ability of an ‘Organisation’ or
‘Organisational Unit’.

● ‘Requirement’ – a property of a System that is either needed or wanted by a
‘Stakeholder Role’ or other Context-defining element. Also, one or more
‘Requirement’ is needed to deliver each ‘Capability’.

● ‘Source Element’ – the ultimate origin of a ‘Need’ that is elicited into one or
more ‘Need Description’. A ‘Source Element’ can be almost anything that
inspires, affects or drives a ‘Need’, such as a Standard, a System, Project
documentation, a phone call, an e-mail, a letter and a book.

● ‘Rule’ – a construct that constrains the attributes of a ‘Need Description’. A
‘Rule’ may take several forms, such as equations, heuristics, reserved word
lists and grammar restrictions.

● ‘Use Case’ – a ‘Need’ that is considered in a specific ‘Context’ and that is
validated by one or more ‘Scenario’.

● ‘Context’ – a specific point of view based on, for example, Stakeholder Roles,
System hierarchy level, Life Cycle Stage, etc.

● ‘Scenario’ – an ordered set of interactions between one or more ‘Stakeholder
Role’, ‘System’ or ‘System Element’ that represents a specific chain of events
with a specific outcome. One or more ‘Scenario’ validates each ‘Use Case’.

● ‘Formal Scenario’ – a ‘Scenario’ that is mathematically provable using, for
example, formal methods.

● ‘Semi-formal Scenario’ – a ‘Scenario’ that is demonstrable using, for example,
visual notations such as SysML, tables and text.

The ‘Need’ subset of the MBSE Ontology has relationships with the ‘Project’ and
‘System’ subsets.

3.2.3 The Architecture concept
The concept of an architecture is fundamental to any Systems Engineering
undertaking. There is much confusion, however, due to the plethora of very
similar terms involving the word architecture. The use of architecture has also

46 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

changed significantly over the years as the definitions that apply to the world of
software engineering have a significantly simpler scope than the world of systems
engineering.

3.2.3.1 Architecture-related concepts as described by the Interna-
tional Standards Organisation (ISO)

There are two main ISO standards that will be considered for the source knowledge
for defining architecture, which are as follows:

● ISO 15288 – Systems and software engineering – System life cycle Processes.
This standard is used many times in this book, but has surprisingly little
information concerning architecture [1].

● ISO 42010 – Systems and software engineering – Architecture description.
This standard is more recent than ISO 15288 and is concerned solely with
architectures. The terminology provided in this standard, therefore, is very well
defined and has far more detail than in ISO 15288 [5].

In ISO 15288, the definition of an architecture is given as:

fundamental organisation of a system embodied in its components, their
relationships to each other, and to the environment, and the principles
guiding its design and evolution.

ISO/IEC 42010 defines a number of terms:

● architecting: Process of conceiving, defining, expressing, document-
ing, communicating, certifying proper implementation of, maintain-
ing and improving an architecture throughout a system’s life cycle.

● architecture: fundamental concepts or properties of a system in its
environment embodied in its elements, relationships, and in the prin-
ciples of its design and evolution.

● architecture description (abbreviation ‘AD’): work product used to
express an architecture.

● architecture description language (abbreviation ‘ADL’): any form of
expression for use in architecture descriptions.

● architecture Framework: conventions, principles and practices for the
description of architectures established within a specific domain of
application and/or community of stakeholders.

● architecture viewpoint: work product establishing the conventions for
the construction, interpretation and use of architecture views to frame
specific system concerns.

● architecture view: work product expressing the architecture of a sys-
tem from the perspective of specific system concerns.

● concern: interest in a system relevant to one or more of its stakeholders. A
concern pertains to any influence on a system in its environment, including
developmental, technological, business, operational, organizational,
political, economic, legal, regulatory, ecological and social influences.

MBSE Concepts 47

● environment: context determining the setting and circumstances of all
influences upon a system. The environment of a system includes
developmental, technological, business, operational, organizational,
political, economic, legal, regulatory, ecological and social influences.

● stakeholder: individual, team, organization, or classes thereof, having
an interest in a system.

The fundamental definition of the term ‘architecture’ is almost identical between
the two standards, but ISO 42010 provides far more definitions than ISO 15288 and
will be used as the main knowledge source for this section.

The diagram in Figure 3.8 shows a summary of the architecture-related terms
for ISO 42010. As the definition of ‘architecture’ in ISO 15288 is almost identical,
this diagram can be seen to represent both standards accurately.

«ontology element»
System

«ontology element»
Environment

«ontology element»
Stakeholder

«ontology element»
Concern

«ontology element»
Architecture

«ontology element»
Concept

«ontology element»
Element

«ontology element»
Principle

«ontology element»
Design Principle

«ontology element»
Evolution Principle

«ontology element»
Architecture
Description

«ontology element»
Architecture Framework

«ontology element»
View

«ontology element»
Viewpoint

1

identifies

1..*

1governs1..*

1..* is produced
according to

1..*

1..*

has an interest in1..*

1

identfies

1..*

1

identifies

1..*
1

identifies

1..*

1..* 1..*

1..*

addresses

1..*
1..*

expresses

1

0..*

is situated in

1

1

exhibits

1

1..*

1 applies to 1..*

1

defines established
views of

1..*

Figure 3.8 Summary of Architecture-related concepts for ISO 42010

48 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

3.2.3.2 Architecture-related concepts as described by the Interna-
tional Council on Systems Engineering (INCOSE)

The INCOSE handbook does not provide an explicit definition of an architecture
yet does refer to several different types of architecture, such as system architecture,
logical architecture, functional architecture and enterprise architecture.

there may be several required operational views of the system driven by
Architectural Frameworks.

As has been mentioned previously, the INCOSE handbook is, in many ways, an
expansion of ISO 15288, which itself is weak where architectures are concerned.

3.2.3.3 Architecture-related concepts as described by the Architecture
Framework community

When architectures are used for a specific industry, or a specific stakeholder group,
it is quite common for an Architecture Framework to be defined. An Architecture
Framework is not, in itself, an Architecture but defines a set of Views that are
required to describe an Architecture.

A number of Architecture Frameworks will be considered at a very high level.
For a more in-depth description see [27].

3.2.3.4 The Zachman Framework
The Zachman Framework is a Framework for Enterprise Architecture. The Zachman
Framework is one of the oldest and most mature Frameworks and is certainly one of
the most widely used Frameworks in industry today [7,8].

Zachman derived the Framework from the world of classical (building)
architecture and, hence, the names of the views and the perspectives relate to the
terminology of architecture.

The diagram in Figure 3.9 shows a high-level view of the Zachman Frame-
work. The Framework itself takes the form of a simple ‘Matrix’ comprising rows
and columns with intersecting cells that describe aspects of an entity. Usually, there
are 36 cells as the matrix usually has 6 rows and always has 6 columns.

Each row represents between one and six ‘Communication Interrogative’, each
of which asks a basic question regarding the ‘Entity’ that is under consideration.
These questions take the basic form of ‘What’, ‘How’, ‘When’, ‘Who’, ‘Where’
and ‘Why’, based on Kipling’s six honest serving men. Each column represents a
‘Reification Transformation’ that covers the broad transformation of information
from a vague abstraction into a solid instantiation. These are as follows:

● ‘Identification’, which is often represented on the matrix as scope contexts and
which is mainly applicable to strategists as theorists.

● ‘Definition’, which is often represented on the matrix as business contexts and
which is mainly applicable to executive leaders as owners.

● ‘Representation’, which is often represented on the matrix as system logics and
which is mainly applicable to architects as designers.

● ‘Specification’, which is often represented on the matrix as technology physics
and which is mainly applicable to engineers as builders.

MBSE Concepts 49

● ‘Configuration’, which is often represented on the matrix as component
assemblies and which is mainly applicable to technicians as implementers.

● ‘Instantiation’, which is often represented on the matrix as operations and
instance classes and which is mainly applicable to workers as participants.

The Zachman Framework has been used as a major reference for most Architectural
Frameworks, including the ones described in this section.

3.2.3.5 Defence-based Architecture Frameworks
The defence industry has a number of Architectural Frameworks that originate in
and are used by particular countries. These include the following:

● MODAF – Ministry of Defence Architecture Framework [9], which originated
and is used in the United Kingdom.

● DoDAF – Department of Defense Architecture Framework [10], which origi-
nated and is used in the USA.

● NAF – NATO Architecture Framework [11], which is used in NATO countries.
● DNDAF – DND/CF Architecture Framework [36], which originated and is

used in Canada.

«ontology element»
Matrix

«ontology element»
Communication

Interrogative

«ontology element»
Reification

Transformation

«ontology element»
Descriptive

Representation

«ontology element»
How

«ontology element»
What

«ontology element»
When

«ontology element»
Who

«ontology element»
Where

«ontology element»
Why

«ontology element»
Identification

«ontology element»
Definition

«ontology element»
Representation

«ontology element»
Specification

«ontology element»
Configuration

«ontology element»
Instantiation

«ontology element»
Architecture

«ontology element»
Entity

«ontology element»
Zachman Framework

1

is the basis for

1

6

6

describes

1

1

is depicted as

1

1..6

1..*

describes

1..*

Figure 3.9 Summary of the Architecture-related concepts for Zachman

50 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The list goes on with many countries having their own specific Framework,
but most of them are closely related and, therefore, have very similar constructs
and concepts. For the sake of brevity and the reader’s sanity, a single one will
be considered as a knowledge source – for a more in-depth comparison see [37].
In addition, to learn more about common notation for defence Frameworks,
see [13].

The UK Ministry of Defence Architectural Framework (MODAF) defines an
Architectural Frameworks as:

An Architectural Framework (AF) is a specification of how to organise
and present architectural models. . . . an AF defines a standard set of model
categories (called ‘Views’) which each have a specific purpose. These
views are often categorised by the domain they cover – e.g. operational/
business, technical, etc. – which are known in MODAF as Viewpoints.

In terms of the application of MODAF, its scope includes:

MODAF provides a rigorous method for understanding, analysing, and
specifying: Capabilities, Systems, Systems of Systems (SoS), Organisa-
tional Structures and Business Processes.

The MODAF specification identifies seven Viewpoints that are required to make up
the full Architectural Frameworks. Note that this is a different definition of the term
‘Viewpoint’ from the one used in ISO 42010 (Figure 3.10).

The MODAF is made up of seven ‘Viewpoint’ each of which is made up of one
or more ‘View’. These Viewpoints are simply collections of Views and serve to
group views that are used for similar purposes. The viewpoints are ‘All Views’ that
describe information that applies to all Viewpoints, the ‘Strategic’ Viewpoint that
describes capabilities, the ‘Operational’ Viewpoint that describes concepts, the
‘System’ Viewpoint that describes the actual Systems, the ‘Service-oriented’
Viewpoint that describes the actual Services, the ‘Acquisition’ viewpoint that
describes acquisition programme Views and the ‘Technical’ Viewpoint that iden-
tifies relevant Standards.

The various defence-based Frameworks are related to each other and so,
unsurprisingly, have a number of similarities. In order to illustrate these similarities
Table 3.1 provides a high-level mapping between the terms that are used in several
Frameworks.

Table 3.1 is not intended to be an exhaustive comparison but is intended to
make the point that there are many similarities between the various defence-based
Architectural Frameworks. For a full discussion on the similarities and differences
between these Frameworks, including models of the different structures, see [27].

3.2.3.6 Non-defence Architecture Frameworks
Alongside the defence-based Architectural Frameworks, there are a number of non-
defence architecture Frameworks (note the difference in terms here, where the term
‘Architectural Frameworks’ was used in defence, the term ‘architecture Frame-
work’ is used here; both mean the same thing).

MBSE Concepts 51

«ontology element»
Architectural Model

«ontology element»
Aspect

«ontology element»
System

«ontology element»
System of Systems

«ontology element»
Organisational Structure

«ontology element»
Business Process

«ontology element»
MODAF

«ontology element»
Viewpoint

«ontology element»
View

1..* 7

1

provides a specification of how to represent

1..*

1..*

Figure 3.10 Summary of the MODAF architecture-related concepts

Table 3.1 Comparison of terms in defence-based Architectural Frameworks

MODAF DoDAF NAF

Viewpoint View View
View Product Subview
All Viewpoint All View NATO All View
Acquisition Viewpoint NATO Programme View
Strategic Viewpoint NATO Capability View
Operational Viewpoint Operational View NATO Operational View
Systems Viewpoint Systems and Services View NATO Systems View
Service-oriented Viewpoint Systems and Services View NATO Service-oriented View
Technical Viewpoint Technical Standards View NATO Technical view

52 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Perhaps the most widely known architecture Framework is The Open Group
Architecture Framework (TOGAF) [14], which is not actually an architecture
Framework but, rather, a set of phases and associated Processes in the form of an
architecture development method that will enable an enterprise architecture to be
created for an organisation.

TOGAF does not define any particular Views (although it does hint strongly at
some) but focuses on how to manage the development and delivery of the archi-
tecture. This is an important point as the TOGAF is effectively a management-
based approach and, hence, focuses largely on management and planning, rather
than the actual development of the architecture and its views.

Another example of a non-defence architecture Framework is TRAK, which
was originally commissioned by London Underground Limited in the United
Kingdom but has since been adopted by a number of organisations [12]. TRAK
cites both ISO 15288 and ISO 42010 as major references, was developed using
many of the concepts from MODAF and has a strong systems engineering flavour.
The diagram in Figure 3.11 shows an overview of TRAK.

The diagram here shows that ‘TRAK’ is made up of five ‘Perspective’ that
groups one or more related ‘View’ and 21 ‘Viewpoint’. Each ‘View’ is defined
according to one ‘Viewpoint’.

«ontology element»
TRAK

«ontology element»
Perspective

«ontology element»
Viewpoint

«ontology element»
View

5

1..*

conforms to

1

1..*

21

Figure 3.11 Summary of the TRAK architecture related concepts

MBSE Concepts 53

3.2.3.7 The MBSE Ontology definition for Architecture
Based on these knowledge sources, the Ontology shown in Figure 3.12 was defined.

The concepts shown in Figure 3.12 are defined as follows:

● ‘Architectural Framework’ – a defined set of one or more ‘Viewpoint’ and an
‘Ontology’. The ‘Architectural Framework’ is used to structure an ‘Archi-
tecture’ from the point of view of a specific industry, Stakeholder Role set, or
Organisation. The ‘Architectural Framework’ is defined so that it meets the
Needs defined by one or more ‘Architectural Framework Concern’. An
‘Architectural Framework’ is created such that it complies with zero or more
‘Standard’.

● ‘Architectural Framework Concern’ – defines a Need that an ‘Architectural
Framework’ has to address.

● ‘Ontology’ – an element of an ‘Architectural Framework’ that defines all the
concepts and terms (one or more ‘Ontology Element’) that relate to any
‘Architecture’ structured according to the ‘Architectural Framework’.

● ‘Ontology Element’ – the concepts that make up an ‘Ontology’. Each ‘Ontol-
ogy Element’ can be related to each other and is used in the definition of each
‘Viewpoint’ (through the corresponding ‘Viewpoint Element’ that makes up a
‘Viewpoint’). The provenance for each ‘Ontology Element’ is provided by one
or more ‘Standard’.

● ‘Viewpoint’ – a definition of the structure and content of a ‘View’. The content
and structure of a ‘Viewpoint’ use the concepts and terms from the ‘Ontology’
via one or more ‘Viewpoint Element’ that make up the ‘Viewpoint’. Each

«ontology element»
Viewpoint Element

«ontology element»
Architectural Framework

«ontology element»
Architecture

«ontology element»
Ontology

«ontology element»
Ontology Element

«ontology element»
View

«ontology element»
View Element

«ontology element»
Viewpoint

«ontology element»
Rule

«ontology element»
System

1..*

describes

1..*

1..*

uses elements from

1

1..*

conforms to

1

1..*

1

1..*

corresponds to

1

1..*

1

1..*

1

1

1

1..*

1

1..*

constrains

1

1..*

visualises

1

1

is related to

0..* 1..*

1

1

describes structure
of 1

Figure 3.12 MBSE Ontology for Architectures and Architectural Frameworks

54 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

‘Viewpoint’ is defined so that it meets the needs defined by one or more
‘Viewpoint Concern’.

● ‘Viewpoint Concern’ – defines a Need that a ‘Viewpoint’ has to address.
● ‘Viewpoint Element’ – the elements that make up a ‘Viewpoint’. Each

‘Viewpoint Element’ must correspond to an ‘Ontology Element’ from the
‘Ontology’ that is part of the ‘Architectural Framework’.

● ‘Architecture’ – a description of a ‘System’, made up of one or more ‘View’.
One or more related ‘View’ can be collected together into a ‘Perspective’.

● ‘View’ – the visualisation of part of the ‘Architecture’ of a ‘System’ that
conforms to the structure and content defined in a ‘Viewpoint’. A ‘View’ is
made up of one or more ‘View Element’.

● ‘View Element’ – the elements that make up a ‘View’. Each ‘View Element’
visualises a ‘Viewpoint Element’ that makes up the ‘Viewpoint’ to which the
‘View’, on which the ‘View Element’ appears, conforms.

● ‘Perspective’ – a collection of one or more ‘View’ (and hence also one or more
defining ‘Viewpoint’) that are related by their purpose. That is, one or more
‘View’ that address the same architectural needs, rather than being related in
some other way, such as by mode of visualisation.

● ‘Rule’ – a construct that constrains the ‘Architectural Framework’ (and hence
the resulting ‘Architecture’) in some way, for example by defining one or more
‘Viewpoint’ that are required as a minimum.

● ‘System’ – set of interacting elements organised to satisfy one or more Needs.
The artefact being engineered that the ‘Architecture’ describes.

It is important to note here that an Architecture is simply considered to be a
description of a System, represented by a number of Views that are created
according to a number of pre-defined Viewpoints from a given Architectural
Framework.

There are a number of terms from the Ontology in Figure 3.12 that perhaps
need some clarification, namely Architectural Framework, Architecture, Viewpoint
and View. The following clarification should help:

● An Architectural Framework is made up of a number of Viewpoints that define
the information that can be presented.

● An Architecture is based on an Architectural Framework. It is made up of
Views, with each View being a realisation of a Viewpoint.

● Viewpoint defines the information that can be presented; it is a definition of
what can be produced when an Architecture is based on an Architectural
Framework.

● A View is an artefact, produced as part of an Architecture. It describes an
aspect of that Architecture. If the Architecture is created using an Architectural
Framework, then every View will conform to a Viewpoint in the Architectural
Framework.

Not all Architectural Frameworks make this distinction. For example MODAF
makes no such distinction. It defines a number of Views but does not differentiate

MBSE Concepts 55

between the definition and realisation in terms of the language and terms used.
Even more confusingly MODAF does use the term ‘‘viewpoint’’, but in MODAF a
‘‘viewpoint’’ is the same as Perspective in Figure, simply a collection of related
Views.

The ‘Architecture’ subset has relationships with the ‘System’ and the ‘Need’
subsets.

3.2.4 The ‘Life Cycle’ concept
The concept of a Life Cycle may seem to be quite a simple one. However, com-
plexity creeps in when the following are considered:

● The application of the Life Cycle. For example, does the Life Cycle apply to
development, acquisition, a Product, a Project, an Organisation, etc.?

● The relationships and interactions between different Life Cycles. For example,
how do acquisition and development Life Cycles interact with one another?

Life Cycles also feature heavily in the world of Processes, so some additional
knowledge sources start to become relevant here, such as CMMI.

3.2.4.1 Life Cycle related concepts as described by the International
Standards Organisation (ISO)

The concept of a Life Cycle is fundamental to ISO 15288 and, indeed, features in
the title of the standard [1]. ISO 15288 describes a life cycle as the:

evolution of a system, product, service, project or other human-made
entity from conception through retirement.

The standard then continues to describe a stage as:

period within the life cycle of an entity that relates to the state of its
description or realization.

The standard also describes a number of typical stages that are not covered here but
will be discussed in more detail in Chapter 8.

The diagram in Figure 3.13 shows that a ‘Life Cycle’ is made up of one or more
‘Stage’ and that it describes the evolution of an ‘Entity’ that can have many types.

Again, the diagram here appears to be quite simple with a straightforward
structure, but more complexities will be discussed in Chapter 8 where life cycles
and Processes will be considered in greater detail.

3.2.4.2 Life Cycle-related concepts as described by the Capability
Maturity Model Integration (CMMI)

The Capability Maturity Model Integration (CMMI) is mainly concerned with
Processes but also covers life cycles in some detail [3]. CMMI uses the term ‘life
cycle model’, which is defined as:

A partitioning of the life of a product or project into phases.

56 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

CMMI also uses the term ‘product life cycle’ which is defined as:

The period of time, consisting of phases, which begins when a product is
conceived and ends when the product is no longer available for use. Since
an organization may be producing multiple products for multiple custo-
mers, one description of a product lifecycle may not be adequate. There-
fore, the organization may define a set of approved product lifecycle
models. These models are typically found in published literature and are
likely to be tailored for use in an organization. A product lifecycle could
consist of the following phases: (1) concept/vision, (2) feasibility, (3)
design/development, (4) production, and (5) phase out.

These concepts are summarised in the diagram in Figure 3.14.
The diagram here shows that a ‘Life Cycle Model’ is made up of one or more

‘Phase’ and partitions the life of one or more ‘Project’ or ‘Product’. Note that there
is an ambiguity in the terms that are used in CMMI between ‘Product Life Cycle’,
‘Life Cycle Model’ and ‘Product Life Cycle Model’, which all seem to be used
interchangeably.

3.2.4.3 The MBSE Ontology definition
Based on these knowledge sources, the MBSE Ontology shown in Figure 3.15
was defined.

«ontology element»
Life Cycle

«ontology element»
Stage

«ontology element»
Entity

«ontology element»
System

«ontology element»
Service

«ontology element»
Product

«ontology element»
Project

1

describes evolution of

1

6

Figure 3.13 Summary of the Life Cycle-related concepts for ISO 15288

MBSE Concepts 57

«ontology element»
Life Cycle Model

«ontology element»
Phase

«ontology element»
Project

«ontology element»
Product

1

partitions the life of

1..*

1partitions the life of

1..*

1..*

Figure 3.14 Summary of Life Cycle-related concepts for CMMI

«ontology element»
Life Cycle

«ontology element»
Life Cycle Interaction

«ontology element»
Life Cycle Interaction

Point

«ontology element»
Life Cycle Model

«ontology element»
Gate

«ontology element»
Stage

«ontology element»
Process Execution

Group

1..*

shows behaviour of

1
1

interacts
with

1..*1

interfaces with

1..*

1
assesses the execution of

1

1..*

1

1..*

is executed during

1

1

describes interactions between

1

1

shows the order of execution of

1..*

Figure 3.15 MBSE Ontology focused on Life Cycle concepts

58 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 3.15 shows the MBSE Ontology for the main concepts
that are related to life cycles. These are defined as follows:

● ‘Life Cycle’ – a set of one or more ‘Stage’ that can be used to describe the
evolution of ‘System’, ‘Project’, etc., over time.

● ‘Life Cycle Model’ – the execution of a set of one or more ‘Stage’ that shows
the behaviour of a ‘Life Cycle’.

● ‘Stage’ – a period within a ‘Life Cycle’ that relates to its realisation through
one or more ‘Process Execution Group’. The success of a ‘Stage’ is assessed by
a ‘Gate’.

● ‘Gate’ – a mechanism for assessing the success or failure of the execution of a
‘Stage’.

● ‘Life Cycle Interface Point’ – the point in a ‘Life Cycle’ where one or more
‘Life Cycle Interaction’ will occur.

● ‘Life Cycle Interaction’ – the point during a ‘Life Cycle Model’ at which one
or more ‘Stage’ interact with each other.

● ‘Process Execution Group’ – an ordered execution of one or more ‘Process’
that is performed as part of a ‘Stage’.

The ‘Life Cycle’ subset of the ontology has relationships with the ‘System’, ‘Pro-
ject’ and ‘Process’ subsets.

3.2.5 The Process concept
The concept of a Process is particularly important when considering systems
engineering, as systems engineering has been previously defined as being an
approach. Also, as has been discussed many times in this book, there are three
important aspects to realise for successful MBSE, which are ‘People, Process and
Tools’. Clearly, then Processes are very important.

3.2.5.1 Process-based concepts as described by the International
Standards Organisation (ISO)

The starting point for looking at Process definition is ISO 15288, which is very
strong on Process, as would be expected with a standard whose scope and title
include the idea of a ‘Process’ [1].

ISO 15288 describes a Process as:

a set of interrelated or interacting activities which transforms inputs into
outputs.

The standard then continues to talk about the rationale behind the Process in the
form of a Process purpose, which is described as:

high level objective of performing the process and the likely outcomes of
effective implementation of the process.

The new term ‘outcomes’ is introduced as part of this definition, which is defined as:

observable result of the successful achievement of the process purpose.

MBSE Concepts 59

Another important concept that is defined by ISO 15288 and is strongly related to
Process is that of a ‘stakeholder’ that is defined as:

individual or organisation having a right, share, claim or interest in a
system or in its possession characteristics that meet their needs and
expectations.

Finally, the concept of a ‘resource’ is considered that is defined in ISO 15288 as:

asset that is utilised or consumed during the execution of a process.

All of these definitions were then brought together and are summarised in the
diagram in Figure 3.16.

The diagram here shows the summary of the ISO 15288 concepts and
terminology.

«ontology element»
Process

«ontology element»
Process Group

«ontology element»
Process Purpose

«ontology element»
Process Outcome

«ontology element»
Activity

«ontology element»
Task

«ontology element»
Stage

«ontology element»
Resource

1..*

1..*

is executed during

1..*
1..*

1

describes objectives of

1

1..*1..*

1..*utilises or consumes

1..*

Figure 3.16 Summary of Process-related concepts for ISO 15288

60 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

3.2.5.2 Process-based concepts as described by the Capability
Maturity Model Integration (CMMI)

The CMMI is very strong on the area of Process; therefore, it is no surprise that
there are some very in-depth definitions of Process-related terms in this standard
[3]. CMMI defines a Process as:

. . . activities that can be recognized as implementations of practices in a
CMMI model. These activities can be mapped to one or more practices in
CMMI process areas to allow a model to be useful for Process improve-
ment and process appraisal.

In CMMI, the ‘Process’ is an abstract concept that must be described in the form of
a ‘Process description’ that is defined by the standard as:

A documented expression of a set of activities performed to achieve a
given purpose. A process description provides an operational definition of
the major components of a process. The description specifies, in a com-
plete, precise, and verifiable manner, the requirements, design, behaviour,
or other characteristics of a process. It also may include procedures for
determining whether these provisions have been satisfied. Process
descriptions can be found at the activity, project, or organizational level.

Despite the fact that the term ‘Process component’ is used here to define a generic
element in a Process, the standard formally uses the term ‘Process element’ in its
glossary, which is defined as:

The fundamental unit of a Process. A process can be defined in terms of
subprocesses or process elements. A subprocess can be further decomposed
into subprocesses or Process elements; a process element cannot . . . Each
process element covers a closely related set of activities (e.g., estimating
element and peer review element). Process elements can be portrayed using
templates to be completed, abstractions to be refined, or descriptions to be
modified or used. A Process element can be an activity or task.

All of this information was then brought together and is summarised in the diagram
in Figure 3.17.

The diagram here shows a summary of the Process-related terms used in the
CMMI.

3.2.5.3 The MBSE Ontology definition for Process-related concepts
Based on these knowledge sources, the MBSE Ontology shown in Figure 3.18 was
defined.

The diagram in Figure 3.18 shows the MBSE Ontology for the main concepts
that are related to the Process. These are defined as follows:

● ‘Process’ – a description of an approach that is defined by one or more
‘Activity’, one or more ‘Artefact’ and one or more ‘Stakeholder Role’. One or
more ‘Process’ also defines a ‘Service’.

MBSE Concepts 61

«ontology element»
Phase

«ontology element»
Process

«ontology element»
Work Product

«ontology element»
Activity

«ontology element»
Process Description

«ontology element»
Process Area

«ontology element»
Subprocess

«ontology element»
Process Element

1

clusters

1..*

1..*

1

describes

1

1..*

1..*

is associated with

1..* 1..*

is the useful result of

1..*

Figure 3.17 Summary of the CMMI Process-related concepts

«ontology element»
Activity

«ontology element»
Artefact

«ontology element»
Process

«ontology element»
Process Context

«ontology element»
Process Execution

Group

«ontology element»
Service

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
Process Group

1

consumes1..*

1..*

1

1..*

realises

1..*

1..*

{incomplete}

1

is responsible for1..*

1..*

1

represents the need for

1..*

1..*produces/consumes

1..*

1..*

is executed during

1

1..*

yields an observable
result to

1..*

1..*

1..*

1

1..*

satisfies

1..*

Figure 3.18 MBSE Ontology focused on Process-related concepts

62 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● ‘Artefact’ – something that is produced or consumed by an ‘Activity’ in a
‘Process’. Examples of an ‘Artefact’ include documentation, software, hard-
ware and systems.

● ‘Activity’ – a set of actions that need to be performed in order to successfully
execute a ‘Process’. Each ‘Activity’ must have a responsible ‘Stakeholder
Role’ associated with it and utilises one or more ‘Resource’.

● ‘Stakeholder Role’ – the role of anything that has an interest in a ‘System’.
Examples of a ‘Stakeholder Role’ include the roles of a ‘Person’, an ‘Organi-
sational Unit’, a ‘Project’, a ‘Source Element’ and an ‘Enabling System’. Each
‘Stakeholder Role’ requires its own ‘Competency Scope’ and will be respon-
sible for one or more ‘Activity’.

● ‘Resource’ – anything that is used or consumed by an ‘Activity’ within a
‘Process’. Examples of a ‘Resource’ include money, locations, fuel, raw
material, data and people.

● ‘Process Execution Group’ – a set of one or more ‘Process’ that are executed
for a specific purpose. For example, a ‘Process Execution Group’ may be
defined based on a team, function, etc.

The term ‘System’ has been defined previously and the link between Processes and
life cycles is realised by the concept of the ‘Process Execution Group’.

3.2.6 The Competence concept
One of the themes of this book is the importance of ‘People, Process and Tools’, so
it should be no surprise that the area of Competence is so essential.

3.2.6.1 The competence-related concepts as described by the Inter-
national Standards Organisation (ISO)

One area that is not very strong on ISO 15288 is that of competence or competency
[1]. Indeed, this whole area is only mentioned three times in the standard:

‘to maintain their competencies, consistent with business needs’, ‘assessment
of the adequacy of team member competencies to perform project roles’, and
‘confirm that the specified range and level of competence has been attained’.
The concept of competence is important, but ISO 15288 is not a good place to
look for definitions.

3.2.6.2 The Competence-related concepts as described by the
Capability Maturity Model Integration (CMMI)

One area that the CMMI is surprisingly weak in is that of competence. The terms
‘competence’ and ‘competency’ are not explicitly defined in the standard, although
each is mentioned several times. For example, the standard uses the phrases:

‘competence and heroics of the people’, ‘competence of the process group
staff’, ‘need to provide competency development for critical functional areas’,
‘maintain the competencies and qualifications of personnel’, ‘this approach
includes integration of tools, methods, and procedures for competency

MBSE Concepts 63

development’, ‘critical competencies and roles needed to perform the work’
and ‘core competencies’.

There is therefore a clear need to have a concept of competence, although the
CMMI is not the best place to look for its definition.

3.2.6.3 The Competence-related concepts as described by Competency
Framework Community

The whole concept of Competence and Competency has been identified as a key
term, but has not been defined sufficiently well in any of the knowledge sources
looked at so far. In this case, there are a number of competency Frameworks that
are available to be used as knowledge sources, such as the following:

● UKSPEC – the UK Standard for Professional Engineering Competence.
The UKSPEC is the cornerstone of all technical competences in the United
Kingdom. The UKSPEC is used as the basis for professional accreditation,
such as Chartered Engineer (CEng) and Chartered IT Professional (CITP), and
all UK professional bodies use it as part of their professional assessment. The
UKSPEC is owned and managed by the Engineering Council – see [15] for
more details.

● SFIA – Skills Framework for the Information Age. The acronymically chal-
lenged Framework known as SFIA (pronounced ‘Sophia’) is a Framework
that is geared towards the skills required for the effective implementation and
use of Information Systems (IS) making use of Information and Commu-
nications Technology (ICT). The SFIA Framework maps directly back to
UPSPEC and is owned and managed by the SFIA Foundation – see [17] for
more details.

● INCOSE Systems Engineering Competencies Framework. The INCOSE is an
international body that is committed to furthering the discipline of systems
engineering. They have produced a competency Framework that maps back
to the UKSPEC and covers various cross-cutting concepts associated with
systems engineering. Please note that the term ‘systems engineering’ is
the engineering definition of the term, rather than the IT definition of the term.
The INCOSE Framework is owned and managed by INCOSE – see [16] for
more details.

● APM – the Association for Project Management (APM) Body of Knowledge.
The APM Framework forms the heart of the APM assessment and accredita-
tion and is aimed specifically at the discipline of project management for all
industries. The APM Body of Knowledge is owned and managed by the APM
– see [18] for more details.

● APMP – the Association of Proposal Management Professionals Framework.
The APMP (not to be confused with APM) Framework is aimed specifically at
proposal and bid management within an organisation and identifies a number
of skills required for such activities. The APMP Framework is owned and
managed by the APMP – see [19] for more details.

64 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

For purposes of brevity, only two will be considered here, but for a full exploration
of these different Frameworks, see [38].

3.2.6.4 UKSPEC
It was stated earlier that the UKSPEC is the cornerstone of all technical compe-
tences in the United Kingdom. The UKSPEC is used as the basis for professional
accreditation, such as CEng and CITP, and all UK professional bodies use it as part
of their professional assessment. It is essential therefore that the UKSPEC is
understood before any other Framework is looked at. To put matters bluntly, if a
Framework does not map onto the concepts in UKSPEC, then it will not be
recognised at a professional level.

The UKSPEC has a simple Ontology that is shown in the diagram in
Figure 3.19.

The diagram in Figure 3.19 shows the key concepts and terminology for the
UKSPEC. It can be seen that ‘Competency’ is made up of the following concepts:

● ‘Knowledge’ that refers to having domain knowledge in a particular discipline
or application area. For example, a university degree in engineering will pro-
vide a basic knowledge of engineering (the discipline) while experience in
industry would also provide knowledge of the field (domain knowledge).

● ‘Skill’ that refers to the techniques, tools, methodologies and approaches that
are employed in order to implement the knowledge. The skill depends upon
having the knowledge in the first instance and really makes the knowledge
useful, rather than knowledge for the sake of knowledge.

● ‘Understanding’ that refers to the ability to be able to apply the right knowl-
edge and skills at the right time and to understand the implications for such use.
This is the really difficult aspect of competence to get right. It involves
understanding why the knowledge and skills have been employed and what
benefits have been realised in doing so.

«ontology element»
Competency

«ontology element»
Generic Competency

«ontology element»
Knowledge

«ontology element»
Skill

«ontology element»
Understanding

«ontology element»
A: Education, Training and

Experience

«ontology element»
B: Application

«ontology element»
C: Provide Leadership

«ontology element»
D: Demonstrate

Interpersonal Skills

«ontology element»
E: Demonstrate Personal

Commitment

«ontology element»
Threshold

«ontology element»
Engineering Technician

«ontology element»
Incorporated Engineer

«ontology element»
Chartered Engineer

1..*

5

defines standard of

1

1..*

1..*

Figure 3.19 Summary of Competency-related concepts for UKSPEC

MBSE Concepts 65

Competency may be thought of as existing in five ‘Generic competency’ cate-
gories, and these competencies are held at a particular level or ‘Threshold’ and,
currently, there are three levels of recognition within the Engineering Council,
United Kingdom.

The high-level concepts contained within UKSPEC form a common pattern
throughout many other Frameworks.

3.2.6.5 INCOSE competencies Framework
The focus of the Framework is concerned with the concept of ‘Systems Engineering
Ability’, which is described in the diagram in Figure 3.20.

«ontology element»
Systems Engineering

Ability

«ontology element»
Competency

«ontology element»
Supporting Technique

«ontology element»
Basic Skills and Behaviour

«ontology element»
Domain Knowledge

«ontology element»
Theme

«ontology element»
Indicator

«ontology element»
Level

«ontology element»
Awareness

«ontology element»
Supervised Practitioner

«ontology element»
Practitioner

«ontology element»
Expert

1..* 1..*1..*1..*

1..*

1

is held at

1

1..*

Figure 3.20 Summary of Competency-related concepts for INCOSE

66 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The INCOSE competencies Framework has a concept of ‘Systems Engineering
Ability’, which may be broken down into four main areas:

● ‘Supporting Technique’. A supporting technique is a specific technique that is
used to support the main competencies.

● ‘Basic Skills and Behaviour’. These represent the soft skills that are required in
order to be a systems engineer.

● ‘Domain Knowledge’. This knowledge is related directly to the domain in
which the person is working.

● ‘Competency’. The term, when used by INCOSE, refers to the core skills
required for a systems engineer. Each ‘Competency’ is categorised by a
‘Theme’, of which there are three in total. Each ‘Competency’ is made up of
one or more ‘Indicator’, which is measured to assess whether the ‘Compe-
tency’ has been achieved at the desired ‘Level’.

When relating these concepts back to the UKSPEC, it should be noted that what
INCOSE refers to as ‘Systems Engineering Ability’ the UKSPEC refers to as
‘Competency’.

3.2.6.6 The Competence-related concepts as described by the US
Office of Personnel Management

The US Office of Personnel Management (OPM) [39] identifies and defines a key
set of concepts related to competence, which are shown in Figure 3.21.

The diagram in Figure 3.21 shows that the main key concept of ‘Competency’
is made up of three main elements:

● One or more ‘Skill’
● One or more piece of ‘Knowledge’
● One or more ‘Behaviour’

«ontology element»
Competency

«ontology element»
Skill

«ontology element»
Knowledge

«ontology element»
Behaviour

«ontology element»
Work Role

«ontology element»
Occupational Function

«ontology element»
Individual

1..*

is needed for

1..*

1..*

1..*

is needed for

1..*

1..*

performs

1..*

1..*

performs

1..*
1..*

1..*

Figure 3.21 Summary of Competence-related concepts for the US Office of Personnel Management

MBSE Concepts 67

This basic structure is very similar to that in many of the competency Frameworks
described in this section. Similarly, the ‘Competency’ itself is needed for both
‘Work Role’ and ‘Occupational Function’, a number of which are carried out by an
‘Individual’.

3.2.6.7 The MBSE Ontology for Competence-related concepts
The diagram in Figure 3.22 summarises the Competence-related concepts that are
defined as part of the MBSE Ontology.

The diagram here shows the MBSE Ontology for the main concepts that are
related to Competence. These are defined as follows:

● ‘Person’ – a special type of ‘Resource’, an individual human, who exhibits
‘Competence’ that is represented by their ‘Competency Profile’. A ‘Person’
also holds one or more ‘Stakeholder Role’.

«ontology element»
Evidence Type

«ontology element»
Lead

«ontology element»
Level

«ontology element»
Awareness

«ontology element»
Support

«ontology element»
Expert

«ontology element»
Indicator

«ontology element»
Competence

«ontology element»
Competency

«ontology element»
Competency Area

«ontology element»
Competency Scope

«ontology element»
Competency Profile

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Person

1

classifies

1..*

1..*
1

1

requires

1

1

describes measured
abilities of

1

1..*

describes
desired

1

1

exhibits

1

1

is held at

1

1
is assessed against

1

1..*

1

1

1..*

describes measured

1

1..*

holds

1..*

1

defines admissible evidence for

1..*

Figure 3.22 MBSE Ontology focused on Competence-related concepts

68 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● ‘Competence’ – the ability exhibited by a ‘Person’ that is made up of a set of
one or more individual ‘Competency’.

● ‘Competency’ – the representation of a single skill that contributes towards
making up a ‘Competence’. Each ‘Competency’ is held at a ‘Level’ that
describes the maturity of that ‘Competency’. There are four ‘Level’ defined for
the MBSE Ontology.

● ‘Competency Profile’ – a representation of the actual measured ‘Competence’
of a ‘Person’ and that is defined by one or more ‘Competency’. An individual’s
‘competence’ will usually be represented by one or more ‘Competency Pro-
file’. A ‘Competency Profile’ is the result of performing a competence
assessment against a ‘Competence Scope’.

● ‘Competency Scope’ – representation of the desired ‘Competence’ required
for a specific ‘Stakeholder Role’ and that is defined by one or more
‘Competency’.

● ‘Stakeholder Role’ – the role of a person, organisation or thing that has an
interest in the system.

● ‘Indicator’ – a feature of a ‘Competency’ that describes knowledge, skill or
attitude required to meet the ‘Competency’. It is the ‘Indicator’ that is assessed
as part of competency assessment.

The Competence-related concepts are strongly related to the Process-related
concepts.

3.2.7 The Project concept
The concept of a Project is used in every organisation to describe the work that is
actually done in order to develop and deliver Systems.

3.2.7.1 The Project-related concepts as described by the International
Standards Organisation (ISO)

In ISO 15288 [1], the concept of a ‘project’ is well defined as:

(an) endeavour with defined start and finish criteria undertaken to create
a product or service in accordance with specified resources and
requirements.

There is also the concept of a higher-level, or collection of projects that is identified
as a ‘project portfolio’ and is defined as:

(a) collection of projects that addresses the strategic objectives of the
organization.

These concepts and terms were then collected together and are summarised in the
diagram in Figure 3.23.

The diagram shows a summary of the ISO 15288 Project-related concepts.
There is one ambiguous statement in this diagram: each ‘Project’ is executed in
accordance with one or more ‘Resource’. It is unclear from the standard exactly
what is meant by the phrase ‘in accordance with’.

MBSE Concepts 69

3.2.7.2 The Project-related concepts as described by the Capability
Maturity Model Integration (CMMI)

The CMMI also defines two basic terms associated with projects [3]. The basic
concept of a project is defined as:

a managed set of interrelated resources which delivers one or more
products to a customer or end user. A project has a definite beginning (i.e.,
project start-up) and typically operates according to a plan. Such a plan is
frequently documented and specifies what is to be delivered or imple-
mented, the resources and funds to be used, the work to be done, and a
schedule for doing the work. A project can be composed of projects.

Notice here that a ‘project’ itself can be made up of a number of projects, but there
is also the concept of a ‘programme’ that has a similar definition:

(a) project (or) collection of related projects and the infrastructure that
supports them, including objectives, methods, activities, plans, and suc-
cess measures.

In terms of what a ‘Project’ can deliver, CMMI identifies two possibilities:

● ‘Product’ – ‘a work product that is intended for delivery to a customer or
end user’

● ‘Service’ – ‘a product that is intangible and non-storable’

These concepts and terms were then collected together and are summarised in the
diagram in Figure 3.24.

«ontology element»
Product

«ontology element»
Service

«ontology element»
Resource

«ontology element»
Requirement

«ontology element»
Project

«ontology element»
Project Portfolio

1 creates

1..*

1..* 1

creates

1..*1

is executed in
accordance to

1..*

1

is executed in
accordance to

1..*

Figure 3.23 Summary of the Project-related concepts for ISO 15288

70 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram here shows the summary of the key concepts for CMMI, and it
can be seen that there is much in common with the other major sources here, in
terms of the terms ‘Project’, ‘Programme’, ‘Resource’, etc.

3.2.7.3 The Project-related concepts as described by the US Project
Management Institute (PMI)

The Project Management Institute (PMI) is the world’s largest organisation for pro-
ject management, with chapters across the world. The PMI has its own body of
knowledge, known as the Project Management Body of Knowledge (PMBOK) [40].

The concept of a project in the PMBOK is defined as:

A temporary endeavour undertaken to create a unique product, service, or
result.

And then defines a programme as:

A group of related projects managed in a coordinated way to obtain ben-
efits and control not available from managing them individually.

Programmes may include elements of related work outside of the
scope of the discrete projects in the programme.

«ontology element»
Project

«ontology element»
Product

«ontology element»
Programme

«ontology element»
Infrastructure

«ontology element»
Service

«ontology element»
Resource

1

delivers

1..*

1..*

1..*

0..*

1..*

Figure 3.24 Summary of Project-related concepts for CMMI

MBSE Concepts 71

There is a strong relationship between the terms Project and Programme here,
as can be expected, and this can be summarised in the diagram in Figure 3.25.

The diagram shows the summary of the main concepts in the PMI PMBOK,
and it can be seen that there are many similarities with the other source references
used in this section.

3.2.7.4 The Project-related concepts as described by the Association
for Project Management (APM) Institute

The APM is a UK-based professional body that is dedicated to promoting and
furthering project and programme management to its members [18]. The APM has
its own body of knowledge that forms the basis for its own qualification and
accreditation scheme.

The APM body of knowledge defines a ‘project’ as:

A unique, transient endeavour undertaken to achieve planned objectives.

The concept of a ‘programme’ is defined as:

A group of related projects and change management activities that toge-
ther achieve beneficial change for an organisation.

Based on these definitions, the diagram in Figure 3.26 was generated.
The diagram shows that, once again, there is very strong consensus between

many of the previous sources and the definitions in the APM body of knowledge.

3.2.7.5 MBSE Ontology definition for Project-related concepts
Based on these knowledge sources, the area of MBSE Ontology shown in
Figure 3.27 was defined.

«ontology element»
Product

«ontology element»
Service

«ontology element»
Result

«ontology element»
Project

«ontology element»
Programme

«ontology element»
Related Work

«ontology element»
Benefit

1

creates

1..*

1

creates

1..*

1

obtains

1..*

1

creates

1..*

0..*1..*

Figure 3.25 Summary of Project-related concepts for the US Project Management Institute

72 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 3.27 shows the MBSE Ontology for the main concepts
that are related to the Process. These are defined as follows:

● ‘Project’ – One or more ‘Project’ is run by an ‘Organisational Unit’ in order to
produce one or more ‘System’.

«ontology element»
Programme

«ontology element»
Project

«ontology element»
Change Management

Activity

«ontology element»
Objective

«ontology element»
Beneficial Change

1

achieves

1..*

1

achieves

1..*

1..* 1..*

Figure 3.26 Summary of Project-related concepts for the Association for Project Management (APM) Institute

«ontology element»
Life Cycle

«ontology element»
Project

«ontology element»
Programme

«ontology element»
Organisational Unit

«ontology element»
Organisation

«ontology element»
System

«ontology element»
Project Context

«ontology element»
Organisational Context

1..*

describes the evolution of

1

1..*

runs

1..*

1..*

represents the need for

1

1..*
1

1..* describes the need for

1

1..*
0..1

1

produces

1..*

Figure 3.27 MBSE Ontology focused on Project-related concepts

MBSE Concepts 73

● ‘Programme’ – a special type of ‘Project’ that is itself made up of one or more
‘Project’.

● ‘Organisational Unit’ – a special type of ‘Organisation’ that itself can make up
part of an ‘Organisation’. An ‘Organisational Unit’ also runs one or more
‘Project’ and will have its own ‘Organisational Context’.

● ‘Organisation’ – a collection of one or more ‘Organisational Unit’. It runs one
or more ‘Project’ and will have its own ‘Organisational Context’.

This subset of the MBSE Ontology also has relationships with the ‘Need’, ‘System’
and ‘Life Cycle’ subsets.

3.3 Summary

All of the key concepts associated with MBSE that have been identified for the
purposes of this book have been:

● Identified, by the very fact that they exist on the MBSE Ontology.
● Defined, by providing a single text-based definition that uses terms from the

MBSE Ontology.
● Related together, to ensure consistency of definition between the terms.
● Mapped, to ensure that all definitions have good provenance and can be traced

back to best practice sources.

The MBSE Ontology covers seven main areas of

● System-related concepts, which cover the basic concepts associated with Sys-
tem, Systems of Systems, Constituent Systems, etc.

● Need-related concepts, which cover all concepts associated with System
Needs, such as Requirements, Capabilities and Goals.

● Architecture-related concepts, where the description and structure of Archi-
tectures using Architectural Frameworks are discussed.

● Life Cycle related concepts, where different Life Cycles and Life Cycle
Models are discussed, along with the interactions between Life Cycles.

● Process-related concepts, where the structure, execution and responsibility of
Processes are discussed.

● Competence-related concepts, where the ability of people associated with
Stakeholder Roles is defined.

● Project-related concepts, where Project- and Programme-related concepts are
defined.

Each of these areas focuses on a specific area of MBSE that, when combined, form
the MBSE Ontology. The MBSE Ontology will form the basis for the remainder of
this book and will drive all of the MBSE activities described in the book.

The diagram in Figure 3.28 shows a simplified version of the MBSE Ontology
that consists of all of the smaller, focused diagrams that have been described so far
in this book. Some information has been omitted from this diagram for the purposes
of brevity and readability, but a full version of the MBSE Ontology can be found in
Appendix A, along with a definition for each term in the form of a tabular glossary.

74 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Architectural
Framework

Architecture

Ontology ViewViewpoint

Rule

Enabling System

Constituent System

System Context

System of Interest

System of Systems

System Product

Service Process

Process Execution
Group

Context

Use Case

Competence

Competency Scope

Competency Profile

Person

Life Cycle

Life Cycle
Interaction

Life Cycle
Interaction Point

Life Cycle Model

Stage

Project

Programme

Organisational Unit

Organisation

NeedSource Element

Need Description Scenario

Stakeholder
Context

Project Context Organisational
Context

Process Context

Stakeholder Role

Activity

Artefact

..*produces/consumes

1..*

1

is related to

0..*

1..*

1

1..*

describes the need for
1

1..*

constrains

1

1..*

realises

1..*

1..*

describes m
easured

1

1..*

represents the need for 1

1
requires

1

1

interacts
with

1..*

1..*

describes desired

1

1..*

is executed during

1

1..*

1..*

1

1..*

describes the evolution of

1

1..*

is executed during

1

1describes

1

1..*

de
sc

rib
es

 th
e

ev
ol

ut
io

n
of

1

0..*

1..*

1

1

is assessed against

1

1

represents the need for

1

1..*

interacts with

1

1

describes structure of

1

1

describes measured
abilities of

1

1

is responsible for
1..*

1..*

describes the context of

1..*

1

exhibits

1

1

represents the need for

1..*

1..*

0..1

1..*

1

produces

1..*

{incomplete}

1..*

holds
1..*

1..*

is elicited from

1..*

1

1..*validates

1..*

1..*

runs

1..*

1..*

has an
interest in

1

1

interfaces with

1..*

1..*

describes

1..*

1..* 1

1..*

1

1..*1

1

interacts
with

1..*

1..*

constrains

1..*

1
is realised as

1..*

1

shows the order of execution of1..*

1

describes interactions between

1

1..*

1

shows behaviour of

Figure 3.28 MBSE Ontology

References

[1] ISO/IEC. ‘ISO/IEC 15288:2015 Systems and Software Engineering –
System Life Cycle Processes’. 1st edition. International Organisation for
Standardisation; 2015.

[2] INCOSE. Systems Engineering Handbook – A Guide for System Life Cycle
Processes and Activities. Version 4. INCOSE; 2016.

[3] CMMI for Development, Version 1.3. Carnegie Mellon University Software
Engineering Institute; November 2010. http://www.sei.cmu.edu/library/
abstracts/reports/10tr033.cfm [Accessed 16 February 2011].

[4] Office of the Under Secretary of Defense. Systems Engineering Guide for
Systems of Systems. USA DoD; August 2008.

[5] Systems and Software Engineering – Architecture Description ISO/IEC/
IEEE 42010. Available from http://www.iso-architecture.org/ieee-1471/cm/
[Accessed November 2011].

[6] Institute of Electrical and Electronic Engineers. IEEE 1471, Recommended
Practice for Architectural Description of Software-Intensive Systems. IEEE;
2000.

[7] Zachman J.A.‘A Framework for information systems architecture’. IBM
Systems Journal. 1987;26(3):276–92.

[8] Zachman J. ‘Concise Definition of the Zachman Framework’. Colorado,
USA: Zachman International; 2008.

[9] The Ministry of Defence Architectural Framework. ‘Ministry of Defence
Architectural Framework’. 2010. Available from http://www.mod.uk/
DefenceInternet/AboutDefence/WhatWeDo/InformationManagement/MODAF/
[Accessed February 2012].

[10] DoDAF Architectural Framework (US DoD), Version 1.5; 2007.
[11] NATO Architectural Framework Version 3. 2007. Available from http://

www. nhqc3s.nato.int/HomePage.asp [Accessed February 2012].
[12] TRAK – Enterprise Architecture Framework. Available from http://trak.

sourceforge.net/ [Accessed November 2012].
[13] Unified Profile for the Department of Defense Architectural Framework

(DoDAF), Ministry of Defence Architectural Framework (MODAF). OMG
Standard; 2011. Available from http://www.omg.org/spec/UPDM/ [Accessed
February 2012].

[14] The Open Group Architectural Framework (TOGAF), Version 9. Available
from http://www.opengroup.org/architecture/togaf9-doc/arch/ [Accessed
February 2012].

[15] The UK Standard for Professional Engineering Competence (UK-SPEC).
Available from http://www.engc.org.uk/professional-qualifications/standards/
uk-spec [Accessed March 2012].

[16] INCOSE Competencies Framework. Available from http://www.incoseon-
line.org.uk/Groups/SE_Competencies/Main.aspx?CatID¼Groups [Accessed
March 2012].

76 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

[17] Skills Framework for the Information Age. Available from http://www.
sfiaorg.uk/. [Accessed March 2012].

[18] APM Competence Framework. Available from http://www.apm.org.uk/
[Accessed March 2012].

[19] APMP Competency Framework. Available from http://www.apmp.org/
[accessed March 2012].

[20] OMG Systems Modeling Language (OMG SysMLTM) Version 1.2. Object
Management Group; 2010. Available from http://www.omg.org/spec/
SysML/1.2 [Accessed March 2012].

[21] Holt J. and Perry S. ‘SysML for Systems Engineering’. Stevenage, UK: IET;
2008.

[22] Unified Modelling Language. Available from http://www.uml.org [Accessed
February 2012].

[23] Holt J. ‘UML for Systems Engineering’. 2nd edition. Stevenage, UK: IET;
2005.

[24] Service-Oriented Architecture Modelling Language. Available from http://
www.omg.org/spec/SoaML [Accessed February 2012].

[25] Business Process Model and Notation. Available from http://www.omg.org/
cgi-bin/doc?bmi/2007-6-5 [Accessed February 2012].

[26] Holt J. and Perry S., Brownsword M. ‘Model-Based Requirements Engi-
neering’. Stevenage, UK: IET; 2011.

[27] Holt J. and Perry S. ‘Modelling Enterprise Architectures’. Stevenage, UK:
IET; 2010.

[28] Dickerson C.E. and Mavris D.N. ‘Architecture and Principles of Systems
Engineering’. Florida, USA: CRC Press; 2009.

[29] Lewis G.A., Morris E., Place P., Simanta S. and Smith D.B.‘Requirements
engineering for systems of systems’. IEEE SySCon 2009 – 3rd Annual IEEE
International Systems Conference. Vancouver, Canada: IEEE; March 2009.

[30] Maier M.W. ‘Architecting principles for systems-of-systems’. Systems
Engineering. 1998;1(4):325–45.

[31] Pyster A., Olwell D., Hutchison N., et al. (eds.). 2012. Guide to the Systems
Engineering Body of Knowledge (SEBoK) Version 1.0.1. Hoboken, NJ: The
Trustees of the Stevens Institute of Technology; 2012. Available from http://
www.sebokwiki.org [Accessed December 2012].

[32] Body of Knowledge and Curriculum for Advanced Systems Engineering.
Available from http://www.bkcase.org/ [Accessed December 2012].

[33] OED Online. Available from http://oxforddictionaries.com/definition/
requirement [Accessed March 2012].

[34] Rumbaugh J., Jacobson I. and Booch G. ‘The Unified Modelling Language
Reference Manual’. 2nd edition. Boston, MA, USA: Addison Wesley; 2004.

[35] ISO 9001:2008. Quality management systems – Requirements. International
Standards Organisation; 2008.

[36] DND/CF Architecture Framework (DNDAF). Available from http://www.
img-ggi.forces.gc.ca/pub/af-ca/index-eng.asp [Accessed September 2012].

MBSE Concepts 77

[37] Survey of Architecture Framework. Available from http://www.iso-archi-
tecture.org/ieee-1471/afs/Frameworks-table.html [Accessed September 2012].

[38] Holt J. and Perry S. ‘A Pragmatic Guide to Competency’. Swindon, UK:
BCS; 2011.

[39] Human Capital Assessment and Accountability Framework (HCAAF)
Resource Center – Glossary. U.S. Office of Personnel Management (OPM).
Available from http://www.opm.gov/hcaaf_resource_center/glossary.asp
[Accessed December 2012].

[40] A Guide to the Project Management Body of Knowledge (PMBOK� Guide),
4th edition. Newtown Square, PA: Project Management Institute (PMI); 2008.

78 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Part 2 – Modelling

P2.1 Overview

This part of the book is structured according to the diagram in Figure P2.1.

This part introduces the fundamentals of modelling, the notation that will be
used throughout the book and then a guide on the style of modelling adopted
throughout. It comprises three main chapters.

● ‘Chapter 4 – Introduction to SysML and Systems Modelling’. This chapter
provides a high-level introduction to the whole field of systems modelling by
introducing and describing the key concepts involved with modelling any kind
of system using any notation. Once this has been established, the modelling
notation that will be used throughout the rest of the book, the systems

«block»
Part 2 – Modelling

«block»
Part 2 – Overview

«block»
Chapter 4 – Introduction to

SysML and Systems
Modelling

«block»
Chapter 5 – The SysML

Notation

«block»
Chapter 6 – Diagramming

Guidelines

Figure P2.1 Structure of ‘Part 2 – Modelling’

modelling language, SysML, is introduced. The main aspects of a SysML
model, the structure and behaviour, are then introduced and discussed using
two of the nine diagrams that make up the SysML.

● ‘Chapter 5 – The SysML Notation’. This chapter takes an in-depth look at the
SysML notation including its structure, its diagrams and how to use them on an
example system. This chapter also discusses the underlying meta-model that
gives the SysML its rigour and that is itself modelled.

● ‘Chapter 6 – Diagramming Guidelines’. This chapter defines how the SysML
will be used throughout the book by defining a number of styles that will be
adopted. This will include the use of sentence cases and font styles for different
aspects of the SysML that allow all of the models presented in this book to
have the same look and feel.

A good understanding of the basics of modelling and the SysML notation is
essential for implementing the approach in this book. Any readers new to systems
modelling should treat this part of the book as essential reading.

Experienced modellers may be tempted to miss out this part of the book, par-
ticularly if they have read some of our other books, and you may certainly do so if
you have read this part in the previous (second) edition of this book. For everyone
else, though, there are a few points to bear in mind. This part of the book describes
the latest version of SysML, version 1.5, and the style guide is something that even
experienced modellers may use to enhance the way that they model. Even when
you are comfortable with modelling and the SysML, this part forms an excellent
reference for future modelling.

80 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Chapter 4

Introduction to SysML and Systems Modelling

4.1 Introduction

This is a book concerned with model-based systems engineering (MBSE), and thus
modelling is fundamental to everything that is presented in it. It makes sense,
therefore, before we consider MBSE in detail in Parts 3–5, to first consider the
modelling aspects.

This chapter discusses why modelling is so important in the context of the ‘‘three
evils’’ of engineering, briefly discusses the history of the systems engineering mod-
elling language (SysML), establishes the basic requirements for modelling, introduces
the concept of modelling and introduces to the SysML that is used as the modelling
language throughout the rest of the book. Only the briefest of syntax will be looked at
in this chapter – for a more full description of the SysML syntax see Chapter 5.

4.2 Why we model?

It is vital to understand the reasons why we must model things. In order to justify
the need for models, three simple examples will be considered. These examples aim
to justify modelling in general terms and not simply with regard to systems engi-
neering, which demonstrates the need for flexibility when modelling – indeed, the
three examples used here are not directly related to systems engineering. The
examples are taken from [1] and were created by the master of modelling and
co-developer of the Unified Modelling Language (UML) on which the SysML is
based, Grady Booch. They are based on Booch’s doghouse, house and office block.

4.2.1 The kennel (doghouse)
For the first example of modelling, consider the example of building a kennel, a
small house where dogs can spend some time outside without being exposed to the
elements. The basic Requirement for a kennel is to keep the dog happy. This will
include building a structure that is waterproof and large enough to fit the dog inside.
In order to fit inside, there must be an entrance in the kennel that is larger than the
dog itself. The inside should also be large enough for the dog to be able to turn
around in order to leave. Dogs are particularly bad at walking backwards, which
makes this last point crucial. Finally, the dog should be comfortable enough to sleep
in the kennel and thus some bedding or cushions may be in order.

If you were about to build the kennel shown in Figure 4.1, then consider for a
moment the basic skills and resources that you would require. You would be wise
to have:

● Basic materials such as timber and nails. The quality is not really that impor-
tant as it is only for a dog. This might involve looking for any old pieces of
wood around the house or even making a trip to a hardware store.

● The money needed to pay for the kennel would be your own but is unlikely to
be a large outlay. In terms of your personal income, it would be a fraction of a
week’s salary – perhaps the cost of a social evening out.

● Some basic tools, such as a hammer, a saw and a tape measure. Again, the
quality of the tools need not be wonderful, providing they get the job done.

● Some basic building skills. You need not be a skilled craftsman, but basic
hand-to-eye coordination would be an advantage.

These relate directly to the concepts of Person, Process and Tool discussed
throughout this book. The Person who builds the kennel must have the necessary
skills and basic carpentry knowledge (Competence) along with material and
equipment (the Tools) to carry out the job (execute the Process). If you have this,
then at the end of the day (or weekend), you will probably end up with a kennel that
is functional and in which the dog would be happy to shelter from the rain.

If the kennel was somewhat less than functional and the dog was not very
happy with its new accommodation, you could always start again (after destroying
the first attempt) and try a bit harder, learning from past mistakes. It would also be
possible to destroy the kennel and then to deny all knowledge of ever having built
one in the first place, thus avoiding embarrassment later. Alternatively, you could
get rid of the dog and buy a less demanding pet such as a tortoise, as there is no

Figure 4.1 The kennel (doghouse)

82 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

need to build a kennel for an animal that carries its own accommodation on its back.
After all, the dog is in no position to argue or complain.

This is Booch’s first example of modelling: the kennel or, for our trans-
Atlantic readers, the doghouse.

4.2.2 The house
Consider now, maybe based on the resounding success of your kennel, that you
were planning to build a house for your family. This time the Requirements would
be somewhat different. There would need to be adequate space for the whole family
in which to sit and relax. In addition, there would have to be adequate sleeping
arrangements in the number of bedrooms that are chosen. There would need to be a
kitchen, maybe a dining room and one or more bathrooms and toilets. As there
will be more than one room, some thought should be given to the layout of
the rooms in terms of where they are in the house and where they are in relation to
one another.

If you were to build a house (Figure 4.2) for your family, you would (hope-
fully) approach the whole exercise differently from that of the kennel:

● You would have to start with some basic materials and tools, but the quality of
these resources would no doubt be of a higher concern than those used for the
kennel. It would not be good enough to simply drive down to a local hardware
store and pick up some materials as the quantity would need to be far greater,
and it would not be possible to guess, with any degree of accuracy, the amount
of materials required.

Figure 4.2 The house

Introduction to SysML and Systems Modelling 83

● Your family would also be far more demanding and vocal than the dog. Rather
than simply guessing your family’s Requirements, it would be more appro-
priate to ask them their opinions and perhaps get a professional architect in to
listen to and discuss their needs.

● Unless you have built many houses before, it would be a good idea to draw up
some plans. If you were hiring skilled craftsmen to do the job, you would
certainly have to draw up plans in order to communicate your requirements to
the builders. These plans may require some input from an architect in order that
they achieve a standard that may be used effectively by the people who will be
building the house.

● The house would also have to meet building regulations and require planning
permission. This may involve contacting the local council or government
representative and possibly applying for permission to build. This in turn
would almost certainly involve submitting plans for approval before any work
could be started.

● The money for the house would probably be yours, and thus you would have to
monitor the work and ensure that people stick to the plans in order to get the
job done in time, within budget and to meet your family’s original require-
ments. The scale of the financial outlay is likely to be in the order of several
years’ salary and would probably be borrowed from a bank or building society
and would thus have to be paid back, regardless of the outcome of the project.

Again, we can relate these to the Person, Process and Tool concepts discussed
throughout this book. A number of people are involved, such as builders, architects
and electricians, who must have the necessary skills and knowledge (the Compe-
tence) along with material and equipment (the Tools) to carry out the job (i.e. to
execute the various Processes). However, their skills do not just relate to building or
wiring a house but must include those needed to work with and communicate with
other people, both the other craftsmen involved and the customer so that they can
understand all the different requirements governing what they do on the job. The
Processes they follow are necessarily more complex, since legislation, such as
building and wiring regulations, now has to be followed that governs how they do
their job.

If the house turns out not to suit the Requirements, the consequences would be
more serious than in the case of the kennel. The house cannot be knocked down and
started again as the kennel could, because considerably more time and money
would have gone into the house building. Similarly, you cannot simply get a less
demanding family (in most cases) and living with the consequences of failure is not
worth thinking about!

This is Booch’s second example: the house.

4.2.3 The office block
Taking the two building projects that have been discussed so far even further,
imagine that your ambition knows no bounds and that you decide to build an entire
office block (Figure 4.3).

84 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Consider once more the resources that would be required for this, the third and
final building project:

● It would be infinitely stupid to attempt to build an office block by yourself.
● The materials required for building an office block would be in significantly

larger quantities than the house. The materials would be bought direct from
source and may even need to be brought in from specialist suppliers, perhaps
even in different counties or countries.

● You will probably be using other people’s money, and thus, the requirements for
the building will probably be their requirements. In addition, their requirements
will no doubt change once you have started building the office block.

● More permissions are required to build an office block than a house and many
more regulations must be considered. Consider, for example, environmental
conditions that the office building may have to meet – the building must not
block anyone’s light, it may be required to blend in with its surroundings, or it
may have to conform to so-called carbon-footprint legislation.

● You will have to carry out extensive planning and be part of a larger group who
are responsible for the building. Many teams will be involved from different
areas of work (builders, plumbers, electricians, architects, etc.), all of whom
must intercommunicate.

Figure 4.3 The office block

Introduction to SysML and Systems Modelling 85

Unsurprisingly, these points again relate to the Person, Process and Tool concepts.
On a project of this size, there are many more different kinds of Person involved
carrying out much more complex Processes using far more (and more specialised)
Tools and materials than is the case when building a house. If you get the right
teams involved and enjoy a degree of luck, you will produce the desired building.

If the project does not meet the investor’s Requirements, you would face
severe repercussions, including the potential of no further work and the loss of
reputation.

This is Booch’s third example: the office block.

4.2.4 The point
These three examples from Booch may seem a little strange and somewhat trivial at
first glance; however, there is a very serious and fundamental point behind all of
this.

Nobody in their right mind would attempt to build an office block with basic
Do-It-Yourself skills. In addition, there is the question of resources, and not only in
terms of the materials needed. In order to build an office block, you would need the
knowledge to access the necessary human resources (including people such as
architects, builders and crane operators), plenty of time and plenty of money.

The strange and worrying thing is that many people will approach building a
complex system with the skills and resources of a kennel-builder, without actually
knowing if it is a kennel, house or office block that is required. When con-
templating any complex system, you should assume that it will be, or has the
potential to turn into, an office block building. Do not approach any project with a
‘‘kennel’’ mentality. If you approach a project as if it were an office block and it
turns out to be a kennel, you will end up with a very well made kennel that is the
envy of all canines. If, however, you approach a project as if it was a kennel and it
turns out to be an office block, the result will be pure disaster!

One of the reasons why it is so easy to misjudge the size and complexity of a
project is that in many cases, many elements of the System will not be tangible or
comprehensible. Consider, for example, a smartphone. Who can tell, simply by
looking at these increasingly ubiquitous devices, what components it is made of?
And even if the device is dismantled in order to understand the hardware used in its
construction, what about its functionality? Yes, you will expect it to function as a
phone and a camera, a web browser and music player. But what else? With the tens
of thousands of applications available for the more popular models, it is impossible
to know, without powering-up the device and looking to see what is installed and
trying the applications out to understand what they do, just what else the smart-
phone is capable of. Also, what about the infrastructure needed to support the
creation and delivery of such applications, let alone that needed to allow the phone
to be used for its most fundamental purpose of making phone calls? How compli-
cated is the infrastructure? Who runs it? How is it paid for? The fact is that all
projects that involve complex systems will have an intangible element about them,
whether it is a control system, a process or whatever.

86 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The important term that is used here is ‘‘complexity’’ rather than size, as size is
not necessarily a reflection of the complexity of a system. The next section dis-
cusses complexity in more detail.

4.3 The three evils

Projects fail and disasters occur for many reasons. However, there are three
underlying reasons why things go wrong, the ‘‘three evils’’ of complexity, a lack of
understanding and communication issues.

4.3.1 Complexity
The concept of complexity will be illustrated in two ways – one that emphasises the
importance of relationships and the other that uses a brontosaurus to visualise the
nature of the evolution of complexity.

For the first example, consider five boxes that may represent five elements
within a System, as shown in Figure 4.4(a). Each element may represent almost
anything, ranging from a text sentence that represents a Requirement to an
assembly that makes up a System, to users that relate to a System. Each of these
elements may very well be understood by whoever is reading the diagram, but this
does not necessarily mean that the System itself is understood.

Consider now Figure 4.4(b) and it is quite clear that this diagram is more
complex than the previous one, although nothing has changed in the elements
themselves, only the relationships between them.

Consider now Figure 4.4(c) where it is, again, obvious that this diagram is
more complex than its predecessor and far more complex than the first.

In fact, the more relationships are added between the System Elements, the
higher the complexity of the overall System. More and more lines could be drawn
onto this diagram and the complexity will increase dramatically, despite the fact
that the complexity of each of the five elements has not actually increased.

Block 2

Block 1

Block 3 Block 5

Block 4 Block 2

Block 1

Block 3 Block 5

Block 4 Block 2

Block 1

Block 3 Block 5

Block 4

(a) (c)(b)

Figure 4.4 Complexity manifesting through relationships

Introduction to SysML and Systems Modelling 87

The point that is being communicated here is that just because someone
understands each element within a System, this does not mean that the System itself
is understood. The complexity of a System manifests itself by relationships
between things – in this case the System Elements. It should be borne in mind,
however, that these elements may exist at any level of abstraction of the System,
depending on what they represent; therefore, the complexity may manifest itself at
any point in the System. The complexity of the whole of the System is certainly
higher than the complexity of the sum of its parts.

This may be thought of as being able to see both the woods and the trees.
The second way that complexity is illustrated is through the concept of the

‘‘Brontosaurus of Complexity’’. In this slightly bizarre analogy, the magnitude of
the complexity is analogous to the thickness of the brontosaurus, in that the com-
plexity of a System at the outset is represented by the dinosaur’s head and, as the
Project Life Cycle progresses, this complexity increases (travelling down the neck),
increases even further (through the belly) before reducing and finally ending up at
the tail of the brontosaurus.

This fits with the shape of the brontosaurus, which is ‘‘thin at one end, much
thicker in the middle, and then thin again at the far end’’ [2]. The perceived com-
plexity of a Project is almost always low to begin with, but balloons during the
analysis of a Project, as the understanding of the full impact of the Requirements
and the constraints is fully understood. By the time the problem is fully understood,
a Project is well and truly in the ‘‘belly of the brontosaurus’’, whereas when the
design begins and becomes optimised, then the Project should be heading towards
the ‘‘tail of the brontosaurus’’. By applying the brontosaurus of complexity analogy,
it is shown that one must go from the head (initial ideas and Requirements) to the
tail (System) but that it is impossible to do this without going through the belly of
the brontosaurus.

Figure 4.5 A brontosaurus

88 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Consider the situation when a Project is at the head of the brontosaurus, then
this may be visualised as the illustration in Figure 4.4(a). As the complexity of the
Project increases and we move down the neck of the brontosaurus, the complexity
increases, as shown in Figure 4.4(b). In fact, the more relationships are added
between the System Elements (and, hence, the more interactions between them),
the closer to the belly of the brontosaurus we actually get.

Many Projects will fail because the Project never left the belly or, in some
cases, was left even higher up in the neck. If a Project stays in the head or neck,
then there is a great danger of the System being oversimplified and the complexity
inherent in the System is never uncovered until it is too late. If the Project remains
in the belly, however, then the complexity has been realised, but it has not been
managed effectively.

Unfortunately, when a Project is in the belly of the brontosaurus, then it may
seem to the Project personnel that the world is at an end and that there is no
understanding of the Project as a whole. Successfully developing a System is
about being able to see the brontosaurus as a whole and that there is life after
the belly.

In a final twist to this analogy, there is major difference between complexity
and the brontosaurus. Complexity is difficult to visualise, but definitely exists in
any System. A brontosaurus, on the other hand, is easy to visualise (see Figure 4.5)
but never actually existed (it was demonstrated in 1974 that the brontosaurus was
actually the body of the Apatosaurus and the head of the Camarasaurus).

4.3.2 Lack of understanding
A lack of understanding may occur at any Stage of the System Life Cycle and also
may occur during any Process. Consider the following examples of a lack of
understating affecting a Project.

● A lack of understating may occur during the conception Stage of a Project,
during a Requirement-related Process. If the Requirements are not stated in a
concise and unambiguous fashion (or, in reality, as unambiguous possible),
then this lack of understanding will cascade throughout the whole Project. It is
widely accepted that mistakes made during early Stages of the Life Cycle cost
many times more to fix during later Stages of the Life Cycle, so it makes sense
to get things right as early as possible [3].

● A lack of understanding may occur during the development Stage of a Project,
during an analysis-related Process. For example, there may be a lack of domain
knowledge during analysis that may lead someone to state false assumptions,
or to actually get something completely wrong due to insufficient knowledge.
Again, uncorrected mistakes here will lead to larger problems further down the
development Life Cycle.

● A lack of understanding may occur during the operational Stage of a Project,
during an operation-related Process. Incorrect usage of a System may lead to a
System failure or disaster. For example, people not following safety procedures
and people not using the correct tools.

Introduction to SysML and Systems Modelling 89

Of course, these examples are a merely a representation of some ways that a lack of
understanding can manifest itself in a System – there are many other places in the
Life Cycle where problems may occur.

4.3.3 Communication
The third of the three evils is the problem of communication or, more correctly,
ineffective communication. The richness and complexity of human communication is
what separates humans from other species. One of the earliest recorded examples of
Project failure is that of the Tower of Babel, as described wonderfully by Fred
Brookes [4]. The Tower of Babel started life as a very successful Project and the first
few Stages of the Project went off without a hitch and the Project was running on
schedule, within budget and was meeting all the Project Requirements. However, one
of the key stakeholder’s Requirements was not considered properly, which was to
cause the downfall of the Project. When the stakeholder intervened in a divine fash-
ion, the communication between Project personnel was effectively destroyed.

Communication problems may occur at any level of an Organisation or Project,
for example:

● Person-to-person level. If individuals cannot communicate on a personal level,
then there is little hope for Project success. This may be because people have
different spoken languages, technical backgrounds or even a clash of
personalities.

● Group-to-group level. Groups, or Organisational Units within an Organisation,
must be able to communicate effectively with one another. These groups may
be from different technical areas, such as hardware and software groups, or the
groups may span boundaries, such as management and technical groups, or
marketing and engineering. Such groups often use language specific to them-
selves, making inter-group communication difficult.

● Organisation-to-organisation level. Different Organisations speak different
languages – each will have their own specific terms for different concepts, as
well as having an industry-specific terminology. When two Organisations are
working in a customer–supplier relationship, the onus is often on the supplier
to speak the customer’s language so that communication can be effective,
rather than the customer having to speak the supplier’s language. After all, if
the supplier will not make an effort to speak the customer’s language, it is quite
likely that they will not retain customers for very long.

● System-to-system level. Even non-human Systems must be able to commu-
nicate with one another. Technical Systems must be able to communicate with
technical Systems, but also with financial Systems, accountancy Systems,
environmental Systems, etc.

● Any combination of the above. Just to make matters even more confusing, just
about any combination of the above communication types is also possible.

These problems, therefore, lead to ambiguities in interpreting any sort of commu-
nication, whether it is a spoken language or an application-specific or technical
language.

90 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

4.3.4 The vicious triangle
Having established that these three evils exist, matters become even worse. Each of
these three evils does not exist in isolation but will feed into one another. Therefore,
unmanaged complexity will lead to a lack of understanding and communication
problems. Communication problems will lead to unidentified complexity and a lack
of understanding. Finally, a lack of understanding will lead to communication
problems and complexity.

The three evils, therefore, form a triangle of evil that is impossible to eliminate.
In fact, the best that one may hope for is to address each of these evils individually
when looking at any view of a system.

4.4 What is SysML?

SysML is defined on the website of the OMG (the Object Management Group – the
industry standards body which manages and configures the SysML) as ‘a general-
purpose graphical modeling language for specifying, analyzing, designing, and
verifying complex systems that may include hardware, software, information,
personnel, procedures, and facilities. In particular, the language provides graphical
representations with a semantic foundation for modeling system requirements,
behavior, structure, and parametrics’ [5].

The language originated from an initiative between the OMG and the Inter-
national Council on Systems Engineering (INCOSE) in 2003 to adapt the UML for
systems engineering applications. For more on the history of SysML, see Sec-
tion 4.4.4.2. The primary audience for SysML is systems engineers and the SysML
is intended to provide a general-purpose SysML.

4.4.1 SysML’s relationship with UML
The SysML is based on the UML, a general-purpose graphical modelling language
aimed at software engineers and which, on its appearance in 1997, represented a
major unification of the large number of such languages that sprang up in the late
1980s and early 1990s.

The UML defines 13 types of diagram that allow the requirements, beha-
viour and structure of a software system to be defined. Because of its appearance
the UML has been increasingly adopted for use outside the software field
and is now widely used for such things as systems engineering and process
modelling.

Despite this growing use of UML for systems engineering there was still a
perceived need for a tailored version of UML that was aimed specifically at systems
engineers, with some of the elements and diagrams of UML considered to be aimed
more at software systems removed. The result of this perceived need is the SysML,
which has 9 diagrams compared to the 13 of UML.

So what is the relationship between SysML and UML? Figure 4.6 illustrates
the overlap between the two languages.

Introduction to SysML and Systems Modelling 91

As can be seen in Figure 4.6, SysML makes use of much of the UML.
However, some parts of the UML were considered to be not required by SysML.
In particular, the following diagrams are not used: object diagram, deployment
diagram, component diagram, communication diagram, timing diagram and
interaction overview diagram.

In addition, SysML adds some new diagrams and constructs not found in
UML: the parametric diagram, the requirement diagram, required and provided
features and flow properties. Those parts of the UML that are reused by UML are
also subject to some changes to make the notation more suitable for systems
engineering, for example replacing the concept of the class with that of the block.

Although the object diagram does not exist in SysML, instance specifications
(the SysML term for UML objects) can be shown on a block definition diagram. Also,
although component diagrams and components do not exist in SysML, the SysML
block has aspects of both the class and the component, and the block definition dia-
gram can be considered a combination of the class diagram and component diagrams.

4.4.2 A brief history of SysML
SysML has undergone a long and tedious evolution, with a history extending back
to 2003 when the OMG issued the ‘‘UML for Systems Engineering Request for
Proposal’’ following a decision by INCOSE to customise UML for systems engi-
neering applications.

In response to this RFP there were several major drafts of SysML which dif-
fered in terms of the content and concepts. At one point, the SysML team split into
two groups, each led by a different CASE (Computer-Aided Systems/Software
Engineering) tool vendor, who both produced separate specifications for the

UML not
required by

SysML

SysML
Extensions

To UML

UML 2
SysML

UML
Reused by

SysML

Figure 4.6 The relationship between SysML and UML

92 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

standard. For a time, in late 2005/early 2006, both of these versions of SysML were
in use by different early adopters of the language. In February 2006, one of these
specifications was chosen as the basis for the official SysML by the OMG. Version
1.0 of the language was published in September 2007, since when there have been
five further versions released. A (very) brief summary of the various versions of
SysML are given in Table 4.1.

As can be seen from Table 4.1, the most significant changes to the language
took place in version 1.2, with the addition of the hitherto nonsensically missing
ability to model instance specifications, and in version 1.3, with a major change to
the way SysML supports the definition and modelling of ports. The changes in
version 1.4 introduced some useful additional notation, perhaps the most useful
being the addition of parameters and return types to interaction uses and the
addition of bound references to blocks, but no major changes. Version 1.5 con-
tained only minor changes, aimed more at SysML tool implementers than at users
of the language.

Having discussed the relationship between SysML and UML and considered
some aspects of its history it is now time to look at modelling in more detail.

4.5 Modelling

This section introduces a definition of modelling and some of the principles asso-
ciated with it that forms the foundations for the rest of the book. Modelling allows
us to identify complexity, aid understanding and improve communication – the core
abilities needed when adopting a model-based approach to systems engineering.

Table 4.1 Summary of major differences between SysML versions

Version Publication date Major differences from previous version

1.5 May 2017 Minor change to definition of requirement, allowing
more flexible creation of user-defined requirement
sub-types. Other minor changes

1.4 August 2015 Minor changes to port notation; addition of parameters
and return types to interaction uses; addition of
behaviour compartment and bound references to
blocks. Other minor changes

1.3 June 2012 Major change to ports: removal of standard ports and
flow ports and flow specifications and replacement
with full ports and proxy ports and flow properties;
support for nested ports; support for provided and
required features. Other minor changes

1.2 June 2010 Addition of instance specifications; change to
conjugated flow port notation

1.1 December 2008 No significant changes
1.0 September 2007 Initial version

Introduction to SysML and Systems Modelling 93

4.5.1 Defining modelling
In order to understand modelling, it is important to define it. We define a model as a
simplification of reality [1]. It is important to simplify reality in order to understand
the System. This is because, as human beings, we cannot comprehend complexity [6].

If a model is a simplification of reality, there are many things then that may be
thought of as a model:

● Mathematical models, which allow reasoning about the System to be
performed. A mathematical model can range from equations that represent
different aspects of a System to formal specifications, using specialised formal
methods, that may be used as part of a formal analysis or proof.

● Physical models, such as mock-ups, which may be used to provide a picture of
what the final System will look like or may be used as part of a physical
simulation or analysis.

● Visual models, such as drawings and plans, which may be used as a template
for creation or the basis of analysis.

● Text models, such as written specifications, which are perhaps the most widely
used of the Tools at our disposal. Regarding text as a model can be initially
quite surprising but the second that we start to describe something in words, we
are simplifying it in order to understand it.

This is by no means an exhaustive list, but it conveys the general message.
It is important to model so that we can identify complexity, increase our under-

standing and communicate in an unambiguous (or as unambiguous-as-possible)
manner.

In order to model effectively, it is essential to have a common language that
may be used to carry out the modelling. There are many modelling approaches that
exist, including graphical, mathematical and textual, but, regardless of the approach
taken, there are a number of Requirements for any modelling language:

● The choice of model
● The level of abstraction
● Connection to reality
● Independent views of the same system

Each of these is considered below.

4.5.2 The choice of model
The choice of model refers to the fact that there are many ways to solve the same
problem. Some of these will be totally incorrect but there is always more than
one correct way to solve the problem at hand. Although all these approaches may be
correct, some will be more appropriate and, hence, more correct for the application. For
example, if you want to know the answer to a mathematical equation, there are
several approaches open: you may simply ask someone else what the answer is, you
may guess the answer, you may apply formal mathematical analysis and formulae
or you may enter the equation into a mathematical software application. All may

94 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

yield a correct answer, but the most appropriate approach will be dependent on the
reason why you are asking the question. If you are merely curious to answer to the
equation, then guessing or asking someone else may be entirely appropriate. If, on
the other hand, the equation is an integral part of the control algorithm for an
aeroplane, then something more formal would be more appropriate.

It is important that we have a number of different tools available in order to
choose the most appropriate solution to a problem, rather than just relying on the
same approach every time.

Therefore, one Requirement for any modelling language is that it must be
flexible enough to allow different representations of the same information to allow
the optimum solution to be chosen. That is, a modelling language should be flexible
enough to allow different Views of the information to be produced. The concept of
Views is central to the approach in this book as discussed in Chapter 2.

4.5.3 The level of abstraction
Any System may be considered at many different levels of abstraction. For exam-
ple, an office block may be viewed as a single entity from an outside point of view.
This is known as a high level of abstraction. It is also possible to view a tiny part of
the office block, for example the circuit diagram associated with a dimmer light
switch in one of the offices. This is what is known as a low level of abstraction.

As well as the high and low levels of abstraction, it is also necessary to look at
many intermediate levels of abstraction, such as each floor layout on each level,
each room layout, the lifts (or elevators) and the staircases. Only by looking at
something at high, low and in-between levels of abstraction it is possible to gain a
full understanding of a System.

Therefore, the second Requirement for any modelling language is that any
System must be able to be represented at different levels of abstraction.

4.5.4 Connection to reality
It has been already stated that, by the very nature of modelling, we are simplifying
reality and there is a very real danger that we may oversimplify to such a degree
that the model loses all connection to reality and, hence, all relevant meaning.

One type of modelling in which it is very easy to lose the connection to reality
is that of mathematical modelling. Mathematical modelling is an essential part of
any engineering endeavour, but it can often be seen as some sort of dark art as very
few people possess sufficient knowledge as to make it usable and, indeed, many
people are petrified of maths! Consider the example of the mathematical operation
of differentiation that is used to solve differential equations. As every school child
knows, differentiation can be applied in a quite straightforward manner to achieve a
result. What this actually means in real life, however, is another matter for dis-
cussion entirely. Differentiation allows us to find the slope of a line that, when
taken at face value, and particularly when at school, can be viewed as being utterly
meaningless. To take this example a little further, we are then told that integration
is the opposite of differentiation (what is the opposite of finding the slope of a

Introduction to SysML and Systems Modelling 95

line?), which turns out to be measuring the area underneath a line. Again, when first
encountered, this can be viewed as being meaningless. In fact, it is not until later in
the educational process when studying subjects like physics or electronics that one
realises that finding the slope of a line can be useful for calculating rate of change,
velocity, acceleration, etc. It is this application, in this example, that provides the
connection to reality and hence helps communicate ‘‘why’’.

The third Requirement for any modelling language, therefore, is that it must be
able to have a strong connection to reality and, hence, be meaningful to observers
who, in many cases, should require no specialist knowledge, other than an expla-
nation, to understand the meaning of any model.

4.5.5 Independent views of the same system
Different people require different pieces of information, depending on who they are
and what their role is in the System. It is essential that the right people get the right
information at the right time. Also, for the purpose of analysing a System, it is
important to be able to observe a System from many different points of view. For
example, consider the office block again where there would be all different types of
people who require different information. The electricians require wiring diagrams –
not colour charts, nor plumbing data; the decorators require colour charts and not
wiring diagrams; and so on.

There is a potentially very large problem when considering things from dif-
ferent points of view and this is consistency. Consistency is the key to creating a
correct and consistent model and, without any consistency, it is not possible to have
or demonstrate any confidence in the system.

The fourth Requirement, therefore, for any modelling language, is that it must
allow any system to be looked at from different points of view and that these Views
must be consistent. The MBSE approach taken in this book is based around this
concept of a number of different, yet consistent, Views of a System. None of these
Views taken alone is sufficient to describe the System; it is the information cap-
tured in the set of Views that gives a full and consistent model.

4.6 The SysML diagrams

Any SysML model has two aspects, the structural and the behavioural. Both aspects
must exist and must be consistent. There are nine SysML diagrams available to
realise the model, five diagrams that can be used to realise the structural aspect (see
Figure 4.7) and four diagrams that can be used to realise the behavioural aspect (see
Figure 4.8).

In brief, the five SysML structural diagrams are used as follows:

● A block definition diagram describes the System hierarchy and System/
component classifications. It allows properties and behaviour of System Ele-
ments to be modelled.

● The package diagram is used to organise the model.

96 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● The internal block diagram describes the internal structure of a System in
terms of its parts, ports and connectors.

● The parametric diagram represents constraints on System property values,
allowing engineering analysis models to be produced as well as defining
complex constraint relationships that can be used in verification and validation
activities.

● The requirements diagram captures requirements hierarchies and requirements
derivation. It allows a requirement to be related to model elements that satisfy
or verify the requirement.

The block definition diagram is introduced in Section 4.7. The other diagrams are
discussed in Chapter 5.

The four SysML behavioural diagrams are used as follows:

● The use case diagram provides a high-level description of functionality that is
achieved through interaction among Systems or System Elements. It shows
requirements in context.

● The sequence diagram represents interactions between collaborating parts of a
System, allowing the messages between System Elements to be modelled in
order to capture behavioural scenarios.

The 5 SysML
structural diagrams

pkg [Package] Package Diagram [Package Diagram]

Package1

Package2

«import»

ibd [Block] Block1 [Internal Block Diagram]

PartB: Block2[1]

PartA: Block4[1..*]

par [ConstraintBlock] Parametric Diagram [Parametric Diagram]

Property4: Real

ConstraintProperty1 : ConstraintBlock1

Parameter1:
Real

Parameter2:
Real

req [Package] Requirement Diagram [Requirement Diagram]

«block»
Block1

«requirement»
Requirement1

id = "001"
text = "The System shall ..."

«satisfy»

bdd [Package] Block Definition Diagram [Block Definition Diagram]

«block»
Block1

«block»
Block2

«block»
Block3

«block»
Block4

PartB 1

PartA 1..*

Figure 4.7 SysML structural diagrams

Introduction to SysML and Systems Modelling 97

● The state machine diagram describes the state transitions and actions that a
System or its elements perform in response to events.

● The activity diagram represents the flow of data and control between activities and
is often used to model the internal behaviour of the operations of System Elements.

The state machine diagram is introduced in Section 4.8. The other diagrams are
discussed in Chapter 5.

4.7 Structural modelling

The structural aspect of a model shows the ‘‘what’’ of the System. It identifies and
defines System Elements, defines their properties, identifies their behaviours and
identifies the relationships between the System Elements.

There are five structural diagrams in SysML, as can be seen in Figure 4.7.
Similar concepts apply to all five of these diagrams, and in order to illustrate the
concepts behind structural modelling, one of the five structural diagrams will be

uc [Package] Use Case Diagram [Use Case Diagram]

System

Use Case1

Use Case2

Actor1

Actor2

«include»

sd [Package] Sequence Diagram [Sequence Diagram]

Lifeline A: Block4 Lifeline B: Block2

message()

stm [Package] State Machine Diagram [State Machine Diagram]

State1

State2

act [Package] Activity Diagram [Activity Diagram]

Activity Partition2Activity Partition1

Activity1

Activity2

The 4 SysML

behavioural diagrams

Figure 4.8 SysML behavioural diagrams

98 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

used to show some simple examples. The diagram chosen is the block definition
diagram as this forms the backbone of the SysML.

There are two basic elements that make up a block definition diagram: the
block and the relationship. A block represents a type of ‘‘thing’’ that exists in the
System being modelled. A relationship relates together one or more block. Blocks
should be named using nouns or noun phrases, and relationships should have names
that form sentences when read together with their associated blocks.

Figure 4.9 is a block definition diagram showing two blocks, ‘Block 1’ and
‘Block 2’. Blocks are represented by rectangles and each must have a name, which
is written inside the rectangle. The rectangles also contain the stereotype «block».
Stereotypes are discussed in Chapter 5.

Figure 4.10 shows how to represent a relationship between two blocks. The
type of relationship shown is known as an association and is a general type of
relationship that relates together one or more block. The association is represented
by a line that joins two blocks, with the association name written on the line and a
direction marker showing which way the relationship should be read. This diagram
reads: ‘Block 1’ associates ‘Block 2’.

«block»
Block1

«block»
Block2

Figure 4.9 Example blocks

«block»
Block1

«block»
Block2

associates

Figure 4.10 Representing relationships

«block»
Dog

«block»
Cat

chases

«block»
Cat

«block»
Mouse

eats

Figure 4.11 Examples of blocks and associations

Introduction to SysML and Systems Modelling 99

Figure 4.11 shows two more examples. The top part of the diagram reads: there
are two blocks: ‘Dog’ and ‘Cat’ where ‘Dog’ chases ‘Cat’. Likewise, the lower part
of the diagram reads: there are two blocks: ‘Cat’ and ‘Mouse’ where ‘Cat’ eats
‘Mouse’.

An important point concerning blocks is that blocks are conceptual and do not
actually exist in the real world. There is no such thing as ‘Cat’, but there do exist
many examples of ‘Cat’. A block represents a grouping of things that look and
behave in the same way as, at one level, all examples of ‘Cat’ will have a common
set of features and behaviours that may be represented by the block ‘Cat’. What this
block is really representing is the blueprint of ‘Cat’, or the essence of ‘Cat’.

The direction of an association is shown by a small filled-in triangle, as seen
in the examples shown in Figures 4.10 and 4.11 and in the top part of Figure 4.12.
The diagram reads ‘Dog’ chases ‘Cat’ and definitely not ‘Cat’ chases ‘Dog’. If, in
the System being modelled, dogs chase cats and cats chase dogs, then a second
association running in the opposite direction would need to be added to the dia-
gram. This illustrates an important point, namely that there can be any number of
relationships between two blocks.

The directionality of an association can be augmented through the use of role
names on each end of the association, as shown in the bottom part of Figure 4.12. In
this case, the two role names that have been defined are ‘chaser’ and ‘chasee’. The
diagram can now be read as: ‘Dog’, in the role ‘chaser’, chases ‘Cat’, in the role
‘chasee’. The choice of association and role names should be chosen so that they
make the diagrams as unambiguous as possible.

As well as showing the direction of an association between blocks, SysML
allows the multiplicity of the blocks involved in the association to be shown. The
top part of Figure 4.13 shows that each ‘Dog’ chases one or more ‘Cat’. Although
the number is one, it does not necessarily indicate that there is only one dog, but
rather that each ‘Dog’ in the system chases one or more ‘Cat’. The multiplicity at
the other end of the ‘chases’ association states ‘1..*’, which means ‘one or more’ or
somewhere between one and many. Therefore, the association shows that each
‘Dog’ chases one or more ‘Cat’, and that each ‘Cat’ is chased by only one ‘Dog’.

«block»
Dog

«block»
Cat

chases

«block»
Dog

«block»
Cat

chases

chaser chasee

Figure 4.12 Showing direction with role names

100 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The lower part of the diagram shows a case where the multiplicity has been
changed, which changes the entire meaning of the model. In this case, the diagram
is read as: one or more ‘Dog’ chases one or more ‘Cat’. This could mean that a
single dog chases a single cat, a single dog chases a herd of cats, or that an entire
pack of dogs is chasing a herd of cats.

The appropriate multiplicity depends, of course, of the System being modelled.
As the model evolves, the multiplicities may require changing. Common multi-
plicities are:

0..1 – Which indicates an optional value
1 – Which indicates exactly one
0..* – Which indicates any number, including zero
* – Which is the same as 0..*
1..* – Which indicates 1 or more

In fact, any subset of the non-negative integers can be used to specify a mul-
tiplicity. If, for example, a dog can chase between 1 and 3 cats, then the multiplicity
at the ‘Cat’ end of the association in Figure 4.13 would be changed to ‘1..3’.

Modelling blocks and the relationships between then is an essential part of
structural modelling, but the amount of detailed information for each block is very
low. If the block ‘Cat’ represents all cats that look and behave in the same way, it is
important to be able to show how a cat looks or behaves. This information is added
to a block by using properties and operations.

The common properties of a ‘Cat’ are represented using SysML properties. It
is very important to limit the number of general properties that are identified to
only those that are relevant, as it is very easy to get carried away and over-define
the amount of detail for a block. For this example, suppose that we wish to represent
the features ‘age’, ‘colour’, ‘favourite food’ and ‘weight’, on the block ‘Cat’. These
features are represented on the block as properties, one for each feature as shown in
Figure 4.14.

1..*1«block»
Dog

«block»
Cat

1..*1 chases

1..*1..*«block»
Dog

«block»
Cat

1..*1..* chases

Figure 4.13 Showing multiplicity

Introduction to SysML and Systems Modelling 101

When modelling, it is possible to add more detail at this point, such as the type,
default value and so on. As properties represent features of a block, they are usually
represented by nouns and they must also be able to take on different values. For
example, ‘Colour’ is a valid property, whereas ‘Red’ would not usually be, as ‘Red’
would represent an actual value of a property rather than a property itself. It is possible
for ‘Red’ to be an property, but this would mean that the property would have a Boolean
type (true or false) to describe a situation where we would only be interested in red cats
and not any other type. SysML allows three different kinds of property to be defined:
value, part and reference properties. As can be seen from the values heading in the
compartment in Figure 4.14, the four properties shown for the ‘Cat’ block are all value
properties. The differences between these three kinds of property are discussed in detail
in Chapter 5 and are summarised briefly below:

● Part properties are owned by the block. That is, they are properties that are
intrinsic to the block but which may have their own identity. A composition or
aggregation relationship (see Section 4.7.1) creates part properties between
the owning block and the blocks that it is composed of.

● Reference properties are referenced by a block, but not owned by it. An
association between two blocks creates a reference property in the ‘from’
block to the block at the other end of the association. For example, the asso-
ciation between ‘Dog’ and ‘Cat’ in Figure 4.13 creates a reference property to
‘Cat’ within the ‘Dog’ block.

● Value properties represent properties that cannot be identified except by the
value itself, for example age, colour, etc. in Figure 4.14.

Properties provide a mechanism to represent features of a block – to show what it
looks like – but they do not describe what the block does. This is shown using
operations. Operations show what a block does, rather than what it looks like, and
are thus named using verbs or verb phrases. An example is shown in Figure 4.15.

In the case of the block ‘Cat’ we have identified three things that the cat does,
which are ‘eat’, ‘sleep’ and ‘run’. Operations are represented in the SysML by
adding an operations compartment to the block and writing the operation names
within it. There are two important things to note about the operations compartment
in Figure 4.15: first, the compartment can appear above or below the values com-
partment; second, not all SysML tools label the compartment. The tool used by the

«block»
Cat

values
 Age
 Colour
 Favourite food
 Weight

Figure 4.14 Properties of the ‘Cat’ block

102 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

authors is such a tool; it places the operations compartment above the values
compartment and does not label the compartment. This is a very important remin-
der that although the SysML is standard, unfortunately not all tool implementation
of the SysML are the same. See Chapter 18 for a discussion of tools.

The name of an operation is followed by two brackets. These are not optional
and form part of the name of the operation. Thus, in Figure 4.15, the operation
name is ‘eat()’ and not ‘eat’. Extra detail can be added to operations as necessary,
such as parameters and return values. For example, an operation that takes two
integers, adds them and returns the result as an integer might be named thus

add(a : Integer, b : Integer) : Integer

This illustrates the full form of an operation in SysML, namely

operation name(parameter name : parameter type,...) :
return type

An operation can have any number of parameters, as shown by the ‘, . . . ’ in
the general form above.

Although a number of properties and operations have been defined for the
‘Cat’ block in Figure 4.15, this does not mean that these properties and operations
have to be shown on every diagram. Most SysML tools will allow the property and
operation compartments to be turned on or off on for a block, allowing a block to be
shown in different levels of detail on different diagrams such as has been done on
Figures 4.13 and 4.15. As with everything in the SysML, only use as much detail as
is necessary, rather than as much as is possible.

4.7.1 Adding more detail to relationships
While properties and operations allow more detail to be added to blocks, SysML
allows the modeller to add more detail to relationships, by defining some special
types that are commonly encountered in modelling. One of these types of rela-
tionship, the association has already been discussed above. This section will cover
the other two main relationship types that exist, namely the composition and the
specialisation/generalisation relationship.

«block»
Cat

eat()
run()
sleep()

values
 Age
 Colour
 Favourite food
 Weight

Figure 4.15 Operations of the ‘Cat’ block

Introduction to SysML and Systems Modelling 103

Composition allows emphasis to be placed on the ‘‘whole/part’’ relationships
between System Elements. An example of composition is shown in Figure 4.16.

The diagram in Figure 4.16 makes use of composition to shown the structure
of the ‘Collar’ worn by a ‘Cat’. The composition is shown by the use of a solid
diamond at the ‘‘whole’’ end of the relationship. The diagram could be read as
follows: A ‘Cat’ wears a ‘Collar’ which is composed a ‘Bell’, a ‘Belt’ and a
‘Buckle’. The ‘Bell’ is on the ‘Belt’ and the ‘Buckle’ is on the ‘Belt’. The ‘Bell’ is
composed of a ‘Clasp’, a ‘Donger’ and a ‘Sphere’. Like associations, the compo-
sition can also take multiplicities and role names. Composition can also be named
like an association, although this is rare.

A variant on composition exists in SysML. This is known as aggregation and
looks the same but with a hollow diamond. The difference between them is con-
cerned with uniqueness of ownership and is discussed further in Chapter 5.
Essentially, composition shows that the block representing the part can only be part
of one owning block at a time. In Figure 4.16, for example, a ‘Bell’ can only ever be
a part of one ‘Collar’ at a time. Aggregation allows the block representing the part
to be part of more than one owning block at the same time. For example, if the
‘Bell’ in Figure 4.16 was attached to two ‘Collar’ at the same time, then an
aggregation, with multiplicity 2 at the ‘Collar’ end, would be needed between
‘Collar’ and ‘Bell’ rather than a composition.

As well as showing structural hierarchies using composition or aggregation,
it is often necessary to model type hierarchies or taxonomies. SysML allows this
through the use of the specialisation/generalisation relationship. An example of its
use is shown in Figure 4.17.

«block»
Cat

«block»
Collar

«block»
Bell

«block»
Belt

«block»
Buckle

«block»
Clasp

«block»
Donger

«block»
Sphere

1

11

1

wears

1

1

1

is on

1

1

1

is on

1

1

Figure 4.16 An example of composition

104 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Specialisation/generalisation is shown by a line with an unfilled triangular
arrowhead at one end. Specialisation refers to the case when a block is being made
more special or is being refined in some way. Specialisation may be read as
‘‘has types’’. In the somewhat science fiction inspired types of life form shown in
Figure 4.17, ‘Life form’ has types ‘Animal’, ‘Vegetable’ and ‘Mineral’.

If the relationship is read the other way around, then the triangle symbol is read
as ‘is a type of’, which is a generalisation. Thus, in Figure 4.17, ‘Mammal’, ‘Fish’
and ‘Insect’ are types of ‘Animal’. Therefore, read one way the block becomes
more special (specialisation) and read the other way, the block becomes more
general (generalisation).

Specialisation is used to show child blocks of a parent block. An important
property of the specialisation/generalisation relationship is that of inheritance:
child blocks inherit their properties and operations from their parent blocks, but
will be different in some way in order to make them special. In SysML terms, this
means that a child block will inherit any properties and operations that its parent
block has, but may have additional properties or operations that make the child
block special.

Consider Figure 4.18. This shows that ‘Cat’ is a type of ‘Mammal’. Taken
together with Figure 4.17, a ‘Cat’ is therefore also a type of ‘Animal’ and a type of
‘Life form’. A ‘Cat’ therefore inherits all the properties and operations of all its
parent blocks.

«block»
Lifeform

«block»
Animal

«block»
Vegetable

«block»
Mineral

«block»
Mammal

«block»
Fish

«block»
Insect

{incomplete}

Figure 4.17 Example of specialisation/generalisation

Introduction to SysML and Systems Modelling 105

Given the information in Figures 4.17 and 4.18, a ‘Cat’ therefore also has, in
addition to the three operations introduced in Figure 4.15, the two operations it
inherits from ‘Mammal’, namely ‘suckle young()’ and ‘breathe air()’.

A block can have additional properties and operations not found in any of its
ancestor blocks (parent block, parent block of parent block, etc.), as shown by the
properties and operations in the ‘Cat’ block.

Remember that inheritance only runs from parent blocks to child blocks. Thus,
defining the ‘Age’ property in ‘Cat’ does not mean that it is inherited by its parent
‘Mammal’. If, when modelling this life form type hierarchy, it was found that ‘Age’
was being added into all types of ‘Mammal’, types of ‘Fish’ and so on, then this is a
sign that the property should be moved up the hierarchy to ‘Animal’ or perhaps
even ‘Life form’, so that it is defined in one place and inherited by all the des-
cendant blocks. The same question must be asked of all the properties and opera-
tions in any block that forms part of such a type hierarchy: are the properties and
operations in the right place?

4.8 Behavioural modelling

The behavioural aspect of a model shows the ‘‘how’’ of the system. It identifies the
behaviour of the System at the System level, between System Elements, within
System Elements and within operations of System Elements.

«block»
Mammal

breathe air()
suckle young()

«block»
Cat

eat()
run()
sleep()

values
 Age
 Colour
 Favourite food
 Weight

Figure 4.18 Inheritance

106 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

There are four behavioural diagrams in SysML, as can be seen in Figure 4.8.
Similar concepts apply to all four of these diagrams, and in order to illustrate the
concepts behind behavioural modelling, one of the four behavioural diagrams will be
used to show some simple examples. The diagram chosen is the state machine dia-
gram. State machine diagrams have a very strong relationship with block definition
diagrams and the concept of modelling the states that Systems and their elements
operate in is commonly encountered in systems engineering. For more in-depth dis-
cussion concerning state machine diagrams and behavioural modelling, see [7].

State machine diagrams are used to model the behaviour of blocks throughout
the lifetime of a block. That is, they describe the behaviour of instances of blocks,
known in SysML as instance specifications (see Chapter 5 for a discussion of
instance specifications). State machine diagrams are used when the element repre-
sented by the block exhibits behaviour (i.e. has operations) and, more fundamentally,
when such behaviour is related to the element being in a defined state. Such elements
are said to exhibit stateful behaviour. An example of an everyday system that exhibits
stateful behaviour and hence which could be modelled using a state machine diagram
is a Blu-ray player; such a device can be playing, fast-forwarding, etc. Each of these is
a state that the player is in during which it exhibits behaviour. So, let us now consider
the basic modelling elements in a state machine diagram.

The basic modelling elements in a state machine diagram are states, transi-
tions and events. States describe what is happening within a System at any given
point in time, transitions show the possible paths between such states and events
govern when a transition can occur. Each of these elements will now be looked at
in more detail, starting with the state, an example of which is shown in Figure 4.19.

Figure 4.19 shows a very simple state, which is shown in the SysML by a box
with rounded corners. This particular state has the name ‘state 1’ and this diagram
should be read as: ‘there is a single state, called ‘state 1’’. This shows what a state
looks like, but what exactly is a state? The following three points discuss the basics
of a state:

● A state may describe a situation in which the System is doing something.
States are assumed to take a finite amount of time, whereas transitions are
assumed to take no time. There are two things that can be happening during
such a state: an activity and/or one or more actions. An activity is a unit of
behaviour that is non-atomic and, as such, can be interrupted. Actions are units
of behaviour that are atomic and cannot be interrupted. Activities can only
appear inside a state, whereas an action can exist either within a state or on
a transition. Activities can be differentiated from actions inside states by

state 1

Figure 4.19 Representation of a state

Introduction to SysML and Systems Modelling 107

the presence of the keyword do, whereas actions will have other keywords,
including: Entry and Exit.

● A state may describe situations in which the System satisfies a particular
condition, in terms of its property values or events that have occurred. This
may, for example, be ‘‘loaded’’ or ‘‘saved’’, so that it gives an indication as to
something that has already happened.

● A state may also describe a situation in which a System does nothing or is
waiting for an event to occur. This is often the case with event-driven Systems,
such as windows-style software where, in fact, most of the time the System is
sat idle and is waiting for an event to occur.

In order for the instance specification that owns the state machine diagram to move
from one state to another, a transition must be crossed. In order to cross a transi-
tion, some sort of event must occur. Figure 4.20 shows a simple example of how
states and transitions are represented using the SysML.

From the diagram in Figure 4.20 it can be seen that two states exist: ‘state 1’
and ‘state 2’, represented by rounded boxes. There is a single transition that goes
from ‘state 1’ to ‘state 2’, which is represented by a directed line that shows the
direction of the transition. These transitions are unidirectional and, in the event of
another transition being required going in the other direction, an entirely new
transition is required – the original transition cannot be made bi-directional.

In order to cross a transition, which will make the instance specification exit
one state and enter another, an event must occur. This event may be something
simple, such as the termination of an activity in a state (the state has finished what it
is doing) or may be more complex and involve receiving messages from another
element in another part of the System. Event names are written on the transition
lines using a notation that is described in the following sub-section, where the
concepts and notation are explored through a simple example.

4.8.1 Behavioural modelling – a simple example
In order to illustrate the use of state machine diagrams, a simple example will be
used; that of a game of chess, a game with which most people are at least
vaguely familiar. While chess is a very complex game to master, its rules are
relatively simple, as will be our model where we will focus on the behaviour of
the players.

state 1

state 2

Figure 4.20 States and transitions

108 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Figure 4.21 shows a block definition diagram that represents, at a very simple
level, a game of chess. From the diagram a ‘Chess Match’ is made up of two ‘Player’.
Each ‘Player’ has properties – ‘Status’, ‘Result’ and ‘Initiator’ – and a single
operation ‘move’. The property ‘Result’ reflects the result of the game and may have
values: ‘Player 1 win’, ‘Player 2 win’, ‘Draw’ or ‘Undecided’. The property ‘Status’
reflects the current status of the game and may take the values ‘Checkmate’, ‘Stale-
mate’ and ‘Game in Progress’. Finally, the property ‘Initiator’ represents the player
who goes first and can take values ‘Player 1’ or ‘Player 2’. Note that the definition
and display of the types associated with these properties have been omitted for clarity.

4.8.1.1 Simple behaviour
A very simple state machine diagram for a game of chess is shown in Figure 4.22,
by defining the behaviour of the block ‘Player’.

«block»
Chess Match

«block»
Player

move()

values
 Result
 Initiator
 Status

2

Figure 4.21 A simple block definition diagram for a game of chess

waiting

moving

/send Player 1
moved

Player 2 moved

Figure 4.22 A simple state machine diagram for a game of chess

Introduction to SysML and Systems Modelling 109

From the diagram, the instance specification of ‘Player’ may be in one of two
states: ‘waiting’ or ‘moving’. In order to cross from ‘waiting’ to ‘moving’, the
event ‘Player 2 moved’ must have occurred. In order to cross from ‘moving’ to
‘waiting’, the event ‘Player 1 moved’ must be sent.

The two transitions illustrate receipt events and send events. The event
‘Player 2 moved’ is an example of a receipt event, an event that is received from
outside the boundary of the state machine diagram. Receipt events trigger transi-
tions. The event ‘Player 1 moved’ is an example of a send event (as indicated by the
send keyword), an event that is broadcast outside the boundary of the state machine
to other instance specifications. A send event is an example of an action taking
place on the transition (see the discussion above on activities and actions); it is
atomic and cannot be interrupted.

These two events illustrate two parts of the notation that is applied to a tran-
sition. The three parts of the notation are

event [guard condition] / action

The square brackets and slash are part of the notation and each of the three
parts is optional. Guard conditions will be introduced in Section 4.8.1.2. The text-
based notation used here is only one presentation option and reflects the modelling
preferences of one of the authors. There is also a graphical notation which is
discussed in Chapter 5.

Thus it can be seen that the transition from ‘waiting’ to ‘moving’ only has an
event and the transition from ‘moving’ to ‘waiting’ only has an action. When a
transition exists that does not have an event, then the transition occurs (we say the
transition fires) after all the behaviour (activity and actions) within the originating
state have completed.

At a very simple level Figure 4.22 shows how a game of chess is played, by
modelling the behaviour of each player. However, the model is by no means complete
as the chess game described here has no beginning or end and will thus go on forever.
This is modelled in the SysML by introducing initial states and final states.

The next step, therefore, is to add more detail to this state machine diagram. It
is interesting to note that this is actually how a state machine diagram (or any other
SysML diagram, for that matter) is created. A state machine diagram almost always
starts off as a simple collection of states and then evolves over time. As more detail
is added, so the model starts to get closer and closer to the reality that it is intended
to represent.

4.8.1.2 Adding more detail
The next step is to add a beginning and an end for the state machine diagram, using
initial states and final states. An initial state describes what has happened before the
instance specification is created and is shown visually by a filled-in circle. A final
state, by comparison, shows the state of the instance specification once the instance
specification has been destroyed and is represented visually by a bull’s-eye symbol.

Initial states and final states are treated just like other states in that they require
transitions to take the instance specification into another state. Whereas transitions

110 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

to final states can be triggered by any kind of event, initial states behave somewhat
differently. In general, the transition from an initial state may not have an event
that triggers the transition (technically, the initial state is known as a pseudo-
state). This is shown in Figure 4.23, an expanded state machine diagram that has
initial states and final states along with appropriate events. Note that the transi-
tion from the initial state has no event; when the instance specification of
‘Player’ is created, the transition immediately fires and the state machine moves
into the ‘starting’ state.

From the ‘starting’ state two transitions can fire that can move the state
machine diagram into either the ‘waiting’ or the ‘moving’ state. Both of these
transitions are triggered by receipt of the ‘Begin game’ event. Which of these
transitions that fires is governed by the guard conditions on the transitions,
depending on which player goes first. There are three different final states,
depending on which player, if either, wins, or whether the game is a draw. The
model is now becoming more realistic; its connection to reality is getting closer, but
there is still room for ambiguity. Notice in this diagram that the guard conditions
relate directly back to the properties from its parent block, providing some basic
consistency between a block and its associated state machine diagram.

We know from the block definition diagram that the block ‘Player’ does one
thing, ‘‘move’’, but we do not know in which state of the state machine diagram
that this operation is executed. As it happens, it is fairly obvious which state the
operation, occurs in: ‘moving’. Operations on a state machine diagram may appear
as either activities in a state or actions in a state or on a transition, but remember
that actions are atomic whereas activities are not.

The ‘move’ operation must be non-atomic (otherwise it would be impossible to
interrupt a game of chess until a player had moved) and so an activity within a state
must be used. This may now be shown by adding the activity to its appropriate state
by writing ‘do/’ in the state box and then adding the activity name (the operation
from the block definition diagram), which is shown in Figure 4.24.

waiting

moving

starting
/send Player 1
moved

[Status = Checkmate]
/Result = Player 2 win

[Status = Stalemate]
/Result = Draw

[Status = Stalemate]
/Result = Draw

Begin game [Initiator = Player 2]
[Status = Checkmate]
/Result = Player 1 win

Player 2 moved

Begin game [Initiator = Player 1]

Figure 4.23 Expanded state machine diagram showing initial and final states

Introduction to SysML and Systems Modelling 111

The model is now getting even closer to reality; the model is evolving. It is
almost impossible to get a model right the first time, a good model will continue to
evolve for as long as it exists. However, there is yet another problem with the state
machine diagram, as, although it seems to work well for any situation in a chess
game, it is impossible for the game to run. To illustrate this, consider what happens
when we begin a game of chess.

4.8.1.3 Ensuring consistency
The first thing that will happen is that two instance specifications of ‘Player’ need to
be created so that we have the correct number of players. The behaviour of each
player is described by the state machine diagram for the block ‘Player’. For argu-
ments sake, we shall name the two players ‘Player 1’ and ‘Player 2’ and see if the
state machine diagram will hold up to the full game of chess. The following diagram
shows two, identical state machine diagrams, one for each instance specification, that
are positioned above one another to make comparisons easier (Figure 4.25).

In order to begin a game of chess, an instance specification ‘Chess Match’
would be created, which would in turn create two instance specifications of
‘Player’. In this example, the instance specification names ‘Player 1’ and ‘Player 2’
have been chosen. Let us now imagine that a game of chess has been started and
that ‘Player 1’ is to begin. The event that will occur is ‘Begin game’, which is
present on both state machine diagrams. The ‘Initiator’ property is set to ‘Player 1’.
However, this will put both players straight into the ‘moving’ state, which will
make the game of chess impossible to play. This is because the events were named
specific to one player, rather than being generic so that they are applicable to any
player. In order to make the game work, it is necessary to rename the events so that
they are player-independent.

It is important to run through a state machine diagram (by simulation or ani-
mation, if a suitable tool is available) to check for consistency. In this case, the error
was a simple, almost trivial, misnaming of an event. However, this trivial mistake
will lead to the System failing.

waiting

moving

starting
/send Player 1
moved

[Status = Checkmate]
/Result = Player 2 win

[Status = Stalemate]
/Result = Draw

[Status = Stalemate]
/Result = Draw

Begin game [Initiator = Player 2]
[Status = Checkmate]
/Result = Player 1 win

Player 2 moved

do / move
Begin game [Initiator = Player 1]

Figure 4.24 Expanded state machine diagram showing activity

112 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

4.8.1.4 Solving the inconsistency
There are many ways to solve the inconsistency problems that were highlighted
in the previous section, two of which are presented here. The first solution is to
make the generic state machine diagram correct, while the second is to change the
block definition diagram to make the state machine diagrams correct.

Changing the state machine diagram
The first solution to the inconsistency problem that is presented here is to make the
state machine diagram more generic, so that the properties checked in guard
conditions and events now match up. The state machine diagram for this solution is
shown in Figure 4.26.

Figure 4.26 represents a correct solution to the chess model. In this diagram,
the values that are assigned to the ‘Initiator’ property of each ‘Player’ block are
now relative to each instance specification, rather than specific, so the allowed

waiting

moving

do / move

starting
/send Player 1
moved

[Status = Checkmate]
/Result = Player 2 win

[Status = Stalemate]
/Result = Draw

[Status = Stalemate]
/Result = Draw

Begin game [Initiator = Player 2]

[Status = Checkmate]
/Result = Player 1 win

Player 2 moved

Begin game [Initiator = Player 1]

Player 1: Player

waiting

moving

do / move

starting
/send Player 1
moved

[Status = Checkmate]
/Result = Player 2 win

[Status = Stalemate]
/Result = Draw

[Status = Stalemate]
/Result = Draw

Begin game [Initiator = Player 2]

[Status = Checkmate]
/Result = Player 1 win

Player 2 moved

Begin game [Initiator = Player 1]

Player 2: Player

Figure 4.25 Comparison of two state machine diagrams

Introduction to SysML and Systems Modelling 113

values are changed from ‘Player 1’ to ‘This’ and from ‘Player 2’ to ‘Other’. The
receipt events and send events on the transitions between the ‘waiting’ and ‘mov-
ing’ events have also been changed. Previously, the names were instance-specific,
being as they were, ‘Player 1 moved’ and ‘Player 2 moved’. These names have now
changed to a more-generic ‘moved’ event, which will apply equally to both
instance specifications.

This is by no means the only solution to the problem and another possible
solution is presented in the next section, where the block definition diagram is
changed to make the state machine diagram correct, rather than changing the state
machine diagram.

Changing the block definition diagram
The second solution to the consistency problem is to change the block definition
diagram rather than the state machine diagram, as shown in Figure 4.27.

Figure 4.27 shows a modified block definition diagram in which two new sub-
blocks of ‘Player’ have been added. This would mean that, rather than the block
‘Player’ being instantiated, one instance of each block ‘Player 1’ and ‘Player 2’
would be created. This has implications on the state machine diagrams as the block
definition diagram shown here would require a state machine diagram for both
‘Player 1’ and ‘Player 2’, rather than a single state machine diagram for ‘Player’.
This would also mean that the initial state machine diagram shown in Figure 4.24
would now be correct for ‘Player 1’, but that a new state machine diagram would
have to be created for the block ‘Player 2’.

Taking this idea a step further, it is also possible to make the two sub-blocks
more specific as, in the game of chess, one player always controls white pieces and
the other player only controls black pieces. This would have an impact on the block
definition diagram again, as each sub-block could now be named according to its
colour. This is shown in Figure 4.28.

starting

waiting

moving

do / moveBegin game [Initiator = This]

/send moved

[Status = Stalemate]
/Result = Draw

[Status = Checkmate]
/Result = Other win

Begin game [Initiator = Other]

moved

[Status = Checkmate]
/Result = This win

[Status = Stalemate]
/Result = Draw

Figure 4.26 New state machine diagram with correct event names

114 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Figure 4.28 shows a block definition diagram where the blocks have been
named according to colour, rather than simply ‘Player 1’ and ‘Player 2’. This has
even more impact on the state machine diagram as, in the standard rules of chess,
the white player always moves first.

«block»
Chess Match

«block»
Player

«block»
Player 1

«block»
Player 2

2

Figure 4.27 A modified block definition diagram for the chess match

«block»
Chess Match

«block»
Player

«block»
White

«block»
Black

2

Figure 4.28 Further modification of the chess block definition diagram

Introduction to SysML and Systems Modelling 115

The problem encountered with the state machine diagram serves to illustrate a
very important point that relates to the different levels of abstraction of the same
model. The chess game was modelled only at the instance level in terms of its
behaviour, which, it is entirely possible, would have resulted in the block being
implemented and even tested successfully if treated in isolation under test condi-
tions. It would only be at the final System test level that this error would have come
to light. Issues around modelling at different levels of abstraction are considered in
Section 4.10.

4.9 The relationships between behavioural diagrams
and structural level

Having introduced structural and behavioural modelling, this section discusses the
relationships between the two aspects of a SysML model. Whereas the SysML
structural diagrams can be used to model any level of a System’s structure, from
high-level Systems through to low-level components, different SysML behavioural
diagrams are typically used to model the behaviour of the System at the levels
identified in Section 4.8. This section discusses the relationship between beha-
vioural diagrams and System structural levels, considering consistency and looking
how the various SysML behavioural models relate to typical engineering activities.

Figure 4.29 shows a typical and generic structural hierarchy for a System.
There are many different types of ‘System’ that exist, ‘Natural System’ and ‘Man-
made System’ being just two examples. A ‘System’ is typically made up of one or
more ‘Subsystem’. These can themselves be further broken down into one or more
‘Assembly’ and then down into one or more ‘Component’. There is typically inter-
action between elements at each of these levels: a ‘System’ interacts with zero or
more ‘System’, a ‘Subsystem’ interacts with zero or more ‘Subsystem’ and so on.

The System hierarchy from Figure 4.29 is reproduced in Figure 4.30 which
also shows the typical SysML behavioural diagrams that are used at each level.

● At the System level it is highest level of behaviour that needs to be modelled,
that of the System itself and the interactions between the System and Stake-
holder Roles (which may, of course, themselves be other Systems). Such
behaviour is usually modelled using use case diagrams and sequence dia-
grams. Use case diagrams allow Requirements in Context to be modelled and
sequence diagrams allow Scenarios for the use cases to be developed.

● At the subsystem level it is the behaviour between System Elements that is
modelled, allowing the interfaces between subsystems to be explored from a
behavioural perspective via typical Scenarios showing how subsystems work
together to achieve some goal. The sequence diagram is most often used to
model behaviour at this level.

● At the assembly level the behaviour within an assembly is often of most
interest, allowing exploration of how assemblies respond to events and under
what circumstances they carry out their operations to be made. The state
machine diagram is typically used at this level.

116 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● At the component level it is the low level internals of a component that is of
interest. This usually equates to modelling the behaviour of the operations of a
component for which an activity diagram is used.

It is essential to remember in thinking about System hierarchies and behavioural
modelling that one person’s subsystem is another’s System (and similarly for the
other levels). This means that behavioural modelling is never as simple and clear
cut as described above. While the System developer may well model subsystem
behaviour using sequence diagrams, those subsystems may be developed by other
suppliers. For them, they will be considered as Systems and therefore modelled
using use case diagrams and sequence diagrams. Similar considerations apply
across the whole hierarchy which means that the behavioural diagrams used
depend entirely on context.

The various structural and behavioural diagrams produced as part of a System
model must be consistent with one another. Consider Figure 4.31 which contains
the same structural and behavioural diagrams as shown on Figure 4.30, but which

1..*

1..*

1..*

*

1

*

1

*

1

*

1

*

*

«block»
System

«block»
Subsystem

«block»
Assembly

«block»
Component

«block»
Natural System

«block»
Man-made System

«block»
Stakeholder Role

1..*

1..*

1..*

*

1

interacts with

*

1

interacts with

*

1

interacts with

*

1

interacts with

*

*
interacts with

{incomplete}

Figure 4.29 Typical structural hierarchy

Introduction to SysML and Systems Modelling 117

has double-headed arrows at each level between the structural and behavioural
diagrams and between the behavioural diagrams across each level.

The double-headed arrows in Figure 4.31 show the kinds of consistency that
must exist if the various SysML diagrams of a System are to give a model of the
System rather than simply being a collection of pictures.

There has to be consistency between the structural and behavioural aspects of a
System at the same level. For example, the Systems appearing as lifelines on a sequence
diagram must exist as elements on a structural diagram such as a block definition
diagram. At the component level, each operation of a component, modelled as a block,
should have its behaviour modelled using an activity diagram; conversely, each activity
diagram should correspond to the operation on a block representing a component.

Similarly, consistency between behavioural diagrams across System levels is
also essential. For example, the messages between subsystems on a sequence dia-
gram may correspond to events received by or the signals sent out by the state
machine diagram for an assembly. These same messages between subsystems may
correspond to the self-messages sent from a system’s lifeline to itself on a sequence
diagram at the system level.

:System
«block»Actor1 Actor2System

Actor1 Actor2

Use
Case1

Use Case2

«include»

:Subsystem1
«block»

:Subsystem2
«block»

:Subsystem3
«block»

seq

seq

seqseq

seq

State1

State2

Action

1..*

1..*

1..*

*

1

*

1

*

1

*

1

*

*

«block»
System

«block»
Subsystem

«block»
Assembly

«block»
Component

«block»
Natural System

«block»
Man-made System

«block»
Stakeholder Role

1..*

1..*

1..*

*

1

interacts with

*

1

interacts with

*

1

interacts with

*

1

interacts with

*

*
interacts with

{incomplete}

Figure 4.30 Relating behavioural diagrams to structural level

118 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

As well as considering behavioural diagrams with respect to the typical System
levels at which they are used and in terms of the consistency that is essential to
ensure the diagrams give a model of the System, it is also possible to consider them
in terms of engineering activity. See Figure 4.32.

The structural and behavioural diagrams seen on Figures 4.30 and 4.31 are
shown in Figure 4.32 but this time with boxes indicating the type of engineering
activity in which they are often used. There are four types of engineering activity
shown on the diagram:

● Requirements engineering, in which the main System Elements are identified
along with their Requirements and validating Scenarios. In order to fully under-
stand the System-level Requirements, it may be necessary to consider the structural
aspects of the System at the next level of decomposition, namely that of the sub-
system. The behavioural aspects at the subsystem level would also be investigated.

● System design, in which the main subsystems that make up the System are
modelled structurally and behaviourally. The subsystems may be broken down
into assemblies, with the behaviour within each assembly modelled so that the

:System
«block»Actor1 Actor2System

Actor1 Actor2

Use
Case1

Use Case2

«include»

:Subsystem1
«block»

:Subsystem2
«block»

:Subsystem3
«block»

State1

State2

Action

1..*

1..*

1..*

*

1

*

1

*

1

*

1

*

*

«block»
System

«block»
Subsystem

«block»
Assembly

«block»
Component

«block»
Natural System

«block»
Man-made System

«block»
Stakeholder Role

1..*

1..*

1..*

*

1

interacts with

*

1

interacts with

*

1

interacts with

*

1

interacts with

*

*
interacts with

{incomplete}

Figure 4.31 Structural and behavioural consistency

Introduction to SysML and Systems Modelling 119

events that govern an assembly’s behaviour and its response to such events can
be explored.

● Implementation, in which the low-level assemblies and components are mod-
elled. The internal behaviour of assemblies is captured as is the low-level
behaviour of component operations, allowing the flow and manipulation of
information and data within operations to be modelled.

● Reverse engineering, in which the System is often investigated from the bot-
tom up, starting with the lowest level components of the System and modelling
their structure and low-level behaviour. This can then be used to begin
abstracting up through the higher levels of the System hierarchy to allow
assemblies, subsystems and entire Systems to be reverse engineered.

As well as considering the relationships between behavioural diagrams and the
structural level of the System, it is also important to consider how complexity can
manifest itself at different levels of abstraction. This is discussed in the following
section.

1..*

1..*

1..*

*

1

*

1

*

1

*

1

*

*

«block»
System

«block»
Subsystem

«block»
Assembly

«block»
Component

«block»
Natural System

«block»
Man-made System

«block»
Stakeholder Role

1..*

1..*

1..*

*

1

interacts with

*

1

interacts with

*

1

interacts with

*

1

interacts with

*

*
interacts with

{incomplete}

:System
«block»Actor1 Actor2System

Actor1 Actor2

Use
Case1

Use Case2

«include»

:Subsystem1
«block»

:Subsystem2
«block»

:Subsystem3
«block»

State1

State2

Action

Implementation

Requirements analysis

Reverse engineering

System design

Figure 4.32 Typical behavioural diagram usage by engineering activity

120 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

4.10 Identifying complexity through levels of abstraction

Having introduced structural and behavioural modelling, this section discusses one
of the important themes that run through the book, namely complexity.

Complexity is one of the three evils of engineering and is one of the funda-
mental reasons why we need to model, as discussed in Section 4.4.3. In this section,
two Systems will be compared in terms of their complexity, which will be identi-
fied by looking at the System from different levels of abstraction using different
SysML diagrams. As you have not yet been introduced to many of these diagrams,
the intention here is not to discuss the syntax and semantics of the diagrams (that
will be discussed in Chapter 5). Rather the diagrams are introduced in order to
discuss levels of abstraction and the modelling issues that arise from this example.

4.10.1 The systems
Imagine a situation where you are put in charge of developing two Systems, neither
of which you have any domain knowledge of and so you have to rely on descrip-
tions of each System to gain an understanding of them. This is a prime application
for modelling – there is a lack of understanding about the two Systems, there is no
indication of how complex each is and this information will need to be commu-
nicated to the Project teams.

The two Systems that have been chosen to illustrate how modelling can be
used to help understand the complexity of Systems and to show where the com-
plexity manifests itself have been taken from the domain of board games: chess and
Monopoly. If you are not familiar with these games, then so much the better. If you
are, then try to think about them as completely unfamiliar Systems.

Before beginning to model these two Systems, ask yourself a simple question –
which is the more complex, chess or Monopoly? Take a moment to consider this
before reading on.

4.10.2 Structural view
Often when confronted with new systems the first, and normally the easiest, aspect
of the System to model is the structural aspect. This is often done using block
definition diagrams and the diagram in Figure 4.33 shows two simple block defi-
nition diagrams representing each of the two Systems.

Having modelled the structural aspect of each system, the block definition
diagrams can be used to help answer the question of which of the two is more
complex.

The two Systems have a lot in common, as can be shown by the identical pattern
in each System’s block definition diagram – each game is made up of a number of
‘Player’. In terms of complexity, at least as far as can be identified from this structural
model, there is really not much to choose between the two. If forced to choose one,
then ‘Monopoly’ could be considered more complex than ‘Chess’, as it has a higher
multiplicity on the block ‘Player’ (more players in the game) and it has four opera-
tions compared to one in ‘Chess’ (more things that can be done in the game).

Introduction to SysML and Systems Modelling 121

Is this sufficient to conclude that ‘Monopoly’ is more complex than ‘Chess’? Since
we have only considered the structural aspect of each system the answer has to be no.
Further modelling of each system is needed, but this time the behavioural aspects of the
systems need to be captured. As each of the ‘Player’ blocks has at least one operation,
a state machine diagram could be used to start the behavioural modelling.

4.10.3 Behavioural views
Simple state machine diagrams for ‘Chess’ and ‘Monopoly’ have been created and
are shown in Figure 4.34. The complexity of the two Systems will now be con-
sidered by comparing these two state machine diagrams.

bdd [package] Chess & Monopoly [Structure of Chess]

«block»
Chess Match

«block»
Player

move()

2

bdd [package] Chess & Monopoly [Structure of Monopoly]

«block»
Monopoly

«block»
Player

roll()
move()
buy()
pay()

2..6

Figure 4.33 Comparing complexity – block definition diagrams

stm [StateMachine] Monopoly Game [Monopoly]

rolling

moving

buying

paying

stm [StateMachine] Chess Game [Chess]

waiting

moving

Figure 4.34 Comparing complexity – state machine diagrams

122 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

A direct comparison of the two state machine diagrams in Figure 4.34 again seems
to suggest that ‘Monopoly’ is more complex than ‘Chess’ as there are more states in the
state machine diagram for ‘Monopoly’, reflecting the number of different things that a
player can do in a game of ‘Monopoly’ (rolling, moving, buying and paying).

However, ‘Monopoly’ only has two more states than ‘Chess’ and both dia-
grams have the same number of transitions between states. So, once more, deciding
which game is the more complex is not an easy decision to make.

Further behavioural modelling is needed. This time the behaviour will be
modelled at a higher level of abstraction than the state machine diagram using the
sequence diagram (Figure 4.35).

The sequence diagram in Figure 4.37 shows a higher level of behaviour for
both the ‘Chess’ and ‘Monopoly’ examples and shows a typical playing Scenario
for each of the two games.

In the Scenario shown, ‘Chess’ still appears to be the more simple of the two –
there is only one interaction going each way between the two ‘Player’ lifelines,
resulting in a total of two interactions. A lifeline represents an individual participant
in an interaction and will be discussed further in Chapter 5. For now, you can think
of a lifeline as showing the behaviour of an instance specification through time.

In the case of ‘Monopoly’, there are more interactions on the diagram. Each
‘Player’ passes the control of the game onto the next player, which results in a
single interaction between each subsequent lifeline. Also, any ‘Player’ can pay

seq [package] Chess & Monopoly [Simple Scenario]

Player 1: Player Player 2: Player Player 3: Player

paid()

moved()

paid()

moved()

moved()

paid()

paid()

paid()

paid()

seq [package] Chess & Monopoly [Simple Scenario]

Player 1: Player Player 2: Player

moved()

moved()

Figure 4.35 Comparing complexity – sequence diagrams

Introduction to SysML and Systems Modelling 123

money to any other ’Player’, which results in an extra six interactions for this
Scenario with three players, and an extra thirty interactions in the Scenario with six
players!

When comparing these two diagrams, it is clear that the ‘Monopoly’ diagram
is the more complex of the two and it would be reasonable to assume that
‘Monopoly’ is a more complex game than ‘Chess’. However, there is one final
diagram that we can use to model the games at their lowest level of abstraction, the
activity diagram.

The diagrams in Figure 4.36 show the lowest level of abstraction for both
examples using activity diagrams.

In the case of ‘Chess’, a single activity diagram is used to describe the beha-
viour of the single operation from the block definition diagram, that of ‘move’.
Bearing in mind that the ‘move’ activity describes all the planning, strategies
and movement of the chess pieces, this would result in a very complex diagram
indeed – represented in the diagram by a tangled mess.

In the case of ‘Monopoly’, there are more activity diagrams needed (four in
total, one for each operation – only two are shown here) but each activity diagram
is so simple as to be almost trivial.

The diagram in Figure 4.37 shows each of the three behavioural diagrams for
each example alongside one another so that they can be compared directly.

act [activity] Chess Match [Behaviour of move()] act [activity] Monopoly [Behaviour of roll() & move()]

pick up dice

roll dice

read number

pick up
counter

move to new
square

go to jail

Figure 4.36 Comparing complexity – activity diagrams

124 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

act [activity] Chess Match [Behaviour of move()] act [activity] Monopoly [Behaviour of roll() & move()]

pick up dice

roll dice

read number

pick up
counter

move to new
square

go to jail

seq [package] Chess & Monopoly [Simple Scenario]

Player 1: Player Player 2: Player Player 3: Player

paid()

moved()

paid()

moved()

moved()

paid()

paid()

paid()

paid()

seq [package] Chess & Monopoly [Simple Scenario]

Player 1: Player Player 2: Player

moved()

moved()

stm [StateMachine] Monopoly Game [Monopoly]

rolling

moving

buying

paying

stm [StateMachine] Chess Game [Chess]

waiting

moving

Figure 4.37 Summary of diagrams to assess complexity

Introduction to SysML and Systems Modelling 125

The diagram in Figure 4.37 shows all the behavioural diagrams that have been
produced for the two games. In summary, the following conclusions were drawn:

● When comparing the original block definition diagrams, there was not much to
choose between the two, but ‘Monopoly’ was slightly more complex than ‘Chess’.

● When comparing the state machine diagrams, again there was not much to
choose between the two, but once again the state machine diagram for
‘Monopoly’ was deemed to be more complex than the one for ‘Chess’.

At this stage, there is nothing to really distinguish between the two games. In each
diagram ‘Monopoly’ was deemed slightly more complex than ‘Chess’, but only
marginally so. It is interesting to see how things change quite dramatically when the
Systems are looked at from higher and lower levels of abstraction.

● When looking at the higher level of abstraction, using the sequence diagram,
it was very clear that ‘Monopoly’ was far more complex than ‘Chess’.

● When looking at the lowest level of abstraction using the activity diagram, it
was very clear that ‘Chess’ was far more complex than ‘Monopoly’. Indeed,
the activity diagram for the ‘move’ operation for ‘Chess’ was so complex that
it couldn’t be drawn easily.

There are a number of conclusions that may be drawn at this point concerning not
just complexity, but also general modelling:

● The complexity of the Systems manifested itself at different levels of
abstraction. In the case of ‘Chess’, the complexity manifested itself at the
lower levels of abstraction, whereas in the ‘Monopoly’ System, complexity
abounded at the higher levels. This actually makes nonsense of the question of
which is the more complex System. Neither is ‘‘more’’ complex as such, but in
each System the complexity manifested itself at different levels of abstraction.

● If any of these views was taken individually and compared, there is no way
whatsoever that any realistic comparison could be made between the two
Systems. For example, just comparing block definition diagrams gives no real
insight into each System. This may seem obvious, but many people will con-
struct a block definition diagram and then state that this is the model of their
System. To understand any System and to create a useful model, both the
structural and behavioural aspects of the model must be looked at.

● Even when both the structural and behavioural aspects of the model are realised, it
is essential to look at the model at different levels of abstraction for the System to
be understood, since the complexity may manifest itself at any level and by not
looking at a System at all levels of abstraction the complexity may be missed.

● It is also possible that the complexity of the System changes depending on
the point of view of the stakeholder. For example, imagine a passenger train
System, and imagine it now from two different stakeholders’ points of view –
the engineers involved in train development and the signalling engineers. The
train development engineers may view the System in a similar way to the chess
System, in that the complexity occurs at a low level of abstraction, as

126 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

individual trains are very complex machines. The signalling engineers may
view the same System in a similar way to the Monopoly system, in that each
train is viewed as a simple System, as a train is a machine that goes backwards
or forwards along the rails. However, stopping these simple machines from
colliding and making them run on time is a very complex undertaking.

It is essential when modelling, therefore, to look at both the structural and behavioural
aspects of the System and to look at the System at different levels of abstraction.
In this way, areas of complexity may be identified and hence managed. It is also
important to look at the System in different ways and from different stakeholders’
points of view, which helps to keep the connection to reality for all stakeholders.

4.11 Chapter summary

This chapter has discussed the important question of why we model, considering
the question in the light of the three evils of engineering: complexity, lack of
understanding and communication. We model, that is we build a simplification of
reality, in order to help us address these evils and the SysML gives us a general-
purpose modelling language that allows us to do so in a way that addresses the key
Requirements for any modelling language:

● The choice of model
● The level of abstraction
● Connection to reality
● Independent views of the same System

These Requirements have been discussed in this chapter, enabling the key issues of
modelling to be considered before introducing the SysML language. Some of its
history and the motivation behind the language have been given, along with a brief
overview of the diagrams that make up the SysML. The two key aspects of any
SysML model, namely structure and behaviour, have been discussed in some detail
through a discussion of two of the SysML diagrams, the block definition diagram and
the state machine diagram. The relationships between the behavioural diagrams and
their use at different levels of System hierarchy were discussed. Finally, the chapter
considered the identification of System complexity as it relates to levels of abstraction
of a System’s behaviour.

In Chapter 5, each of the nine SysML diagrams will be described in detail.
Following this, Chapter 6 presents a number of diagramming guidelines that are
intended to aid in the production of SysML models that have a consistent pre-
sentation style.

References

[1] Booch G., Rumbaugh J., and Jacobson I. The Unified Modeling Language
User Guide. 2nd edition. Boston, MA: Addison-Wesley; 2005.

Introduction to SysML and Systems Modelling 127

[2] Elk A. The Brontosaurus Sketch. Monty Python’s Flying Circus. London, UK:
BBC TV; 1974.

[3] Pressman R. Software Engineering: A Practitioner’s Approach: European
Adaptation. Maidenhead, UK: McGraw-Hill Publications; 2000.

[4] Brookes F.P. The Mythical Man-month. Boston, MA: Addison-Wesley; 1995.
[5] Object Management Group. What Is OMG SysML?.; 2012. [ONLINE] Avail-

able at: http://www.omgsysml.org. [Last Accessed January 2018].
[6] Miller G.A. ‘The magical number seven, plus or minus two: Some limits on our

capacity for processing information’. Psychological Review. 1956;63:81–97.
[7] Holt J. UML for Systems Engineering – Watching the Wheels. 2nd edition.

Stevenage, UK: IET Publishing, 2004.

128 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Chapter 5

The SysML Notation

5.1 Introduction

This chapter describes the nine SysML diagrams. Following this introduction, the
terminology used throughout the chapter is explained and the structure of SysML
diagrams is discussed. This is followed by a discussion of stereotypes and then of
the SysML meta-model, which forms the basis of this chapter. Following this, each
of the nine diagrams is described in turn. For each diagram type there is a brief
introduction, a discussion of the diagram elements through its meta-model and
notation, examples of how to use the diagram and a summary.

5.1.1 Diagram ordering
So far, we have looked at two of the diagrams in some detail when block definition
diagrams and state machine diagrams were used to illustrate structural and beha-
vioural modelling in Chapter 4; these diagrams are shown again in this chapter for
the sake of completeness and also to introduce the meta-model using diagrams that
are already well known.

The chapter first covers the structural diagrams and then the behavioural
diagrams. Within these groupings there is no significance in the ordering of the
diagrams. They are simply presented in, what is from the author’s point of view,
a logical order. Therefore, the various parts of this chapter may be read in any order.

5.1.2 The worked example
When discussing each of the SysML diagrams in the sections that follow, they will be
discussed using an example System taken from the world of escapology. The System
consists of an escapologist who is placed in a rectangular coffin, which is then placed
into a hole. Concrete is pumped into the hole, under computer control, until the hole is
full. The escapologist has to escape from the coffin and the concrete-filled hole before
his breath runs out. Figure 5.1 shows the set-up for the escape.

This is a classic escapology stunt that has been performed by many people.
It is also a dangerous one, and escapologists have lost their lives performing it
because the System Requirements and constraints were not properly understood or
evaluated. One such performer was Joe Burrus who died 30 October 1990 when
the weight of the concrete crushed the coffin he was in. This example is a

socio-technical System that includes hardware, software, People and Process. It
lends itself readily to the use of all of the SysML diagrams. What is more, it is not
an example based around a library, an ATM or a petrol pump. The literature is
already too full of such examples.

5.2 The structure of SysML diagrams

Each diagram in the SysML has the same underlying structure, which is intended to
provide a similar appearance for each, as well as making cross-referencing between
diagrams simpler. The structure of each diagram is shown in Figure 5.2.

Figure 5.1 The Coffin Escape stunt

«stereotype»
graphic path

«stereotype»
diagram

«stereotype»
graphic node

1

relates together

1..2

1..*1..*

Figure 5.2 Structure of each SysML diagram

130 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 5.2 shows that each ‘diagram’ is made up of one or
more ‘graphic node’ and one or more ‘graphic path’. Each ‘graphic path’ relates
together one or two ‘graphic node’. Examples of graphic nodes include blocks on
block definition diagrams and states on state machine diagrams. Examples of
graphic paths include: relationships on block definition diagrams and control flows
on activity diagrams.

The text ‘«stereotype»’ on the blocks is an example of . . . a stereotype. Ste-
reotypes are a mechanism by which the SysML can be extended. Indeed, the
SysML itself is defined using stereotypes on the underlying Unified Modelling
Language (UML). Stereotypes are discussed in Section 5.3.

5.2.1 Frames
Any SysML diagram must have a graphic node known as a frame that encapsulates
the diagram in order to make identification of, and navigation between, diagrams
simpler. Frames have a defined format. This format, along with other guidelines for
the use of frames, is described in detail in Chapter 6. Examples of frames will be
seen around all the diagrams in the Examples subsections for each of the SysML
diagrams in the following sections.

5.3 Stereotypes

Stereotypes provide a way to extend the SysML. They represent a powerful way to
define new SysML elements by tailoring the SysML to your needs.

In order to use stereotypes effectively, it is first necessary to be able to spot one
within a model. Visually, this is very simple, as stereotypes are indicated by
enclosing the name of the stereotype within a set of double chevrons. Indeed, the
SysML block itself contains the «block» stereotype.

Figure 5.3 shows two example stereotypes: «testCase» applied to a block (here
representing a Scenario) and «validate» applied to a dependency. A dependency,
represented by a dashed line with an open arrowhead, can be considered to be the
weakest of the SysML relationships since it simply shows that there is some kind
of (usually) unspecified relationship between the connected diagram elements.
Dependencies are not named and cannot have any multiplicities associated with
them. SysML makes use of a number of stereotyped dependencies, particularly in

«testCase»
[Package] Scenarios [Failed

Stunt - Emergency]
Minimise risk to

escapologist«validate»

Figure 5.3 Example stereotypes

The SysML Notation 131

the requirement diagram and use case diagram, as described in Sections 5.5.5 and
5.5.9. In Figure 5.3, a new stereotype is used, one not found in the standard SysML,
in order to show that a test case validates a use case. Note that «testCase» is a
SysML stereotype and that the camel case naming is part of the SysML.

Stereotypes can be defined for any of the standard SysML elements. Unfortu-
nately, the method by which stereotypes are defined varies from SysML tool to
tool. However, a common diagrammatic method of defining a stereotype, found in
many tools, is shown in Figure 5.4.

The diagram in Figure 5.4 shows the definition of the «validate» stereotype.
The diagram shows two blocks, ‘Dependency’ and ‘validate’, which are related
together by a special type of specialisation/generalisation known as an extension.
An extension is used specifically when defining stereotypes. An extension is
represented graphically by a filled-in triangle – very similar to the specialisation/
generalisation symbol.

The new stereotype to be defined, in this case ‘validate’, is shown in a block,
which is itself stereotyped «stereotype». The SysML element that is being stereo-
typed, in this case a dependency, is shown in a block containing the «metaclass»
stereotype. The two blocks are then connected with an extension relationship. This
shows that the «validate» stereotype can be applied to a dependency and, as defined
in Figure 5.4, only a dependency. In addition to the graphical definition, it is con-
sidered good modelling practice to provide a textual description of the stereotype
that describes its intended use.

The diagram in Figure 5.4 can be generalised to give a rubber stamp version
that forms the basis of the definition of any stereotype. Such a diagram is given in
Figure 5.5.

«stereotype»
validate

«metaclass»
Dependency

Figure 5.4 Defining a stereotype

132 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

To use this diagram simply replace the indicated text. For example, if a mod-
eller wanted to be able to apply the stereotype «ethernet» to an association on a
block definition diagram, then start with Figure 5.5 and simply replace ‘[insert
stereotype name]’ with ‘ethernet’ and ‘[insert model element]’ with ‘Association’,
giving the diagram as shown in Figure 5.6.

When defining stereotypes, SysML also allows information to be associated
with the stereotype. These properties are known as tags and they are defined as
properties of the stereotype block. An example is given in Figure 5.7.

«stereotype»
[insert stereotype name]

«metaclass»
[insert model element]

Figure 5.5 ‘‘Rubber stamp’’ diagram for stereotype definition

«stereotype»
ethernet

«metaclass»
Association

Figure 5.6 Another example of stereotype definition

The SysML Notation 133

The «ethernet» stereotype in Figure 5.7 has been extended through the defi-
nition of the ‘media type’ tag, intended to be used to show the type of ethernet
being used. When the «ethernet» stereotype is applied to an association then a
value can be given to any tags defined for that stereotype. These tags are then
shown in a comment, as in the example in Figure 5.8.

Note that not all SysML tools show tags in this way. For example, some tools
show tags along with the stereotype as in Figure 5.9.

«stereotype»
ethernet

media type: String

«metaclass»
Association

Figure 5.7 Stereotype with tag definition

«block»
Computer

«block»
Router

«ethernet» Tags:
media type = 100BASE-TX

1

«ethernet»

1

Figure 5.8 Example of stereotype usage with tags shown in comment

«block»
Router

«block»
Computer

{media type = 100BASE-TX}1

«ethernet»

1

Figure 5.9 Example of stereotype usage with tags shown as part of stereotype

134 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Each tag is shown with its value on a separate line underneath the stereotype.
It is enclosed in curly braces. If a stereotype has multiple tags, then each will be
displayed on a separate line.

5.4 The SysML meta-model

The SysML specification defines SysML in terms of the underlying UML on which
SysML is based and is done so using UML via the SysML meta-model. This is a
model, in UML, of the SysML.

This chapter presents a partial meta-model for each of the nine SysML diagrams.
In keeping with the use of UML in the SysML specification, UML class diagrams
have been used to produce the SysML meta-model diagram throughout this chapter.
These diagrams are the same as would be produced if using SysML block definition
diagrams and therefore can be read as SysML block definition diagrams. Thus, it
would be possible to model the SysML using the SysML if desired.

The SysML meta-model itself is concerned with the modelling elements within
the SysML, how they are constructed and how they relate to one another. The full
UML meta-model on which SysML is based is highly complex and, to someone
without much SysML (or UML) experience, can be quite impenetrable. The meta-
models presented in this book show highly simplified versions of the actual meta-
model in order to aid communication and to group different aspects of the model
according to each diagram – something that is not done in the actual meta-model.

5.5 The SysML diagrams

This section describes each of the nine SysML diagrams, beginning with the five
structural diagrams and concluding with the four behavioural diagrams.

5.5.1 Block definition diagrams
This section introduces what is perhaps the most widely used of the nine SysML
diagrams: the block definition diagram. The block definition diagram was intro-
duced in Chapter 4 in order to illustrate structural modelling and this section
expands upon that information, covering more of the syntax and showing a wider
range of examples, which are all taken from the escapology example that runs
throughout this chapter.

Block definition diagrams realise a structural aspect of the model of a System
and show what conceptual things exist in a System and what relationships exist
between them. The things in a System are represented by blocks and their rela-
tionships are represented, unsurprisingly, by relationships.

5.5.1.1 Diagram elements
Block definition diagrams are made up of two basic elements: blocks and rela-
tionships. Both blocks and relationships may have various types and have more
detailed syntax that may be used to add more information about them. However, at

The SysML Notation 135

the highest level of abstraction, there are just the two very simple elements that
must exist in the diagram. A block definition diagram may also contain different
kinds of ports and interfaces, together with item flows, but at their simplest will just
contain blocks and relationships.

Blocks describe the types of things that exist in a System, whereas relation-
ships describe what the relationships are between various blocks.

Figure 5.10 shows a high-level meta-model of block definition diagrams.

From Figure 5.10 we can see that a ‘Block Definition Diagram’ is made up of
one or more ‘Block’, zero or more ‘Relationship’, zero or more ‘Port’, zero or more
‘Item Flow’ and zero or more ‘Interface Specification’.

Each ‘Relationship’ relates together one or two ‘Block’. Note that the multiplicity
on the ‘Block’ side of the association is one or two, as it is possible for a ‘Relation-
ship’ to relate together one ‘Block’ – that is to say that a ‘Block’ may be related to
itself. A special kind of block is the ‘Interface Block’, used specifically to define
Interfaces. An ‘Instance Specification’ defines an instance (real-world examples) of a
‘Block’. Many such instance specifications may be defined for a ‘Block’.

«graphic node»
Block

«diagram»
Block Definition

Diagram

Property

«graphic path»
Relationship

«graphic node»
Instance Specification

«graphic node»
Interface Block

«graphic node»
Proxy Port

«graphic node»
Port

«graphic node»
Full Port

«graphic path»
Item Flow

Flow Property

1

relates together

1..2

0..*

is typed by

1

0..*

0..*

flows between

0..*

0..*

1..*

1..*

defines instance of

11

has interaction points defined by

0..*

0..*

0..*

is nested with

1

0..*

0..*

1

conveys
1

0..*

is typed by

1

0..*

is typed by

1

Figure 5.10 Partial meta-model for the block definition diagram

136 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

A ‘Block’ has interaction points defined by zero or more ‘Port’. Each ‘Port’ is
typed by a ‘Block’ and can be nested with zero or more other ‘Port’. A ‘Port’ can be
specialised further through two main sub-types:

● ‘Full Port’, used to represent an interaction point that is a separate element of
the model. That is, a full port can have its own internal parts and behaviour.

● ‘Proxy Port’, used to represent an interaction point that identifies features of
its owning block that are available to other, external blocks. They are not a
separate element of the model and therefore do not specify their own internal
parts and behaviour. Any such features and behaviour that they make available
are actually those of its owning block. A ‘Proxy Port’ only be typed by an
‘Interface Block’.

Neither full ports nor proxy ports have to be used. If it is unclear, when modelling,
whether a port needs to be a full port or a proxy port, then leave it as a plain port. The
decision whether to change to a full or proxy port can be made later as the model evolves.

Used in conjunction with the ‘Port’ is the ‘Item Flow’, which flows between
two ‘Port’ and which conveys a ‘Flow Property’, a type of ‘Property’ of a ‘Block’
that is described below.

Each ‘Block’ is made up of zero or more ‘Property’, zero or more ‘Operation’
and zero or more ‘Constraint’ as shown in Figure 5.11.

The diagram in Figure 5.11 shows the partial meta-model for block definition
diagrams showing the elements of a block. There are four types of ‘Property’:

● ‘Part Property’, which is owned by the ‘Block’. That is, a property that is intrinsic
to the block but which will have its own identity. A part property can be wholly
owned by its parent block or may be shared between multiple parent blocks.

● ‘Reference Property’, which is referenced by the ‘Block’, but not owned by it.
● ‘Value Property’, which represents a ‘Property’ that cannot be identified

except by the value itself, for example numbers or colours.
● ‘Flow Property’, which defines elements that that can flow to or from (or both)

a block. They are mainly used to define the elements that can flow in and out of
ports and all item flows that flow between ports are typed by flow properties.

Both an ‘Operation’ and a ‘Property’ (with the exception of a ‘Flow Property’) can be
marked as being a ‘Feature’. A feature is a property or operation that a block supports
for other blocks to use (a ‘Provided Feature’) or which it requires other blocks to support
for its own use (a ‘Required Feature’), or both (a ‘Provide & Required Feature’).

The differences between the first three types of property can be confusing.
An example will help and is illustrated in Figure 5.12.

The block definition diagram in Figure 5.12(a) models the structure of the
Coffin Escape stunt and the reader is directed to Figure 5.14 for a description of the
notation. The diagram shows that the ‘Coffin Stunt’ is composed of a ‘Reservoir’,
a ‘Coffin’, a ‘Pump’, a ‘Hole’, a Pump Controller’, a ‘Fluid’ and an ‘Escapologist’.
The ‘Fluid’ has a ‘Density’, which will be represented as ‘kg/m3’ (representing
kilograms per cubic metre). The ‘Fluid’ is pumped into the ‘Hole’ via the ‘Pump’

The SysML Notation 137

and is supplied from the ‘Reservoir’. Note the use of role names at the ends of the
composition and association relationships.

The ‘Density’ is simply a number – it does not have any individual identity –
and is therefore treated as a value property.

The ‘Reservoir’, ‘Coffin’, ‘Pump’, etc. are all intrinsic parts of the ‘Coffin
Escape’. That is, they can be thought of as having their own identity but form ele-
ments of the ‘Coffin Escape’. Therefore, they are modelled as part properties, which
is shown using composition. If a part can be an element of more than one owning
block at the same time, then aggregation would be used rather than composition.

The ‘Fluid’ is not part of the ‘Hole’ or the ‘Reservoir’. It is pumped into the former
and supplied by the latter. It has its own identity. For this reason, it is related to ‘Hole’
and to ‘Reservoir’ through associations. Any block related to another through an
association can be considered to be a reference property of the block it is related to.

The nature of such relationships and the types of property they represent can
be seen clearly in the block definition diagram in Figure 5.12(b). This shows
exactly the same information but in a different format that uses named property

«graphic node»
Block

OperationProperty Constraint

Part Property Reference Property

Value Property Flow Property

Feature

Provided Feature

Required Feature

Provided &
Required Feature

{NOT Flow Property}

0..*

1..*
may be marked as

1

0..*

1..* may be
marked as

1

0..*

Figure 5.11 Partial meta-model for the block definition diagram showing
block elements

138 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

(a)

(b)

bdd [package] System [System Elements Showing Fluid Relationships]

«block»
Coffin Escape

«block»
Hole

«block»
Coffin

«block»
Pump

«block»
Pump Controller

«block»
Escapologist

«block»
Reservoir

«block»
Fluid

values
 Density : kg/m^3

Fluid 1

Coffin 1 Controller 1

Reservoir 1

1

is pumped into

FluidDestination 1

1is supplied from

FluidSource 1

Escapologist 1

Pump 1

Hole 1

bdd [package] System [Coffin Escape and Fluid - Showing Parent and Reference Properties]

«block»
Coffin Escape

parts
 Coffin : Coffin[1]
 Controller : Pump Controller[1]
 Escapologist : Escapologist[1]
 Fluid : Fluid[1]
 Hole : Hole[1]
 Pump : Pump[1]
 Reservoir : Reservoir[1]

«block»
Fluid

values
 Density : kg/m^3

references
FluidDestination : Hole
FluidSource : Reservoir

Figure 5.12 Types of property – alternative representations

The SysML Notation 139

compartments rather than via graphical paths and nodes. This shows how the var-
ious graphical representations can be rendered into a textual format. There are three
things to note. First, the role names on the relationships are used to name the
properties when displayed in property compartments. Second, because the com-
position relationships are omitted, there is nowhere to show multiplicities and so
these are shown following the properties in square brackets, thus ‘[1]’. Third, in the
case of reference properties, the association name (‘is supplied from’ or ‘is pumped
into’ in the example above) does not form part of the information in the property
compartment, which is a loss of information. The property compartment notation is
more compact than the full composition and association notation, although perhaps
not as clear; useful perhaps when producing summary diagrams.

Continuing our breakdown of the meta-model for the block definition diagram,
there are three main types of ‘Relationship’ as shown in Figure 5.13:

● ‘Association’, which defines a simple relationship between one or more blocks.
There are also two specialisations of ‘Association’ known as ‘Aggregation’ and
‘Composition’, which show shared parts and owned parts, respectively, as
discussed earlier in this section.

● ‘Generalisation’, which shows a ‘has types’ relationship that is used to show
parent and child blocks.

«graphic path»
Relationship

«graphic path»
Association

«graphic path»
Dependency

«graphic path»
Generalization

«graphic path»
Aggregation

«graphic path»
Composition

Figure 5.13 Partial meta-model for the block definition diagram showing types
of relationship

140 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● ‘Dependency’, which is used to show that one block (often referred to as the
client) somehow depends on another block (often referred to as the supplier)
such that a change to the supplier may impact the client. ‘Dependency’ can be
considered to be the weakest of the relationships since it simply shows that there
is some kind of (usually) unspecified relationship between the connected blocks.

A summary of the notation used in the block definition diagram is shown in Figure 5.14.

«block»
INVISIBLE BLOCK

«block»
Block2

references
 RoleName1 : Block3[1..*]

values
 ̂ BlockProperty1 : Real

«block»
Block1

«block»
Block3

parts
 RoleName2 : Block5[0..*]

Block

Specialisation /
generalisation

«block»
Block4

prov Operation1()

flow properties
 out FlowProperty2 : Real
 in FlowProperty1 : Real

«block»
Block5

values
 BlockProperty1 : Real

«block»
Block8

owned behaviours
«activity» MyActivity

Dependency

Aggregation

Composition

Block with value
property

«block»
Block7

Association
block

Block with
provided operation
and flow
properties

Block with reference
property and inherited
property

Block with part
properties.

«interfaceBlock»
Interface

Operation1(): Real
Operation2(): Block7

Interface block

«block»
Block9

Interface

Interface

«block»
Block11

Port1: Block4

Port2: Block3

«block»
Block6

Port: Block11

Port1: Block4

Port2: Block3

Block with port containing
two nested ports

Port with flow
properties

Provided
interface

Required
interface

«block»
Block12Port2: ~Block4

Conjugated port

Item flows
flowing across
connector

Object1: Block5 Instance
specification

Association showing
role name

 classifier behaviours
«stateMachine» MyStateMachine

Block with owned and
classifier behaviours

«block» Block8

«ValueType» Real

RoleName2 0..*

0..1

1
is associated

with

RoleName1

1..*

1

1

Figure 5.14 Summary of block definition diagram notation

The SysML Notation 141

The diagram in Figure 5.14 shows the graphical symbols used to represent
elements in a block definition diagram. The basic symbol is the block, which is
represented by a rectangle. Rectangles are also used to show other types of element
in the SysML, so it is important to be able to differentiate between a block rectangle
and any other sort of rectangle. A block rectangle will simply contain a single
name, with no colons. It will also contain the stereotype «block».

When properties, operations and constraints are present, these are shown in
compartments drawn underneath the block name, with the properties, operations
and constraints contained within. Each of these compartments will be labelled to
show what they contain, and the property compartments will be further sub-divided
to show part, reference, value and flow properties. Note, however, that not all tools
are consistent with their naming approach (even though they should be). For
example, the tool used to draw Figure 5.14 fails to label the operations compart-
ment even though it names all the others.

SysML version 1.4 introduced two additional compartments that can be shown, as
can be seen on block ‘Block6’. These are the owned behaviours and classifier beha-
viours compartments. The owned behaviours compartment lists behaviours, such as
activities (see Section 5.8), that describe an aspect of the block’s behaviour and which
are owned by the block. The classifier behaviours compartment lists behaviours that
describe the behaviour of the entire block, such as a state machine (see Section 5.6).

SysML version 1.4 also introduced a small piece of notation that helps in
highlighting inheritance. If you look carefully at ‘Block2’, which has a speciali-
sation/generalisation relationship with ‘Block5’, you will see that it explicitly
shows the inherited value property ‘BlockProperty1’ in its own values compart-
ment. The caret (^) prefixing the property name explicitly shows that this is an
inherited property. The same notation can be used with inherited operations.

Any properties or operations that are features are prefixed as shown in Table 5.1.

Flow properties have their direction indicated with prefixes as shown in Table 5.2.

Table 5.1 Prefixes used with features

Type of feature Prefix

Required reqd
Provided prov
Provided & Required provreqd

Table 5.2 Prefixes used with flow properties

Direction of flow property Prefix

In in
Out out
In & out inout

142 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The interfaces are defined using special blocks that are stereotyped «interface»
and which usually only have operations, but no properties. The operations repre-
sent the services provided by a block (or port) that has that interface as a provided
interface, or the services required by a block (or port) that has it as a required
interface. Provided and required interfaces can be shown graphically using a ball
or cup notation respectively, labelled with the name of the interface and attached to
the block or port. See for example ‘Block9’ in Figure 5.14.

Ports are shown as small squares (or rectangles) straddling the edge of the
block. They can be labelled to give the port a name and to identify the block that
types the port. For example, in Figure 5.14 ‘Block11’ has a port with the name
‘Port1’, which is typed by ‘Block4’. Full and proxy ports are indicated by placing
the «full» or «proxy» stereotype next to the port.

Ports that have flow properties contain a small arrow showing the direction of
the flow (whether into the port, out of the port, or both). See ‘Port1’ on ‘Block11’
in Figure 5.14 for an example of a port with flow properties that go both into and
out of the port.

If a port has some flow properties that flow in and some that flow out, then
when connected to another port it is necessary to show that these flows need to be
shown in the opposite direction. For example, look again at ‘Port1’ on ‘Block11’.
This port is typed by ‘Block4’, which has two flow properties: ‘FlowProperty1’
flows in and ‘FlowProperty2’ flows out. This means that ‘Port1’ has the same flow
properties, since it is typed by ‘Block4’. However, now consider ‘Port2’ on
‘Block12’. This is connected to ‘Port1’ on ‘Block11’ and, therefore, will have
‘FlowProperty1’ flowing out and ‘FlowProperty2’ flowing in; the opposite way
round to how they have been specified in ‘Block4’.

How do we resolve this? The answer is to make ‘Port2’ on ‘Bock12’ a con-
jugated port. This is indicated by the tilde ‘‘~’’ prefixing the name of the block
typing the port: ‘Port2: ~Block4’. The tilde reverses all the ins and outs prefixing
the flow properties in the block that it prefixes. So, as far as ‘Port2’ is concerned, it
has two flow properties: ‘FlowProperty1’, which flows out, and ‘FlowProperty2’,
which flows in. As the directions on the two ends now match up correctly, the ports
can be connected and the flows shown using items flows.

Item flows are represented by a labelled triangle or a solid arrow attached to an
association. The item flow can have a name by which it can be identified and is also
labelled with the property that is transferred. This latter may appear at first to be
redundant, as item flows connect ports that themselves are typed. However, SysML
allows the modeller to differentiate between what may be transferred and what is
transferred. The type of a port shows what may be transferred, with the type of an
item flow showing what is transferred. However, the type of the item flow must be
related to the type of the port by a specialisation/generalisation relationship. An
example of this is given in the following section.

Instance specifications have a compartment that shows the name of the
instance specification (so that multiple instance specifications of the same type
can be differentiated) and the block that it is an instance of. This is underlined.
For example, in Figure 5.14, there is an instance specification labelled

The SysML Notation 143

‘Instance2 : Block5’. This instance specification has a name, ‘Instance2’, and is an
instance of ‘Block5’. An additional compartment can be shown, in which proper-
ties of the typing block may be given values for this instance. In this example, the
property ‘BlockProperty2’ is given the value ‘123.4’.

5.5.1.2 Examples
This section presents some examples of block definition diagrams and related dia-
gramming elements. Further examples will be found in the case study of Chapter 14.

Figure 5.15 shows the main structural elements for the Coffin Escape Stunt. It
shows that there is a ‘Coffin Escape’ that is composed of a ‘Reservoir’, a ‘Coffin’,
a ‘Hole’, a ‘Pump’, an ‘Escapologist’ and a ‘Fluid’. Three types of ‘Fluid’ are

bdd [package] System [System Elements]

«block»
Coffin Escape

«block»
Hole

«block»
Coffin

«block»
Pump

«block»
Pump Controller

«block»
Escapologist

«block»
Reservoir

«block»
Fluid

«block»
Custard

«block»
Water

«block»
Concrete

Pump 1 Controller 1Reservoir 1

Hole 1

{incomplete}

Fluid 1

Coffin 1 Escapologist 1

Figure 5.15 Example block definition diagram showing main structural elements
of the Coffin Escape Stunt

144 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

defined: ‘Water’, ‘Custard’ and ‘Concrete’. The use of the {incomplete} constraint
indicates that there may be additional types of ‘Fluid’ that are not shown in this
diagram.

Note that there are no properties or operations defined for any of the blocks on
the diagram nor any relationships. This has been done deliberately in order to keep
the diagram simple. This information is shown on additional block definition dia-
grams, starting with the one shown in Figure 5.16, which expands on the definition
of ‘Fluid’.

In Figure 5.16 the definition of ‘Fluid’ and its sub-types is expanded in order to
show that ‘Fluid’ has a value property named ‘Density’. Since ‘Water’, ‘Custard’
and ‘Concrete’ are all sub-types of ‘Fluid’ they inherit this property and this is
explicitly shown by the caret (^) prefixing the property name ‘Density’ showing
that it is an inherited property. SysML allows value properties to be given default
values, as shown here.

Properties and operations of some of the other blocks, along with the rela-
tionships between them, are shown in Figure 5.17.

Figure 5.17 shows a lot more information about the various System Elements that
make up the Coffin Escape System. We can see that an ‘Escapologist’ escapes from a

bdd [package] System [Fluid Definitions Showing Package]

Fluid Definitions

«block»
Fluid

values
 Density : kg/m^3

«block»
Water

values
 ̂ Density : kg/m^3 = 1000

«block»
Custard

values
 ̂ Density : kg/m^3 = 1070

«block»
Concrete

values
 ̂ Density : kg/m^3 = 1070

{incomplete}

Figure 5.16 Example block definition diagram showing block properties
with default values

The SysML Notation 145

‘Coffin’ that is placed in the bottom of a ‘Hole’. A ‘Pump Controller’ controls a ‘Pump’.
‘Fluid’ is pumped into the ‘Hole’ via the ‘Pump’. This latter aspect of the model is
captured through the use of an association block: the ‘Pump’ block is connected to the
association between ‘Fluid’ and ‘Hole’ with a dashed line, making ‘Pump’ an asso-
ciation block. It is a block in its own right but adds information to the association.
A maximum of one block can act as an association block on any given association.

Many of the blocks have value properties that help to define them further and
‘Pump’ has a number of operations that show the behaviour that it can carry out.

bdd [package] System [Coffin Escape - Concepts Showing Fluid Types]

«block»
Pump

prime()
flush()
pump()
pumpReverse()
stopPump()

owned behaviors
«stateMachine» Pump

values
 Rate : m^3/s
 CurrentDirection : PumpDirection

pIn: ~FluidFlow

pOut: FluidFlow

«block»
Coffin

values
 Crush pressure : Pa
 Height : m
 Length : m
 Width : m

«block»
Escapologist

values
 Decision : Decision Type
 Bmax : s

«block»
Hole

values
Length : m
Height : m
Width : m outflow: FluidFlow

inflow: ~FluidFlow

«block»
Fluid

references
FluidDestination : Hole
FluidSource : Reservoir

values
 Density : kg/m^3

«block»
Custard

«block»
Concrete

«block»
Water

«block»
Pump Controller

classifier behaviours
«stateMachine» Pump

{incomplete}

1

escapes from

1

1

controls
1

1

placed in
bottom of

1

1

is pumped intoFluidDestination

1

Figure 5.17 Example block definition diagram showing properties, operations
and relationships

146 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

In addition, the classifier behaviours compartment shows that the ‘Pump’ has its
behaviour described by a state machine (which will be modelled using a state
machine diagram, see Section 5.6) which is also named ‘Pump’.

Both ‘Hole’ and ‘Pump’ have two ports defined. These ports have been shown
graphically. They could also be shown textually in a ports compartment. This is often
done simply to reduce visual clutter (in terms of the number of symbols) on the diagram.

It is worth considering these ports in a little more detail. ‘Pump’ has a port,
‘pOut’, that is typed by the block ‘FluidFlow’ (see Figure 5.18).

This ‘FluidFlow’ block defines a single flow property: ‘out fluid : Fluid’. This
says that elements typed by ‘FluidFlow’ will have a single flow property, of type
‘Fluid’, flowing out of them. This agrees with the definition of the port ‘pOut’,
since this port has the out flow direction prefixed. ‘Pump’ has another port defined,
‘pIn’. The intention is that this port takes in whatever flow properties are defined by
‘FluidFlow’. However, if it was defined as ‘in pIn : FluidFlow’, then we would
have a consistency issue. The port is marked with an inflow direction but the flow
property in its type has an out flow direction. The solution is to make ‘pIn’ a
conjugated port. This has been done through the use of a tilde in the definition: ‘in
pIn : ~FluidFlow’. The directions of the flow properties defined in ‘FluidFluid’ are
now reversed as far as ‘pIn’ is concerned. A similar discussion holds for the ports of
‘Hole’. The notation and use of conjugated ports perhaps makes more sense when
they are shown connected together. An example will be shown in Section 5.5.2.

A final point to make about Figure 5.17 concerns the reference compartment in
the ‘Fluid’ block. This shows two reference properties. Remember that these cor-
respond to associations that the block is involved in. One of these is shown on the
diagram, as can be deduced via the role name ‘FluidDestination’ on the association
between ‘Fluid’ and ‘Hole’. The other reference property corresponds to an asso-
ciation that is not shown. We can deduce from the reference property that ‘Fluid’
has an association with a block called ‘Reservoir’ and that the role that ‘Reservoir’
plays in the association is that of ‘FluidSource’. For completeness, this association
is shown explicitly in Figure 5.19.

bdd [package] Ports [Port Types]

«block»
FluidFlow

flow properties
out fluid : Fluid

Figure 5.18 Example block definition diagram defining type of ports through use
of flow properties

The SysML Notation 147

Figure 5.19 illustrates an important point when modelling: don’t be afraid to
limit what you show on a diagram. SysML tools make the consistent creation of
diagrams quick and easy, provided of course that they are a robust and sharp tool
(see Chapter 16 for a discussion of tools). If information is best omitted from one
diagram, then do so. You can always create another diagram that does show the
information.

As two final examples of a block definition diagram in this section, consider
Figures 5.20 and 5.21.

SEV [Package] Requirement Sources [Requirement Sou...

«block»
Meeting Minutes

01.04.2018

«block»
Coffin Escape Schematic

«block»
Email re. Different Fluids

15.03.2018

«block»
Initial Ideas Meeting

10.01.2016

Figure 5.20 Example block definition diagram used to model Source Elements
of Requirements

bdd [package] System [Relationship between Fluid and Reservoir]

«block»
Reservoir

«block»
Fluid

1is supplied from

FluidSource

1

Figure 5.19 Example block definition diagram showing a reference property
explicitly as an association

148 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The blocks in Figure 5.20 do not represent items of hardware or software or
material, etc., but rather they represent Source Elements for Need Descriptions, pro-
duced as part of a requirements engineering activity. The diagram frame uses the frame
tag ‘SEV’ to show that this block definition diagram is being used as a Source Element
View. For a discussion of model-based requirements engineering and the ACRE
Framework from which the concept of a Source Element View is taken, see Chapter 9.

The blocks in Figure 5.21 also do not represent items of hardware or software
or material, etc., but rather they represent Processes, produced as part of a Process
modelling activity. The diagram frame uses the frame tag ‘PCV’ to show that this
block definition diagram is being used as a Process Content View. For a discussion
of a model-based approach to Process modelling and the ‘‘seven views’’ Frame-
work from which the concept of a Process Content View is taken, see Chapter 7. Of
note on this diagram from a notational point of view is the use of the owned
behaviours compartment on each of the blocks. This shows that each block has an
associated activity with the same name as the owning block. These activities would
be described by an activity diagram, see Section 5.8.

5.5.1.3 Summary
Block definition diagrams can be used to model just about anything and form the
backbone of any SysML model. Block definition diagrams are perhaps the richest
in terms of the amount of syntax available and, as with all the meta-models in this

PCV [Package] Processes [Stunt Processes]

«block»
Set up

Check()
Get in coffin()
Close lid()
Obtain final OK()
Cancel stunt()

owned behaviours
«activity» Set up

«block»
Escape

Free hands()
Count down time()
Emerge()
Take a bow()

owned behaviours
«activity» Escape

«block»
Monitor

Watch coffin()
Start timer()
Encourage applause()

owned behaviours
«activity» Monitor

«block»
Start

Start pump()
Whip-up audience()
Perform final check()
Cancel stunt()

owned behaviours
«activity» Start

«block»
Emergency

Assess situation()
Get escapologist out()
Assess condition()
Make escapologist comfortable()

owned behaviours
«activity» Emergency

«block»
Stunt Process

Figure 5.21 Example block definition diagram used to model Processes

The SysML Notation 149

chapter, the one given for block definition diagrams is incomplete. For example, it
could be extended to include extra detail that can be added to relationships, such as
role names and qualifiers.

The main aim of the block definition diagram, as with all SysML diagrams, is
clarity and simplicity. Block definition diagrams should be able to be read easily and
they should make sense. A diagram that is difficult to read may simply indicate that
there is too much on it and that it needs to be broken down into a number of other
diagrams. It may also be an indication that the modelling is not correct and that it
needs to be revisited. Another possibility is that the diagram is revealing fundamental
complexity inherent in the System, from which lessons may be learned.

Another fundamental point that must be stressed here is that block definition
diagrams are not used in isolation. They will form the main structural aspect of a
System but must be used in conjunction with the other eight SysML diagrams to
provide structural and behavioural views of a System. These diagrams are descri-
bed in the rest of this chapter.

5.5.2 Internal block diagrams
Internal block diagrams are used to model the internal structure of a block (hence
the name). By using an internal block diagram, in which compositions and
aggregations are implicitly represented by the containment of parts within the
owning block or within other parts, an emphasis may be put on the logical rela-
tionships between elements of the composition, rather than the structural break-
down itself. This adds a great deal of value, as it forces the modeller to think about
the logical relationship between elements, rather than simply which blocks are part
of which other blocks.

5.5.2.1 Diagram elements
The basic element within an internal block diagram is the part that describes blocks
in the context of an owning block. An internal block diagram identifies parts and
their internal structures, showing how they are connected together through ports
and showing the item flows that flow between parts.

«diagram»
Internal Block Diagram

«graphic node»
Part

«graphic path»
Binding Connector

«graphic path»
Item Flow

«graphic node»
Port

«graphic node»
Full Port

«graphic node»
Proxy Port

Connection is via
Binding Connector

Connection is via
Binding Connector

1

connected to

0..*

0..*

1

has interaction points defined by

0..*

0..*

1..*

flows across

1

1

connected to

0..*
0..*0..*

is nested with

1
0..*

0..*connected to0..*

Figure 5.22 Partial meta-model for the internal block diagram

150 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 5.22 shows the partial meta-model for the internal block
diagram. It can be seen that a ‘Internal block diagram’ is made up of one or more ‘Part’,
zero or more ‘Port’ and zero or more ‘Binding Connector’ and zero or more ‘Item Flow’.

A ‘Port’ defines an interaction point for a ‘Part’, just as they do for blocks (see
Section 5.5.1.1) and again come in two types: ‘Full Port’ and ‘Proxy Port’. A ‘Part’
can be directly connected to zero or more ‘Part’ via a ‘Binding Connector’. This
connection may also be from a ‘Part’ to the ‘Port’ on another ‘Part’. A ‘Port’ may
also be connected to zero or more ‘Port’. An ‘Item Flow’ can flow across a
‘Binding Connector’.

The intention in the SysML specification seems to be that these connections
should be shown only on an internal block diagram, with a block definition dia-
gram showing the ports on a block but not the connections between them. For this
reason the block definition diagram meta-model in Section 5.5.1.1 omits such
connection possibilities, but the authors see no reason why the same types of con-
nection should not be shown on a block definition diagram.

The diagram in Figure 5.23 shows the notation used on an internal block dia-
gram. Much of the notation is the same as can be found on a block definition

«block»
Block10

: Block11

Port1: Block4

Port2: Block3

Interface

: Block12[1..3]

Port2: ~Block4

«proxy» Port3 :
Interface

«full» Port1

Interface

: Block6

Port: Block11

Port1: Block4

Port2: Block3

Port with two nested
ports

Port with provided
interface

Shared part

Port with flow
properties

: Block13

Nested
part

Owned part

Conjugated port with
flow properties

Proxy port types by an
interface block

Full port with required
interface

Diagram frame shows
owning block

Binding connector with
two item flows

«ValueType» Real

«block» Block6

Figure 5.23 Summary of internal block diagram notation

The SysML Notation 151

diagram and will not be discussed further. However, some notational and usage
points do need discussion, namely:

● The relationship between internal block diagrams and block definition dia-
grams, and hence that of parts and blocks

● The notation for parts
● Shared parts
● Bound references

Before looking at the notation for parts, let us first consider the relationship
between internal block diagrams and block definition diagrams, and hence that of
parts and blocks. The first thing to say is that an internal block diagram is owned by
a block. It is used, when a block is composed of other blocks, to represent that
composition in an alternative fashion and to allow the modeller to concentrate on
the connections between the blocks rather than on the composition. From a block
that is decomposed into sub-blocks it is possible to automatically create an internal
block diagram for that block and, indeed, many SysML tools will do this for you.
The internal block diagram in Figure 5.23 has been created for ‘Block10’, based on
the block definition diagram in Figure 5.24.

bdd [package] Internal Block Diagrams [Structure of Block10]

«block»
Block10

«block»
Block11

«block»
Block12

«block»
Block6

«block»
Block13

roleC 1..3roleA 1 roleB 1

roleD 1

Figure 5.24 Example block definition diagram used to show its relationship
to internal block diagram

152 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The internal block diagram in Figure 5.23 is owned by ‘Block10’ and can be
thought of as being inside, or internal to (hence the name) ‘Block10’. ‘Block10’ is
shown as a containing block with the blocks that it is composed of shown as parts.
(Note that the ports in Figure 5.23 could have also been shown in Figure 5.24 but
have been omitted for clarity). So, a block that is composed of sub-blocks, as
detailed on a block definition diagram, can have its internal structure modelled on
an internal block diagram owned by the block. The blocks that it is composed of are
shown as parts on the internal block diagram.

This brings us on to the second point, namely the notation used for parts. Parts are
represented using a rectangle that contains the name of the part. The name has the form:

Part name : Type Name

The part name serves as an identifier for the part and the type name shows the
block that the part is a type of. The part name can be omitted if distinction between
different parts of the same type is not necessary. The type name can also be
omitted, but this is less common. In Figure 5.23 each part has its part name omitted
and its type name shown. Where the block involved in an aggregation or compo-
sition has a role name associated with it, then the part name is usually the same as
the role name. See Figure 5.25.

Figure 5.25 is another internal block diagram for ‘Block10’ from Figure 5.24,
but this time with all ports, interfaces and connectors omitted. Also, on this dia-
gram part names are shown and their relationship to the role names in Figure 5.24
can also be seen. Note also the dashed outline for the part ‘roleB : Block11’. This is
an example of a shared part. Shared parts are discussed further below.

ibd [block] Block10 [Showing Parts Only]

«block»
Block10

namespace

roleB: Block11[1] roleC: Block12[1..3]

roleA: Block6[1]
roleD: Block13[1]

Figure 5.25 Example internal block diagram showing relationship between role
names and part names

The SysML Notation 153

Two other points can also be seen in both Figures 5.23 and 5.24. First, if a part
has a multiplicity greater than one, this is shown in square brackets following the
type of the part. This can be seen for the part typed by ‘Block12’, where the
multiplicity ‘1..3’ is shown in square brackets following the type of the part. Sec-
ond, parts can also be nested and this can be seen for the part ‘roleD : Block13’,
which is shown inside the part ‘roleC : Block12’. This corresponds to the compo-
sition relationship between ‘Block12’ and ‘Block13’. This composition relation-
ship also means that ‘Block12’ could have its own internal block diagram, which
would have a single part, ‘roleD : Block13’. For completeness, see Figure 5.26.

Next, let us consider shared parts. As was discussed briefly in Section 5.5.1.1,
the decomposition of a block can be shown on a block definition diagram using a
composition or an aggregation. A block may be wholly owned by its parent block
(shown using composition) or may be shared between multiple parent blocks
(shown using aggregation). The use of composition or aggregation has an effect on
the way that parts are shown. An example will help.

The non-SysML diagram in Figure 5.27 shows the restraints worn by the
escapologist as part of the Coffin Escape Stunt: a set of handcuffs and a set of leg
irons joined by a connecting linkage. The structure can be modelled using a block
definition diagram as shown in part (a) of Figure 5.28.

The ‘Restraints’ consist of a set of ‘Handcuffs’ composed of two ‘Wrist Cuff’
connected together by a ‘Hand Linkage’, a set of ‘Leg Irons’ composed of two
‘Ankle Cuff’ connected together by a ‘Leg Linkage’ and a ‘Connecting Linkage’
that connects together the ‘Hand Linkage’ and the ‘Leg Linkage’. Note that only
the ‘Handcuffs’ have to be present in a set of ‘Restraints’; both the ‘Leg Irons’ and
‘Connecting Linkage’ are optional as shown by the ‘0..1’ multiplicities.

ibd [block] Block12 [Parts Only]

«block»
Block12

namespace

roleD: Block13[1]

Figure 5.26 Example internal block diagram for Block12

154 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Since the ‘Wrist Cuff’ and ‘Hand Linkage’ are only part of the ‘Handcuffs’,
composition is used, similarly for the ‘Ankle Cuff’ and ‘Leg Linkage’. However,
the ‘Connecting Linkage’ is shared between both the ‘Handcuffs’ and the ‘Leg
Irons’. For this reason, aggregation is used. This has a direct effect on the notation
used in the internal block diagrams for the ‘Handcuffs’ and the ‘Leg Irons’. The
internal block diagram for the ‘Handcuffs’ is shown in Figure 5.29., that of the
‘Leg Irons’ would be similar.

The difference in notation for shared parts can be seen in the internal block
diagram in Figure 5.29. A shared part is shown with a dashed outline. There are
three other things to note in this diagram. First, note the multiplicity shown in
square brackets after the type of each of the parts. Second, note that it is not pos-
sible to tell from this diagram what else the ‘Connecting Linkage’ is shared with.
The block definition diagram in Figure 5.28(a) is needed for this. Third, note the
alternative notation, supported by some SysML tools, of using the frame to repre-
sent the containing block. Rather than explicitly showing the ‘Handcuffs’ block
on the internal block diagram in Figure 5.29, as has been done, for example, in
Figure 5.26, the diagram’s frame takes its place. If ‘Handcuffs’ had ports which
were to be shown, these would be shown on the edge of the frame. The same
notation has been used in Figure 5.28(b).

Finally, let us consider bound references, a new modelling concept introduced
in SysML version 1.4 that can be used to constrain possible sub-types or multi-
plicities of a block. To fully understand both how to use bound references and their
purpose, it is necessary to look at a number of diagrams. The diagrams are shown in
parts (a), (b) and (c) of Figure 5.28.

Start by considering the ‘Restraints’ block on Figure 5.28(a) and note a new
compartment not yet discussed, the bound references compartment. This shows

Connecting
linkage

Ankle cuff

Wrist cuff

Hand linkage

Leg linkage

Handcuffs

Leg Irons

Figure 5.27 Example system schematic showing owned and shared parts

The SysML Notation 155

ibd [block] Restraints [Bound References]

hc: Handcuffs[1]

li: Leg Irons[0..1]

cl: Connecting Linkage[0..1]

«boundReference»
Hand restraint : Handcuffs

1..*

«boundReference»
Leg restraint : Leg Irons

0..1

«boundReference»
Connector : Connecting Linkage

0..1

«equal»

«equal»

«equal»

(b)

(a)

bdd [package] Restraints [Structure of Escapologist's Restraints]

«block»
Restraints

references
 «boundReference» Hand restraint : Handcuffs[1..*] {1..*}

 «boundReference» Leg restraint : Leg Irons[0..1] {0..1}

«block»
Handcuffs

«block»
Leg Irons

«block»
Connecting Linkage

«block»
Wrist Cuff

«block»
Hand Linkage

«block»
Leg Linkage

«block»
Ankle Cuff

{AND}

 bound references
Hand restraint : Handcuffs [1..*] {/bindingPath = hc}
Leg restraint : Leg Irons[0..1] {/bindingPath = li}
Connector : Connecting Linkage[0..1] {/bindingPath = cl}

0..1
is connected to

1

1

hc 1

1

li 0..1

1

connects together

2

cl 0..1

2

1

0..1is connected to

1

1

1

1

1

1

1

connects together

2

2

bdd [package] Restraints [Restraint Options]

«block»
Restraints

references
 «boundReference» Hand restraint : Handcuffs[1..*] {1..*}

 «boundReference» Leg restraint : Leg Irons[0..1] {0..1}

«block»
Simple Restraints

references
 «boundReference» Hand restraint : Handcuffs[1..*] {1..*}

 «boundReference» Leg restraint : Leg Irons[0..1] {0..1}

«block»
Dual Restraints

references

 «boundReference» Hand restraint : Handcuffs[1..*] {1..*}
 «boundReference» Leg restraint : Leg Irons[0..1] {0..1}

 bound references
Hand restraint : Handcuffs [1] {redefines Hand restraint}
Leg restraint : Leg Irons[1] {redefines Leg restraint}
Connector : Connecting Linkage[1] {redefines Connector}

 bound references
Hand restraint : Handcuffs [1] {redefines Hand restraint}
Leg restraint : Leg Irons[0] {redefines Leg restraint}
Connector : Connecting Linkage[0] {redefines Connector}

 bound references
Hand restraint : Handcuffs [1] {/bindingPath = hc}
Leg restraint : Leg Irons[0..1] {/bindingPath = li}
Connector : Connecting Linkage[0..1] {/bindingPath = cl}

(c)

Figure 5.28 Example block definition diagram showing modelling of owned
and shared parts and the use of boundReferences

156 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

properties that have been added to the block and which have had the stereotype
«boundReference» applied. When such properties are shown in this compartment,
then the stereotype is not shown. Such bound reference properties, as they are
known, typically have a multiplicity defined, as can be seen in the example in
Figure 5.28(a). They are also typed using blocks that appear somewhere below their
owning block in a structural decomposition. As can be seen in the diagram, three
bound references have been defined:

Hand restraint : Handcuffs [1..*]

Leg restraint : Leg Irons[0..1]

Connector : Connecting Linkage[0..1]

The eagle-eyed reader will have noticed that there is more to the bound
references than just their names, types and multiplicities, namely the ‘/boundPath’
text. To understand this, now consider Figure 5.28(b). This is an internal block
diagram for the ‘Restraints’ block and it shows the three bound reference proper-
ties using the shared parts notation annotated with the «boundReference» stereo-
type. It also shows the parts corresponding to the ‘Handcuffs’, ‘Leg Irons’ and
‘Connecting Linkage’ blocks into which ‘Restraints’ is decomposed. Each of the
bound references is connected to one of these parts with a binding connector that
has the «equal» stereotype applied. Creating these relationships (in most SysML
tools) will automatically create the derived bindingPath constraints that follow the
bound references. This is simply a textual representation of a binding connector’s
end point and is shown using the role names of all the blocks that it conceptually
traverses. Each part of the path is separated with commas. This does mean that it
becomes good practice when using bound references to always give the source ends
of aggregation and composition relationships a role name. The examples given are
all only one level deep. But as an example, let us assume that end of the compo-
sition entering ‘Wrist Cuff’ was given the role name ‘wc’ and that there was a
bound reference added to ‘Restraints’ that was bound to a part corresponding to
‘Wrist Cuff’. Its binding path would then be shown as ‘{/bindingPath¼ hc, wc’}.

The binding connectors that bind bound references to parts are saying that
the bound references are constrained, through the binding connectors, to only ever
be of a more restricted type or multiplicity than that of the parts to which they are
bound. In the example shown, there are no sub-types of any of the blocks

ibd [block] Handcuffs [Handcuffs]

: Wrist Cuff[2] : Hand Linkage[1] : Connecting
Linkage[1]

Figure 5.29 Example internal block diagrams showing owned and shared parts

The SysML Notation 157

‘Handcuffs’, ‘Connecting Linkage’ or ‘Leg Irons’, so the bound references will be
used to constrain multiplicities.

And how are bound references used to thus restrict type or multiplicity? To
understand this, consider Figure 5.28(c). This shows that there are actually two
types of ‘Restraints’ defined in our system: ‘Simple Restraints’ and ‘Dual Restraints’.
Because these are linked to ‘Restraints’ through specialisation/generalisation, they
inherit its bound references, as shown on the diagram. SysML allows these bound
references to be redefined. Such a redefinition can change the type of a bound
reference to a sub-type of the block whose part it is bound to or can change the
multiplicity of the bound reference, as has been done in Figure 5.28(c). For ‘Simple
Restraints’ the multiplicity of ‘Hand restraint’ has been redefined from ‘[1..*]’ to
‘[1]’ and the multiplicities of both ‘Leg restraint’ and ‘Connector’ from ‘[0..1]’ to
be ‘[0]’. The redefinition is emphasised by the ‘{redefines Hand restraint}’, etc.
constraint text that is added after the bound references that are redefined. For ‘Dual
Restraints’, the multiplicity of ‘Hand restraint’ has been redefined from ‘[1..*]’ to
‘[1]’ and the multiplicities of both ‘Leg restraint’ and ‘Connector’ from ‘[0..1]’ to
be ‘[1]’. The result of this is that a ‘Simple Restraints’ consists only of ‘Handcuffs’,
but ‘Dual Restraints’ consists of one ‘Handcuffs’, one ‘Leg Irons’ and one
‘Connecting Linkage’.

This introduction in SysML version 1.4 of bound references provides a pow-
erful mechanism for supporting the definition of generic systems which can then
have variant sub-types defined which are constrained in the numbers or types of
elements that make them up. This is the start, albeit somewhat limited, for support
for what is known as variant modelling, an important and hot topic in MBSE, but
one outside the scope of this book.

5.5.2.2 Examples
This section presents some further examples of internal block diagrams and related
diagramming elements. Further examples will be found in the case study in
Chapter 14.

Having defined the structure of the ‘Coffin Escape’ stunt in Section 5.5.1 on
block definition diagrams (see Figures 5.15 and 5.17), an internal block diagram
can be used to explore the interfaces between the System Elements of the ‘Coffin
Escape’. This has been done in Figure 5.30.

Figure 5.30 shows an internal block diagram for the ‘Coffin Escape’ block.
The parts shown on this diagram can be populated automatically from the structural
information, shown using composition, in Figure 5.15. Note, however, that the
‘Escapologist’, ‘Coffin’ and ‘Fluid’ blocks have not been shown in Figure 5.30.
This is because, as indicated in the diagram frame, this internal block diagram has
been produced to show interfaces between the main system elements. This again
reinforces the point that in SysML you should be producing diagrams for a specific
purpose. You do not have to try to show everything on a single diagram, nor should
you try to.

Whereas Figure 5.17 implicitly indicated the various ports and their connec-
tions, through the use of port compartments on the blocks, these connections have

158 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

been made explicit in Figure 5.30. This is a very common use of the internal block
diagram.

There are two points worth discussing further on this diagram. The first con-
cerns the nature of the two item flows on the diagram and the second that of the
interface between the ‘Pump Controller’ and the ‘Pump’.

In Figure 5.17 there are a number of ports defined on the ‘Pump’ and ‘Hole’
blocks. Each of these is typed by the ‘FluidFlow’ block that has a single flow
property typed by the ‘Fluid’ block. ‘Reservoir’ has a similar port but it is not
shown in Figure 5.17. In Figure 5.30 these ports have been connected together with
binding connectors carrying item flows. The ‘outflow’ port of ‘Reservoir’ sends an
item flow to the ‘pIn’ port of ‘Pump’, which in turn sends and item flow from its
‘pOut’ port to the ‘inFlow’ port of ‘Hole’. The direction of each of the item flows
honours the direction of each port and of the flow property defined by ‘FluidFlow’.
However, whereas ‘FluidFlow’ defines a flow property of type ‘Fluid’, the item
flow shows ‘Concrete’ flowing between the ports. Do we have an inconsistency
here? The answer is no, because ‘Concrete’ is a type of ‘Fluid’, as can be seen in
Figure 5.15. This is an important point, and one that makes item flows and flow
properties useful. It is possible, through flow properties, to define the type of things
that can flow between ports and keep this at a rather general level of abstraction
(e.g. ‘Fluid’). Then, through item flows, it is possible to show what actually does
flow in a particular usage of the various blocks. Although the ‘Pump’ modelled in
Figures 5.15 and 5.17 can pump a number of types of ‘Fluid’, when it is being used
in the ‘Coffin Escape’, as shown in Figure 5.30, it will be used to pump ‘Concrete’.

ibd [block] Coffin Escape [Interfaces]

ibd [block] Coffin Escape [Interfaces]

Hole: Hole[1]

inflow: ~FluidFlow Reservoir: Reservoir[1]
outflow: FluidFlow

Pump: Pump[1]

pOut: FluidFlow

pIn: ~FluidFlow

ctrlIn

Controller: Pump
Controller[1]

ctrlOut

«block»
Coffin Escape

«block» Concrete

«block» Concrete

iPump

Figure 5.30 Example internal block diagram showing main Interfaces of the
Coffin Escape Stunt

The SysML Notation 159

The type of the item flow has to be the same as, or a sub-type of, the type of its
defining flow property. The flow property is of type ‘Fluid’ and the item flow is of
type ‘Concrete’, which is a sub-type of ‘Fluid’, so this is allowed.

The second point to discuss is the interface between the ‘Pump Controller’ and
the ‘Pump’. This connection is explicitly shown in Figure 5.30, where the ‘Pump’
has a provided interface of type ‘iPump’ and where the ‘Pump Controller’ has a
required interface of the same type. These are shown connected together and the
type of the interface, ‘iPump’, is also shown. This interface has not yet been
defined. Its definition is made on a block definition diagram using an interface
block, as shown in Figure 5.31.

Figure 5.31 defines a single interface, ‘iPump’, which has three operations
‘start()’, ‘stop()’ and ‘reverse()’. In the SysML model from which this diagram is
taken, each of these three operations would have a full description of their expected
behaviour, both in text, as part of their definition in the ‘iPump’ interface block, and
possibly also in SysML using an activity diagram. Although Figure 5.31 only
defines a single interface block, there is no reason why other interface blocks could
not be defined on the same diagram; the SysML does not require them to be defined
on separate diagrams.

When connecting a required interface to a provided interface it is important
that the types of the interfaces match (i.e. that they are defined by the same inter-
face block). Actually, there is a little more flexibility allowed: the type of the
provided interface must be the same as, or a sub-type of, the type of the required
interface. This works because when a sub-type is defined, the sub-type can add
additional operations but cannot remove any. Consider Figure 5.32.

A new interface, ‘iPumpExt’, is defined in Figure 5.32. This defines a new
operation, ‘emergencyStop()’. Since ‘iPumpExt’ is a sub-type of ‘iPump’ it also
inherits all three operations that are defined for ‘iPump’.

Now imagine that ‘Pump’ in Figure 5.30 has a provided interface that is of type
‘iPumpExt’ rather than ‘iPump’. The required interface on ‘Pump Controller’ can

bdd [package] Interfaces [Interface Definitions]

«interface»
iPump

start()
stop()
reverse()

Figure 5.31 Example block definition diagram defining the iPump interface

160 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

still be connected to this provided interface because ‘iPumpExt’ provides all the
operations that ‘iPump’ did (and that are required by the ‘Pump Controller’), plus
one more. It happens that ‘Pump Controller’ will never require the use of this
additional operation, which is okay.

However, if the required interface on ‘Pump Controller’ was of type ‘iPumpExt’
and the provided interface on ‘Pump’ was of type ‘iPump’, then the connection
could not be made. This is because ‘Pump Controller’ requires the use of the
‘emergencyStop()’ operation defined on ‘iPumpExt’. However, this is not present
in the ‘iPump’ interface provided by ‘Pump’.

Internal block diagrams can also be used with association blocks, since an
association block is, in effect, simply a block connected to an association. This is
useful when the association block is being used to model a connector between two
physical System Elements, as shown in Figure 5.33.

In Figure 5.33, the connectivity between the ‘Reservoir’ and the ‘Pump’ is
modelled using an association block, ‘Piping’, which is composed of a length of
‘Pipe’ and two ‘Fitting’, one for each end. The way that the ‘Piping’ is assembled is
modelled using an internal block diagram, shown in Figure 5.34.

In Figure 5.34 the parts from which ‘Piping’ is composed are shown connected
using binding connectors. The diagram also shows two shared parts: ‘FromInLink :
Reservoir’ and ‘ToInLink : Pump’. These shared parts actually represent the ends
of the association between ‘Reservoir’ and ‘Pump’ for which ‘Piping’ acts as an
association block.

bdd [package] Interfaces [Interface Definitions - Extended]

«interface»
iPump

start()
stop()
reverse()

«interface»
iPumpExt

emergencyStop()

Figure 5.32 Example block definition diagram showing extended
iPump interfaces

The SysML Notation 161

As a final example, consider Figure 5.35 that shows two internal block dia-
grams that concentrate on the ‘Power Supply Unit’ used in the Coffin Escape Stunt
to power the ‘Pump’.

In the internal block diagram [Figure 5.35(a)] the ‘Power Supply Unit’ is
shown as having a 30-A outlet, modelled as a port with the name ‘Outlet : 30A
Socket’. Nothing of the structure of the socket is shown here. This is fine, as long as
this is the level of abstraction that is needed in the model. The port can be con-
nected to another port representing a 30-A plug, for example, and a single item flow
defined that connects them representing the transfer of AC current at 30 A.

bdd [package] Structural Elements [Pump & Reservoir Connectivity]

«block»
Reservoir

«block»
Pump

«block»
Piping

«block»
Fitting

«block»
PipesupplyFitting

1

1
destinationFitting 1

1

1

supplies fluid to

1

pipe 1

1

Figure 5.33 Example block definition diagram showing connectivity using an
association block

ibd [block] Piping [Showing Internal Connectivity]

«block»
Piping

namespace

destinationFitting: Fitting
[1]

pipe: Pipe[1] supplyFitting: Fitting[1]«participant»
ToInLnk : Pump

[1]

«participant»
FromInLnk : Reservoir

[1]

Figure 5.34 Example internal block diagram showing structure of Piping

162 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

However, it might be the case that the socket (and any associated plug) needs to
be modelled at a lower level of abstraction. This is done in the internal block diagram
in Figure 5.35(b), where the three slots making up the socket are shown explicitly
using three nested ports. The 30-A plug could be modelled in the same way, showing
each pin using a nested port. Each pin and slot could then be connected individually,
with the high-level item flow decomposed into three separate item flows, one con-
necting each pin and slot pair. This is left as an exercise for the reader.

5.5.2.3 Summary
The internal block diagram is very strongly related to the block definition diagram,
using parts to show the structure of a complex block. This allows the emphasis of
the diagram to be placed more on the logical relationships between elements of the

ibd [block] Power Supply Unit [Socket Showing Slots]

Outlet: 30A Socket
L: 7.9mm Slot

N: 7.9mm Slot

E: 9.5mm Slot

«block»
Power Supply Unit

ibd [block] Power Supply Unit [Socket as a Single Port]

Outlet: 30A Socket

«block»
Power Supply Unit

(a)

(b)

Figure 5.35 Example internal block diagram showing nested ports

The SysML Notation 163

block, rather than identifying that they are actually elements of a particular block
(using relationships such as aggregation and composition). The way that the
various parts are connected, through the use of ports, interfaces and binding con-
nectors, and the items that flow between parts, through the use of item flows, can
also be shown. The diagram also allows a distinction to be made between parts that
are wholly owned by a parent block, and those that are shared parts, which are
shared among multiple blocks. It also allows a limited amount of variant modelling
to be carried out through the use of bound references.

5.5.3 Package diagrams
The package diagram, as the name implies, identifies and relates together packa-
ges. Packages can be used on other diagrams as well as on the package diagram; in
both cases the concept of the package is the same – each package shows a col-
lection of diagram elements and implies some sort of ownership. Packages can be
related to each other using a number of different dependency relationships.

5.5.3.1 Diagram elements
The syntax for the package diagram is very simple and can be seen in
Figure 5.36.

«graphic path»
Public Package Import

«graphic path»
Dependency

«graphic node»
Package

«diagram»
Package Diagram

«graphic path»
Package Import

«graphic path»
PrivatePackage Import

0..*

1

shows relationship
between

2

1..*

Figure 5.36 Partial meta-model for the package diagram

164 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 5.36 shows the partial meta-model for the ‘Package Dia-
gram’. It can be seen that there are two main elements in the diagram – the ‘Package’
and the ‘Dependency’. There is one type of ‘Dependency’ defined – the ‘Package
Import’. The ‘Package Import’ has two types, the ‘Public Package Import’ and the
‘Private Package Import’.

The graphical notation for the package diagram is shown in Figure 5.37.

The diagram in Figure 5.37 shows that there are really only two symbols on the
diagram: the graphical node representing a package and the graphical path repre-
senting a dependency.

A package is represented by a rectangle with a smaller tag rectangle on the top
left-hand edge. This is similar to the folder icon that can be seen in Windows
systems and, indeed, has a very similar conceptual meaning. The name of the
package can either be shown in the tag (as seen here) or, in the case of long names,
will often be shown inside the main rectangle.

The dependency may appear as an unadorned, regular dependency, or may
appear with one of two stereotypes – «import» or «access» – representing a public
package import or private package import respectively.

A package import (of either type) means that the package being pointed to
(target) is imported into the other package (source) as part of the source package

Package3

Package1

Package2

Public package import

Private package
import

Dependency

Package

«import»

«access»

Figure 5.37 Summary of package diagram notation

The SysML Notation 165

but with the target package remaining its own package. Any name clashes are
resolved with the source package taking precedence over the target package.

Public package import and private package import differ in the visibility of the
information that is imported. What does this mean? Consider the two examples in
Figure 5.38.

In example (a) package ‘B’ imports the contents of package ‘C’ using a public
package import. Package ‘A’ then imports the contents of package ‘B’ using a
public package import. Since ‘A’ has imported ‘B’ and ‘B’ has publicly imported
‘C’, package ‘A’ can also see the contents of package ‘C’.

In example (b) package ‘B’ imports the contents of package ‘C’ using a private
package import. Package ‘A’ then imports the contents of package ‘B’ using a
public package import. Since ‘A’ has imported ‘B’ and ‘B’ has privately imported
‘C’, package ‘A’ cannot see the contents of package ‘C’, although it can see the
contents of package ‘B’.

Packages are used to structure a model in exactly the same way the folders (direc-
tories) organise files on a computer. Figure 5.39 helps to show how this is achieved.

The diagram in Figure 5.39 shows that a ‘Package’ is made up of a number of
‘Packageable Element’. In the SysML, almost anything can be enclosed within a
package, so only a few examples are shown here (indicated by the {incomplete}
constraint). Note that a ‘Package’ is itself a ‘Packageable Element’ and thus a
package can contain other packages.

5.5.3.2 Examples
Package diagrams are typically used to show model structure and relationships
within a model at a very high level. Packages are often also shown on other SysML
diagrams to provide information on where in a model the diagram elements can be
found. Some examples are given in Figure 5.40.

pkg [package] Package Diagram [Public vs. Private Package Import]

A B C

(a)

A B C

(b)
«access»

«import»«import»

«import»

Figure 5.38 Importing packages using «import» and «access»

166 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

«graphic node»
Package

«graphic node»
Packageable Element

«graphic node»
Block

«graphic node»
Part

«graphic node»
Constraint Block

0..*

{incomplete}

Figure 5.39 Relationships between package diagram elements and the rest
of the SysML

pkg [package] Model Structure [Model Structure]

Life Cycle Model STUMPI

ISO15288:2015

«import»

«access»

Figure 5.40 Example package diagram showing relationships between
model packages

The SysML Notation 167

The diagram in Figure 5.40 shows three packages from the escapology stunt.
Part of the model for this stunt represents the Life Cycle Model for the Project. This
is contained in the ‘Life Cycle Model’ package. This package makes use of the
Students Managing Projects Intelligently (STUMPI) Processes, contained in
the ‘STUMPI’ package. Information in this package is visible inside the ‘Life
Cycle Model’ package, as indicated by the public package import dependency. The
STUMPI Processes themselves make use of the ISO15288:2008 process model,
contained in the ‘ISO15288:2008’ package and imported using a private package
import dependency. This means that the contents of ‘ISO15288:2008’ are visible
within ‘STUMPI’ but not visible within ‘Life Cycle Model’.

Packages are often shown on other diagrams. An example of this is shown in
Figure 5.41.

Figure 5.41 shows a block definition diagram that is displaying a number of
different types of ‘Fluid’. From the diagram frame it can be seen that the block
definition diagram is located in a package named ‘System’. The diagram also
shows a package named ‘Fluid Definitions’ surrounding the ‘Fluid’ block and its
three sub-types. This has been done to make it explicit to the reader of this diagram
that the ‘Fluid’, ‘Water’, ‘Custard’ and ‘Concrete’ blocks are not contained directly

bdd [package] System [Fluid Definitions Showing Package]

Fluid Definitions

«block»
Fluid

values
 Density : kg/m^3

«block»
Water

values
 Density : kg/m^3 = 1000

«block»
Custard

values
 Density : kg/m^3 = 1070

«block»
Concrete

values
 Density : kg/m^3 = 2400

{incomplete}

Figure 5.41 Example block definition diagram showing a package

168 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

in the ‘System’ package but rather can be found in the ‘Fluid Definitions’ package
within the ‘System’ package.

In practice, package diagrams are not that widely used. The use of packages on
other diagrams is more common where it is useful for the modeller to be able to
make explicit the location within a model of the diagram elements appearing on a
diagram.

5.5.3.3 Summary
Package diagrams are useful for showing aspects of a model’s structure where it is
necessary to make clear how one package uses information from another (essen-
tially how one package depends on another).

Packages are used within a SysML tool to structure a model. They can also be
shown on any SysML diagram to indicate where particular diagram elements can be
found in the model. However, such use must be tempered with the need to maintain
readability of a diagram. Packages should be used in this way when necessary, but
not as a matter of course lest the diagrams become too cluttered to be readable.

5.5.4 Parametric diagrams
The SysML constraint block and associated parametric diagram allow for the
definition and use of networks of constraints that represent Rules that constrain the
properties of a System or that define rules that the System must conform to.

5.5.4.1 Diagram elements
Parametric diagrams are made up of three main elements, constraint blocks, parts
and connectors as shown in Figure 5.42.

«diagram»
Parametric

Diagram

«graphic path»
Connector

«graphic node»
Constraint Block

«graphic node»
Part

Constraint blocks are
defined on a block
definition diagram.

1..*

is linked to

0..*

0..*1..* 0..*

1

is linked to

0..*

Figure 5.42 Partial meta-model for the parametric diagram

The SysML Notation 169

Figure 5.42 shows the partial meta-model for parametric diagrams. From
the model it can be seen that a ‘Parametric Diagram’ is made up of one or more
‘Constraint Block’, zero or more ‘Part’ and zero or more ‘Connector’. Zero or more
‘Constraint Block’ can be connected to zero or more ‘Constraint Block’ and one or
more ‘Constraint Block’ can be connected to zero or more ‘Part’. Although used
on a ‘Parametric Diagram’, a ‘Constraint Block’ is defined on a ‘Block Definition
Diagram’.

There are two aspects to parametric constraints in SysML: their definition and
their usage. The notations for both aspects are show in Figures 5.43 and 5.45,
respectively.

A constraint block is defined using a block with the «constraint» stereotype
and is given a name by which the constraint can be identified. The constraint
block has two compartments labelled ‘constraints’ and ‘parameters’. The con-
straints compartment contains an equation, expression or rule that relates together
the parameters given in the parameters compartment. Figure 5.43 defines
a constraint block called ‘ConstraintBlock1’ with two parameters ‘Con-
straintParameter1’ and ‘ConstraintParameter2’, both of which are defined to be
of type ‘Real’. These parameters are related together by the expression ‘Con-
straintParameter1¼ f(ConstraintParameter2)’, with ‘f’ representing a function
taking ‘ConstraintParameter2’ as a parameter.

Such constraint blocks are defined on a block definition diagram. A concrete
example of a constraint block can be seen in Figure 5.44.

The example in Figure 5.44 defines a constraint block called ‘Newton’s Second
Law’ that relates the three parameters ‘f’, ‘m’ and ‘a’ given in the parameters com-
partment by the equation ‘f¼m * a’, as shown in the constraints compartment.
Although constraint blocks are defined on block definition diagrams, it is convention
that such definitions are not mixed with regular blocks on the same diagram.

Once constraint blocks have been defined they can be used any number of
times on one or more parametric diagrams, the notation for which is shown in
Figure 5.45.

«constraint»
ConstraintBlock1

constraints
{ConstraintProperty1 = f (ConstraintProperty2)}

parameters
 ConstraintProperty1 : Real
 ConstraintProperty2 : Real

Constraint block
definition

Figure 5.43 Summary of parametric diagram notation – definition of
constraint block

170 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Each constraint block can be used multiple times on a parametric diagram.
The use of a constraint block is shown as a round-cornered rectangle known as a
constraint property. Each constraint property is to be named thus:

Name : Constraint Name

This allows each use of a constraint block to be distinguished from other uses
of the same constraint block. In Figure 5.45 a single constraint block, ‘Con-
straintBlock1’, is being used and it has been given the name ‘ConstraintProperty1’.

bdd [package] Constraint Definitions [Newton's Second Law]

«constraint»
Newton's Second Law

constraints
{f = m * a}

parameters
 a : m/s^2
 f : N
 m : kg

Figure 5.44 Example block definition diagram showing constraint block
definition

Property1 : ConstraintBlock1
{ConstraintProperty1 = f (ConstraintProperty2)}

ConstraintProperty1 : Real

ConstraintProperty2 : Real

Constraint property

Constraint
parameter

Property1: Real Part

Connector

Figure 5.45 Summary of parametric diagram notation – use of constraint block

The SysML Notation 171

Small rectangles attached to the inside edge of the constraint property repre-
sent each constraint parameter. These are named and their names correspond to the
parameters defined for the constraint block in its definition.

These constraint parameters provide connection points that can be connected,
via connectors, to other constraint parameters on the same or other constraint
properties or to block properties. When connecting a constraint parameter to a
block property, this block property is represented on the diagram by a rectangle
known as a part. In Figure 5.45 a single part is shown, with the name ‘Parametric
Constraints Diagram.Block1.Property1’. This shows that this is the ‘Property1’
property of the block ‘Block1’ in the package ‘Parametric Constraints Diagram’.
Packages are used to structure SysML models as discussed in the previous section.
In Figure 5.45, the part ‘Parametric Constraints Diagram.Block1.Property1’
is connected to ‘ConstraintParameter1’. There is nothing connected to ‘Con-
straintParameter2’ and therefore the diagram is incomplete.

5.5.4.2 Examples
This section presents some examples of parametric diagrams and related dia-
gramming elements.

Figure 5.46 shows a number of definitions of constraint blocks that are defined
for the Coffin Escape Stunt used as the source of examples for this chapter. As
noted previously such constraint blocks are actually defined on a block definition
diagram, and also as noted previously, good modelling practice has been followed
with constraint blocks being kept separate from normal SysML blocks.

It can also be observed that the eight constraint blocks on the top two rows of
the diagram are all general constraints that could be used on a number of projects,
whereas the three constraint blocks on the bottom row are all specific to the par-
ticular System being considered (in this case the Concrete Coffin Escape). For this
reason, a better way to organise them would be to split them out onto two separate
diagrams and perhaps even two separate packages within the model in order to
maximise reuse and decouple generic constraints from solution specific ones.

● Constraints representing physical laws or other formulae, such as the defini-
tions of ‘Force’ or ‘Pressure’.

● Constraints representing mathematical and logical operators that make it easier
for other constraints to be connected together in a constraint usage network,
such as the definitions of ‘Plus’ and ‘Minus’.

● Constraints representing decisions (heuristics) rather than calculation-type
constraints, evaluating input parameters against some criteria and returning a
result, which could be, for example, a ‘yes/no’, ‘true/false’ or ‘go/no-go’. The
three ‘Decision’ constraint blocks in Figure 5.46 are examples.

If so desired, the SysML stereotyping mechanism could be used to explicitly mark the
constraint blocks as one of these three types, as shown in Figure 5.47. This can be done
in order to convey extra information about the constraints, perhaps useful if constraint
blocks and parametric diagrams are to be implemented in a tool such as Simulink.

From the point of view of modelling best practice, it would probably be better
to split Figures 5.46 and 5.47 into two diagrams, with the top two rows of constraint

172 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

bdd [package] Constraints [Constraint Definitions]

«constraint»
Volume

constraints
{v = w * l * h}

parameters
 l : m
 h : m
 v : m^3
 w : m

«constraint»
Mass

constraints
{m = d * v}

parameters
 d : kg/m^3
 m : kg
 v : m^3

«constraint»
Force

constraints
{f = m * a}

parameters
 f : N
 a : m/s^2
 m : kg

«constraint»
Pressure

constraints
{p = f / a}

parameters
 f : N
 a : m^2
 p : Pa

«constraint»
Surface Area

constraints
{sa = w * l}

parameters
 sa : m^2
 l : m
 w : m

«constraint»
Fill Time

constraints
{t = v / r}

parameters
 t : s
 r : m^3/s
 v : m^3

«constraint»
Minus

constraints
{r = a - b}

parameters
 a : Real
 b : Real
 r : Real

«constraint»
Plus

constraints
{r = a + b}

parameters
 a : Real
 b : Real
 r : Real

«constraint»
Decision - equipment

constraints
{IF pressure < strength THEN result = yes ELSE result = NO}

parameters
 pressure : Pa
 result : Decision Type
 strength : Pa

«constraint»
Decision - breath

constraints
{If breath time >= fill time THEN result = yes ELSE result = no}

parameters
 breath time : s
 fill time : s
 result : Decision Type

«constraint»
Decision - stunt

constraints
{IF breath result = yes AND equipment result = yes THEN result = yes ELSE result = no}

parameters
 breath result : Decision Type
 equipment result : Decision Type
 result : Decision Type

Figure 5.46 Example block definition diagram showing definition
of parametric constraints

The SysML Notation 173

bdd [package] Constraints [Constraint Definitions with Stereotypes]

«constraint»
Volume

constraints
{v = w * l * h}

parameters
 l : m
 h : m
 v : m^3
 w : m

«constraint»
Mass

constraints
{m = d * v}

parameters
 d : kg/m^3
 m : kg
 v : m^3

«constraint»
Force

constraints
{f = m * a}

parameters
 f : N
 a : m/s^2
 m : kg

«constraint»
Pressure

constraints
{p = f / a}

parameters
 f : N
 a : m^2
 p : Pa

«constraint»
Surface Area

constraints
{sa = w * l}

parameters
 sa : m^2
 l : m
 w : m

«constraint»
Fill Time

constraints
{t = v / r}

parameters
 t : s
 r : m^3/s
 v : m^3

«constraint»
Minus

constraints
{r = a - b}

parameters
 a : Real
 b : Real
 r : Real

«constraint»
Plus

constraints
{r = a + b}

parameters
 a : Real
 b : Real
 r : Real

«constraint»
Decision - equipment

constraints
{IF pressure < strength THEN result = yes ELSE result = NO}

parameters
 pressure : Pa
 result : Decision Type
 strength : Pa

«constraint»
Decision - breath

constraints
{If breath time >= fill time THEN result = yes ELSE result = no}

parameters
 breath time : s
 fill time : s
 result : Decision Type

«constraint»
Decision - stunt

constraints
{IF breath result = yes AND equipment result = yes THEN result = yes ELSE result = no}

parameters
 breath result : Decision Type
 equipment result : Decision Type
 result : Decision Type

«law»
Volume

«law»
Mass

«law»
Force

«law»
Pressure

«law»
Surface Area

«law»
Fill Time

«operator»
Minus

«operator»
Plus

«heuristic»
Decision - equipment

«heuristic»
Decision - breath

«heuristic»
Decision - stunt

Figure 5.47 Example block definition diagram showing parametric constraints
with stereotypes showing type

174 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

blocks on one diagram and the bottom row on another. From a SysML point of view
there is nothing wrong with the diagrams. However, the bottom row differs
from the others in that all the constraint blocks defined in that row happen to be
specific to the Coffin Escape Stunt System, whereas those on the top two rows are
general purpose definitions that could be reused for other Systems.

An example parametric diagram showing the constraint blocks defined in
Figure 5.46 being used is shown in Figure 5.48. This diagram shows the constraint
blocks being used to determine a go/no-go decision for the escapologist based on
various system properties. That is, the parametric diagram is being used to help
validate a use case, namely ‘Minimise risk to escapologist’. This can be seen in the
callout note showing that the diagram traces to that use case.

A better relationship from this diagram to the use case would be a verify
relationship, with the parametric diagram marked as a test case, since that is
essentially the role that it is playing here: the parametric diagram determines a go/
no-go decision based on the other system parameters that test whether the use case
can be met or not. However, SysML does not allow parametric diagrams to be
marked as test cases, and so a simple trace relationship has been used. For a dis-
cussion of the various types of traceability relationships and the concept of a test
case, see the following section on the requirement diagram.

par [block] Coffin Escape [Escapologist Decision]

Hole volume : Volume
{v = w * l * h}

v : m^3

w : m

l : m

h : m

Coffin volume : Volume
{v = w * l * h}

v : m^3
w : m

l : m

h : m

Concrete volume : Minus
{r = a - b}

b : Real
r : Real

a : Real

Height

From Coffin

Width

Length

Length

Height

Width

From Hole

Concrete mass : Mass
{m = d * v}

m : kg

d : kg/m^3

v : m^3

Density

From Concrete

Concrete force : Force
{f = m * a}

f : N
m : kg

a : m/s^2

g

From Constants

Coffin surface area : Surface Area
{sa = w * l}

sa : m^2
w : m

l : m

From Coffin

Time : Fill Time
{t = v / r}

t : s

v : m^3

r : m^3/s

Rate

From Pump

Concrete pressure : Pressure
{p = f / a}

p : Pa

f : N

a : m^2

Breath : Decision - breath
{If breath time >= fill time THEN

result = yes ELSE result = no}

breath time : s

fill time : s
result : Decision Type

Bmax

From Escapologist

Equip : Decision - equipment
{IF pressure < strength THEN result

= yes ELSE result = NO}

pressure : Pa

strength : Pa

result : Decision Type

Crush pressure

From Coffin

Stunt : Decision - stunt
{IF breath result = yes AND

equipment result = yes THEN result
= yes ELSE result = no}

breath result :
Decision Type

equipment result :
Decision Type

result : Decision Type

Decision

From Escapologist

tracesTo
«use case» Minimise risk to
escapologist

Figure 5.48 Example parametric diagram for determining go/no-go decision

The SysML Notation 175

A convention adopted by the authors, but not part of SysML, is to draw such
parametric diagrams with an implied left to right direction. In Figure 5.48 the para-
metric diagram is drawn as though the ‘result’ constraint parameter, connected to the
‘Decision’ property of the ‘Escapologist’ block, is the output of the diagram. Simi-
larly, the constraint parameters are arranged around each constraint property with
‘inputs’ on the left and ‘outputs’ on the right. This is done as an aid in thinking about
and constructing the diagram and, indeed, reflects the purpose of the diagram.

However, one could think about going ‘backwards’ through Figure 5.48: we could
use ‘Escapologist.Bmax’ and ‘Pump.Rate’ to determine the maximum volume of
concrete that can be pumped before the escapologist runs out of breath, and hence
the maximum volume of the hole. If the hole is just a little longer and wider than coffin
(i.e. we can set values on ‘Hole.Length’ and ‘Hole.Width’), then knowing the max-
imum volume of the hole would allow the height of the hole to be determined. Perhaps,
this usage would be used by the safety officer to calculate the hole size. If so, then it
could be redrawn and linked to the appropriate use case as shown in Figure 5.49.

par [block] Coffin Escape [Determining Hole Size]

Hole height : Volume
{v = w * l * h}

v : m^3

w : m

l : m

h : m

Coffin volume : Volume
{v = w * l * h}

v : m^3
w : m

l : m

h : m
Height

Width

Length

From Coffin

Concrete volume
from fill time : Fill Time

{t = v / r}

t : s v : m^3

r : m^3/s

Rate

From Pump

Fill time from breath time :
Decision - breath

{If breath time >= fill time THEN
result = yes ELSE result = no}

breath time : s
fill time : s

result : Decision Type

Bmax

From Escapologist

Decision = yes

Hole volume : Plus
{r = a + b}

a : Real

b : Real
r : Real

Hole length : Plus
{r = a + b}a : Real

b : Real r : Real

Clearance : m = 0.1

Hole width : Plus
{r = a + b}

a : Real

b : Real r : Real

Height

From Hole

tracesTo
«use case» Ensure coffin not
crushed by fluid

Figure 5.49 Example parametric diagram to determine hole size

176 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Parametric constraints can also be nested, that is they can be grouped into
higher level constraint blocks that make use of existing constraint blocks. Consider
the three parametric constraints in the top left of Figure 5.48 that are used to
calculate the amount of concrete needed to fill the space in the hole above the
coffin. These three constraints can be grouped into a ‘HoleFillVolume’ constraint
block. First, we define the new constraint block as shown in Figure 5.50.

‘HoleFillVolume’ is defined as being made up of two ‘Volume’ constraint
blocks and one ‘Minus’ constraint block and has a number of parameters defined.
Note the use of role names to distinguish the role that each constraint block plays.
Also note the use of aggregation rather than composition in the definition of

bdd [package] Constraints [HoleFillVolume - Nested Constraint Definition]

«constraint»
HoleFillVolume

constraint properties
 Container vol : Volume
 Fill vol : Minus
 Hole vol : Volume

parameters
 Container height : m
 Container length : m
 Container width : m
 Fill volume : m^3
 Hole height : m
 Hole length : m
 Hole width : m

«constraint»
Volume

constraints
{v = w * l * h}

parameters
 l : m
 h : m
 v : m^3
 w : m

«constraint»
Minus

constraints
{r = a - b}

parameters
 a : Real
 b : Real
 r : Real

Container vol 1 Fill vol 1Hole vol 1

Figure 5.50 Example block definition diagram showing how higher level
constraints can be constructed for the Coffin Escape Stunt

The SysML Notation 177

‘HoleFillVolume’. This was chosen since the ‘Volume’ and ‘Minus’ constraint
blocks are not restricted to being only parts of the ‘HoleFillVolume’ constraint
block but can also form parts of other constraint blocks, i.e. they can be shared
parts and hence the use of aggregation. Note also the additional constraint prop-
erties compartment that shows textually that the constraint block uses three other
constraint blocks. Note also how the role names discussed above are used to name
the three constraint properties shown.

It can also be seen that the actual constraint expression is not defined on this
diagram. For this, we need a special parametric diagram that shows how the
component constraint blocks are used. This is shown in Figure 5.51; this para-
metric diagram is needed to fully define this nested constraint and must be
considered as part of the definition.

Note how, in Figure 5.51, the parameters of the high-level constraint block are
attached to the diagram frame with binding connectors used to connect these to the
constraint parameters of the internal constraint properties.

Having defined this high-level ‘HoleFillVolume’ constraint Figure 5.48 can
now be redrawn to show how it can be used. This is shown in Figure 5.52.

par [constraint block] HoleFillVolume [Constraint Definition]

Hole vol : Volume
{v = w * l * h}

Container vol : Volume
{v = w * l * h}

Fill vol : Minus
{r = a - b}

b : Real

r : Real
a : Real

v : m^3

w : m

l : m

h : m

v : m^3

w : m

l : m

h : m
Hole height : m

Hole length : m

Fill volume : m^3

Hole width : m

Container height : m

Container length : m

Container width : m

Figure 5.51 Example parametric diagram showing how higher level constraints
can be constructed for the Coffin Escape Stunt

178 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The same approach could be taken for other groups of constraints blocks,
resulting in a high-level parametric diagram that uses perhaps three or four high-
level constraint blocks. This is left as an exercise for the reader.

It would be expected that, over time, an organisation would develop a library
of constraint definitions, with lower level constraints being grouped into higher
level ones for particular application usages.

5.5.4.3 Summary
SysML parametric diagrams show how constraints are related to each other and to
properties of System Elements. They use constraint blocks, defined on block defi-
nition diagrams, which contain a constraint expression that relates together a
number of constraint parameters. Each constraint block can be used multiple times
on multiple parametric diagrams, which relate the defined constraints to each other
and to System Elements.

Parametric diagrams allow properties and behaviour of a System to be con-
strained and can provide an invaluable aid in understanding the often complex
relationships between System properties. Modelling such inter-relationships allows
analysis and design decisions to be made and also can be used to test whether

par [block] Coffin Escape [Escapologist Decision using Grouped Constraints]

Height

From Coffin

Width

Length

Length

Height

Width

From Hole

Concrete mass : Mass
{m = d * v}

m : kg

d : kg/m^3

v : m^3

From Concrete

Concrete force : Force
{f = m * a}

f : N
m : kg

a : m/s^2

From Constants

Coffin surface area : Surface Area
{sa = w * l}

sa : m^2
w : m

l : m

From Coffin

Time : Fill Time
{t = v / r}

t : s

v : m^3

r : m^3/s

Rate

From Pump

Concrete pressure : Pressure
{p = f / a}

p : Pa

f : N

a : m^2

Breath : Decision - breath
{If breath time >=fill time THEN
result = yes ELSE result = no}

breath time : s

fill time : s
result : Decision Type

Bmax

From Escapologist

Equip : Decision - equipment
{IF pressure < strength THEN result

= yes ELSE result = NO}

pressure : Pa

strength : Pa

result : Decision Type

From Coffin

Stunt : Decision - stunt
{IF breath result = yes AND

equipment result = yes THEN result
= yes ELSE result = no}

breath result :
Decision Type

equipment result :
Decision Type

result : Decision Type

Decision

From Escapologist

tracesTo
«use case» Minimise risk to
escapologist

Density g

Crush pressure

Concrete vol : HoleFillVolume

Hole height : m

Hole length : m

Fill volume : m^3

Hole width : m

Container height : m

Container length : m

Container width : m

Figure 5.52 Example parametric diagram showing use of a high-level grouped
constraint for the Coffin Escape Stunt

The SysML Notation 179

Requirements have been or indeed can be satisfied. The use of parametric diagrams
as Scenarios is discussed further in Chapter 9.

5.5.5 Requirement diagrams
The SysML has a dedicated requirement diagram that is used to represent
Requirements and their relationships. This diagram is, in essence, a tailored block
definition diagram consisting of a stereotyped block with predefined properties and
a number of stereotyped dependencies and fixed-format notes. The various rela-
tionships provided by the requirement diagram also form an essential and central
part of the Traceability Views that are a fundamental aspect of a model-based
approach to systems engineering.

5.5.5.1 Diagram elements
Requirement diagrams are made up of three basic elements: requirements, rela-
tionships and test cases. Requirements are used, unsurprisingly, to represent
Requirements, which can be related to each other and to other elements via the
relationships. Test cases can be linked to requirements to show how the require-
ments are verified.

«graphic path»
Relationship

«graphic path»
Derive

«graphic path»
Nesting

«graphic path»
Refine

«graphic node»
Requirement

«diagram»
Requirement Diagram

«graphic path»
Satisfy

«graphic node»
Test Case

«graphic path»
Trace

«graphic path»
Verify

0..*

1

may be decomposed into

1..* 1..*

verifies

1..* 1
may be derived

from

1..*

1..* 0..*

Figure 5.53 Partial meta-model for the requirement diagram

180 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Figure 5.53 shows the partial meta-model for requirement diagrams. From
the model it can be seen that a ‘Requirement diagram’ is made up of one or more
‘Requirement’, zero or more ‘Relationship’ and zero or more ‘Test Case’. There are
six types of ‘Relationship’: the ‘Derive’, ‘Nesting’, ‘Satisfy’, ‘Trace’, ‘Refine’ and
‘Verify’ relationships.

The notation used in SysML requirement diagrams is shown in Figure 5.54.
This is followed by a description of the how the notation is used.

Central to the requirement diagram is the requirement. This is shown in
SysML as a rectangle with the stereotype «requirement». The rectangle also con-
tains a human-readable name for the requirement. In addition, all requirements
have two properties predefined by SysML: the id# and txt properties. The id#
property is there to hold a unique identifier for the requirement. The txt property
holds descriptive text for the requirement. The display of id# and txt is optional and
Figure 5.54 shows these compartments for ‘Requirement1’ and omits them for
‘Requirement2’, ‘Requirement3’ and ‘Requirement4’.

A Requirement may be decomposed into one or more sub-Requirements, for
example when the Requirement is not atomic in nature and it is desired to
decompose it into a number of related atomic sub-Requirements. In SysML this

«block»
Block

«block»
Source Element

«requirement»
Requirement1

id = "ID007"
text = "The System shall do ..."

«requirement»
Requirement2

«requirement»
Requirement3

«requirement»
Requirement4

«testCase»
Sequence Diagram

Requirement showing
id and text properties

Nesting

Satisfy
relationship Verify

relationship

Trace
relationship

Derive
relationship

Refine
relationship

«verify»

«deriveReqt»

«satisfy»

«refine»

«trace»

Figure 5.54 Summary of requirement diagram notation

The SysML Notation 181

decomposition is known as nesting and is indicated with a nesting relationship such
as that shown between ‘Requirement1’ and ‘Requirement2’.

When carrying out Requirements analysis it is often necessary to derive addi-
tional Requirements. A derived Requirement is one that is not explicitly stated by a
Stakeholder Role but one that has been derived by systems engineers from an
explicit, stated Requirement as part of the requirements analysis process. Such
derived Requirements can be linked back to their source Requirements in SysML
by using a derive relationship, an example of which is shown in Figure 5.54
showing that ‘Requirement3’ is derived from ‘Requirement1’.

The SysML requirement diagram also supports four other types of relation-
ships that are used in the following ways:

● Satisfy relationship. This is used to show that a model element satisfies a
requirement. It is used to relate elements of a design or implementation model
to the Requirements that those elements are intended to satisfy. Although
Figure 5.54 shows a satisfy relationship between a block and a requirement,
it can be used between any SysML model element and a requirement.

● Trace relationship. This is used to show that a model element can be traced to a
requirement or vice versa. This provides a general purpose relationship that
allows model elements and requirements to be related to each other. An
example of this is shown by the trace relationship between ‘Requirement2’
and ‘Source Element’ in Figure 5.54.

● Refine relationship. This is used to show how model elements and require-
ments can be used to further refine other model elements or requirements.
This could be, for example, one requirement refining another as shown in
Figure 5.54 where ‘Requirement4’ refines ‘Requirement3’.

● Verify relationship. This is used to show that a particular test case verifies a
given requirement and so can only be used to relate a test case and a require-
ment. However, a test case is not a specific type of SysML element. Rather it is a
stereotype, «testCase», which can be applied to any SysML operation or beha-
vioural diagram to show that the stereotyped element is a test case intended to
verify a requirement. This stereotyped element – the test case – can then be
related to the requirement it is verifying via the verify relationship. The test case
is shown on a requirement diagram as a SysML note containing the name of
the SysML element or diagram that is acting as a test case along with the ste-
reotype «testCase». This is shown in Figure 5.54 by the verify relationship
between the test case called ‘Sequence Diagram’ and ‘Requirement2’.

Unfortunately, the definition of the «testCase» stereotype in the SysML specifica-
tion [1] prevents the stereotype being applied to SysML parametric diagrams. This
is a missed opportunity since parametric diagrams, discussed earlier in this section,
are an ideal mechanism by which Formal Scenarios (test cases) can be modelled,
which is possible using sequence diagrams. Readers who are adopting the techni-
ques and approaches described in this book are urged to use the SysML’s stereo-
typing mechanisms to define their own test case stereotype that can be applied to
parametric diagrams. Similarly, a verify stereotype could be defined that can take a

182 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

use case as a target given the issues with the verify relationship discussed earlier in
this section.

These various types of relationship allow the modeller to explicitly relate
different parts of a model to the requirements as a way of ensuring the consistency
of the model. However, where possible one of the specific types of relationship,
such as satisfy, should be used in preference to the more generic trace relationship,
which has weakly defined semantics since it says nothing about the nature of the
relationship other than that the two elements can be traced in some general and
unspecified manner.

It should also be noted that, although shown in Figure 5.54 using stereotyped
dependencies, these relationships can also be shown in SysML using special ver-
sions of the note. These callout notes can be useful when relating elements in
widely different parts of a model since it avoids the need to produce additional
diagrams specifically to show the relationships. However, they can lead to incon-
sistency, particularly when modelling is not being carried out using a tool (or using
a tool that does not enforce consistency). Using the stereotyped dependencies gives
an immediate and direct indication of the relationship since the two elements are
explicitly connected by the dependency. Using callout notes hides the immediacy
of the relationship inside the text of the note and also requires that two notes are
added to the model: one to the source of the relationship and one to the target. If
one of these notes is omitted, the model will be inconsistent. An example of the use
of callout notes is given in Section 5.5.5.2.

5.5.5.2 Examples
This section presents some examples of requirement diagrams and related dia-
gramming elements. Further examples will be found in the case study in Chapter 14.

Figure 5.55 shows a number of SysML requirements for the Coffin Escape
Stunt, each of which has its id# and txt property shown. Some of these requirements
are broken down further into sub-requirements via nesting. At least two of these
requirements, ES004 and ES005, have descriptive text in their txt property that
could be considered to be untestable. In the case of ES005, the sub-requirements
further describe what is meant by ‘ . . . the risk to the escapologist is minimised’.
However, in the case of ES004 further analysis is required. This might result in a
number of derived requirements being created as shown in Figure 5.56.

The three requirements ES004-D001, ES004-D002 and ES004-D003 shown
in Figure 5.56 are each derived from ES004 and show how the vague and
untestable requirement that ‘The System shall ensure that the excitement of the
audience is maximised’ may be further specified in a way that is testable.

Sometimes turning off the id# and txt properties of a requirement can make a
diagram easier to read, particularly when additional information such as trace
relationships are shown. This has been done in Figure 5.57, which shows the same
requirements as are shown in Figure 5.55, but with the id# and txt compartments
hidden and trace relationships added linking the requirements to blocks repre-
senting the source of the requirements. There is no significance in the sizing of the
various requirements, it has been done simply to ease the layout of the diagram.

The SysML Notation 183

req [package] Requirements Diagrams [Stunt Requirements]

«requirement»
Perform Stunt

id = "ES001"
text = "The System shall enable the Escapologist to perform the 'concrete coffin' Coffin
Escape stunt."

«requirement»
Allow Different Fluids

id = "ES002"
text = "The System shall allow the Coffin
Escape stunt to be performed using
different Fluids, not just Concrete.
Examples include Custard and Water
etc."

«requirement»
Computer-controlled Pump

id = "ES003"
text = "The System shall ensure that the
Pump used to pump the chosen Fluid into
the Hole is to be under computer
control."

«requirement»
Maximise Excitement

id = "ES004"
text = "The System shall ensure that the excitement of the Audience is maximised."

«requirement»
Minimise Risk

id = "ES005"
text = "The System shall ensure that the risk to the Escapologist is minimised."

«requirement»
Sufficient Air

id = "ES006"
text = "The System shall ensure that the
stunt can be performed before the
Escapologist runs out of air."

«requirement»
Crush-proof

id = "ES007"
text = "The System shall ensure that the
Coffin (and the Escapologist) is not
crushed by the weight of the Fluid on top
of it."

Figure 5.55 Example requirement diagram showing Requirements
for the Coffin Escape Stunt

184 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

A similar diagram is given in Figure 5.58, which concentrates on a single
requirement, showing how it traces to source elements and in addition, showing a
use case that refines the requirement. A seemingly obvious, but often overlooked,
aspect of modelling is highlighted in Figure 5.58, namely that of keeping diagrams
as simple as possible. There is often a temptation to overload diagrams with too
many elements so that they add to the complexity and lack of understanding of the
system rather than helping. The information shown on the four example diagrams
earlier in this section could have been shown on a single diagram, but this would
have made the communication of the understanding of the requirements and their
relationships to other model element harder to achieve. Any sensible modelling tool
will allow model elements to be reused on a number of different diagrams and this is to
be encouraged, not only for requirements diagrams but for any of the SysML
diagrams. If you find a diagram is becoming too complex (more than around 9 or

req [package] Requirements Diagrams [Maximise Excitement - Derived Requirements]

«requirement»
Maximise Excitement

id = "ES004"
text = "The System shall ensure
that the excitement of the
Audience is maximised."

«requirement»
Satisfaction Survey

id = "ES004-D001"
text = "The System shall ensure that
an Audience satisfaction survey is
carried out after every
performance."

«requirement»
Minimum Satisfaction Level 85%

id = "ES004-D002"
text = "The System shall deliver an
Audience satisfaction level of 85%
within four performances (of the
first)."

«requirement»
Continuing Satisfaction

id = "ES004-D003"
text = "The System shall ensure that
a minimum Audience satisfaction
level of 85% is maintained after the
first four performances."

«deriveReqt»

«deriveReqt»

«deriveReqt»

Figure 5.56 Example requirement diagram showing derived Requirements

The SysML Notation 185

req [package] Requirements Diagrams [Stunt Requirements Showing Traceability - id# & text hidden]

«requirement»
Perform Stunt

«requirement»
Allow Different Fluids

«requirement»
Computer-controlled Pump

«requirement»
Maximise Excitement

«requirement»
Minimise Risk

«requirement»
Sufficient Air

«requirement»
Crush-proof

«block»
Email re. Different
Fluids 15.03.2018

«block»
Coffin Escape

Schematic

«block»
Meeting Minutes

01.04.2018

«block»
Initial Ideas Meeting

10.01.2016

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

Figure 5.57 Example requirement diagram showing «trace» relationships

req [package] Requirements Diagrams [Computer-controlled Pump - Refines and traces]

«requirement»
Computer-controlled

Pump

«block»
Coffin Escape Schematic

«block»
Meeting Minutes 01.04.2018

Fluid to be pumped into hole
under computer control «refine»

«trace»«trace»

Figure 5.58 Example requirement diagram showing «refine» and
«trace» relationships

186 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

10 elements, as a crude heuristic), break it down into a number of simpler diagrams.
Miller’s comments on the limits on our capacity to process information are as valid
today as when they were first written and apply just as much to SysML models. See [2].

The final example of a requirement diagram is shown in Figure 5.59. This
diagram shows exactly the same information as that shown in Figure 5.58 but uses
the callout notation rather than explicit refine and trace relationships. Some of the
immediacy of information is lost using the callout notation since the symbols used
do not, in this example, show graphically that the other model elements involved
are a use case and two blocks. One has to read the content of the callout notes to
understand the types of model elements involved. For this reason, the authors
recommend, where possible and appropriate, the explicit relationships as in
Figure 5.58.

5.5.5.3 Summary
SysML requirement diagrams are used to show requirements and their relation-
ships to each other and how they trace to, are satisfied by, are refined by and are
verified by other model element. Wherever possible, use of the more specific types
of relationship (such as satisfy) is preferred over the more generic trace. Each
requirement has a name, unique identifier and a description. Most SysML tools
allow the identifier and description to be hidden if desired, in order to simplify
diagrams. Additional properties such as ‘priority’ may be defined if needed and
examples are given in the SysML specification [1].

It should also be noticed that the scope of the requirement diagram may, and
should, be extended to include other types of Need from the MBSE Ontology,
rather than being restricted to Requirements only. The MBSE Ontology states that
there are four types of Need: Requirement, Capability, Goal and Concern, each of
which may be visualised using the SysML requirement concept.

req [package] Requirements Diagrams [Computer-controlled Pump - Refines and traces - ...

«requirement»
Computer-controlled

Pump

tracesTo
«block» Coffin Escape Schematic

«block» Meeting Minutes 01.04.2018

refinedBy
«use case» Fluid to be pumped into
hole under computer control

Figure 5.59 Example requirement diagram showing «refine» and «trace»
relationships using callout notes

The SysML Notation 187

5.5.6 State machine diagrams
So far we have been considering the SysML structural diagrams. In this section we
now start looking at the SysML behavioural diagrams, beginning with the state
machine diagram. State machine diagrams have been discussed in some detail in
Chapter 4 and thus some of this section will serve as a recap. The focus here,
however, will be the actual state machine diagram, whereas the emphasis pre-
viously has been on general behavioural modelling.

State machine diagrams realise a behavioural aspect of the model. They model
the order in which things occur and the logical conditions under which they occur
for instances of blocks, known in SysML as instance specifications. They show
such behaviour by relating it to meaningful states that the System Element, mod-
elled by a block, can be in at any particular time, concentrating on the events that
can cause a change of state (known as a transition) and the behaviour that occurs
during such a transition or that occurs inside a state.

5.5.6.1 Diagram elements
State machine diagrams are made up of two basic elements: states and transitions.
These states and transitions describe the behaviour of a block over logical time.
States show what is happening at any particular point in time when an instance
specification typed by the block is active. States may show when an activity is being
carried out or when the properties of an instance specification are equal to a par-
ticular set of values. They may even show that nothing is happening at all – that
is to say that the instance specification is waiting for something to happen. The
elements that make up a state machine diagram are shown in Figure 5.60.

Figure 5.60 shows the partial meta-model for state machine diagrams. State
machine diagrams have a very rich syntax and thus the meta-model shown here
omits some detail – for example, there are different types of action that are not
shown. See [1,3] for more details.

From the model, it can be seen that a ‘State Machine Diagram’ is made up of one
or more ‘State’ and zero or more ‘Transition’. A ‘Transition’ shows how to change
between one or two ‘State’. Remember that it is possible for a transition to exit a
state and then enter the same state, which makes the multiplicity one or two rather
than two, as would seem more logical.

There are four types of ‘State’: ‘Initial State’, ‘Simple State’, ‘Composite
State’ and ‘Final state’. Each ‘State’ is made up of zero or more ‘Activity’. An
‘Activity’ describes an on-going, non-atomic unit of behaviour and is directly
related to the operations on a block. A ‘Composite State’ is divided into one or
‘Region’. When there are more than one ‘Region’, each ‘Region’ is used to model
concurrent (i.e. parallel) behaviour.

Each ‘Transition’ may have zero or one ‘Guard Condition’, a Boolean condi-
tion that will usually relate to the value of a block property. The ‘Guard Condition’
must evaluate to true for the ‘Transition’ to be valid and hence capable of being
crossed.

A ‘Transition’ may also have zero or one ‘Action’. An ‘Action’ is defined as an
activity whose behaviour is atomic. That is, once started it cannot be interrupted

188 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

and will always complete. An ‘Activity’, on the other hand, is non-atomic and can
be interrupted. An ‘Action’ should be used for short-running behaviour.

Finally, a ‘Transition’ may have zero or one ‘Event’ representing an occur-
rence of something happening that can cause a ‘Transition’ to fire. Such an ‘Event’
can be thought of as the receipt of a message by the state machine.

If an ‘Event’ models the receipt of a message, often sent from one state
machine to another, then how does one model the sending of such a message from a
state machine? The answer is that there are actually two types of event: receipt
events and send events.

The type of event described earlier in this section, which corresponds to the
receipt of a message and which can trigger a transition, is actually an example of a
receive event. A send event represents the origin of a message being sent from one
state machine to another. It is generally assumed that a send event is broadcast to all
elements in the System and thus each of the other elements has the potential to

«graphic path»
Transition

Action

Activity

«graphic node»
Composite State

Event

Guard Condition

Region

«graphic node»
Simple State

«graphic node»
State

«diagram»
State Machine

Diagram

«graphic node»
Initial State

«graphic node»
Final State

0..1

0..1

0..*

1

shows how to change between

1..2

0..1

1..*

0..*1..*

Figure 5.60 Partial meta-model for the state machine diagram

The SysML Notation 189

receive and react upon receiving the event. Obviously, for each send event there
must be at least one corresponding receipt event in another state machine. This is
one of the basic consistency checks that may be applied to different state machine
diagrams to ensure that they are consistent. A send event is usually modelled as the
action on a transition.

The notation for the state machine diagram is shown Figure 5.61.

The basic modelling elements in a state machine diagram are states, transitions
and events. States describe what is happening within a system at any given point in time,
transitions show the possible paths between such states and events govern when a
transition can occur. These elements were discussed in detail in Chapter 4 and the
reader is referred to that chapter. However, there are a number of elements in Fig-
ure 5.61 that weren’t discussed in Chapter 4 and which need discussion here, namely

● Composite states
● Entry activities
● Exit activities

Figure 5.61 shows two composite states: ‘Composite State (Concurrent)’ and
‘Composite State (Sequential)’. Composite states allow states to be modelled that

Composite State (Concurrent)

exit / op3

Simple State

do / op1

Simple State

Composite State (Sequential)

Composite state with
exit activity

State with do activity

Region

Simple State 1

entry / op2
Simple State 2

State with entry
activity

Final
state

Completion transition
with action only

Simple State

Simple state

Transition with event
only

Transition with event,
guard & action

Initial
state

Event1 [Attribute1 = VALUE]/op4

Event2 /Event3

Figure 5.61 Summary of state machine diagram notation

190 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

have internal behaviour that is further decomposed into states. They can be thought
of as states that have their own state machine diagrams inside.

Let us consider ‘Composite State (Sequential)’ first. This composite state has a
single region (the part of the state beneath the box containing the name). Since
there is only one region the behaviour takes place sequentially within the state and
hence this is a sequential composite state. In this example, ‘Simple State 1’ is
entered first. This then leads on to ‘Simple State 2’ and when this state is left the
final state is entered.

Now consider ‘Composite State (Concurrent)’. This has two regions separated
by a dashed line. Each region represents concurrent (i.e. parallel) behaviour and
hence this is a concurrent composite state. The transition to ‘Composite State
(Concurrent)’ causes both regions to become active and therefore the two small
state machine diagrams in the regions become active. When both have completed,
then the transition from ‘Composite State (Concurrent)’ to the final state can fire.

Examples of composite states, along with a discussion of when sequential
composite states are used, can be found in Section 5.5.6.2.

Entry and exit activities can be seen in ‘Simple State 1’, shown as ‘Entry/op2’
(an entry activity), and in ‘Composite State (Concurrent)’, shown as ‘Exit/op3’ (an
exit activity).

An entry activity represents an activity that takes place every time a state is
entered. The notation is the keyword ‘Entry/’ followed by the behaviour to take
place (in the example here, the invocation of an operation ‘op2’).

An exit activity represents an activity that takes place every time a state is
exited. The notation is the keyword ‘Exit/’ followed by the behaviour to take place
(in the example here, the invocation of an operation ‘op3’).

Unlike normal activities both the entry activity and the exit activity cannot be
interrupted; they behave more like actions as they are guaranteed to run to com-
pletion. Section 5.5.6.2 gives examples.

Before moving on to consider some examples of state machine diagrams it is
worth discussing some alternative notation that can be used for events (both receipt
events and send events) and for modelling decision points (known as junction states).

Figure 5.62 shows the two possible notations for modelling receipt events and
send events. The top part of the diagram shows the textual notation. There is no
keyword to indicate ‘‘receipt’’, an event preceding a guard condition represents a
receipt event. The widely used notation for representing a send event is to place the
word ‘‘send’’ in front of the event name as part of the action on the transition. Note,
however, that this is a convention and is not specified by the SysML standard.
Exactly the same transition is shown at the bottom of the diagram, but this time using
graphical symbols that explicitly show which is a receipt event and which is a send
event. This notation is also used on activity diagrams discussed in Section 5.5.8.

Figure 5.63 shows alternative notations that can be used when there are two or
more transitions from a state that have the same event (or indeed no event) but
different guard conditions. In the example, the same event ‘Event1’ will lead either
to ‘state 2’ or ‘state 3’ depending on the value of the guard condition. This can be
represented as two separate transitions from ‘state 1’ as in the upper part of the

The SysML Notation 191

diagram, or as a single transition from ‘state 1’ to a junction state (the diamond)
followed by two transitions from the junction state.

As to which notation to use? Well, use whatever you feel is best. Diagramming
guidelines might specify (see Chapter 6 for a discussion of diagramming guide-
lines). However, if they don’t, you are advised to choose a style and use it con-
sistently within a model. At least in that way your state machine diagrams will have
a consistent look and feel.

State1

State2

State3

State1

State2

State3

[guard = FALSE] /action

Event1

Event1 [guard = TRUE] /action

[guard = TRUE] /action

Event1 [guard = FALSE] /action

Figure 5.63 Alternative notations for decisions

Event1

State2State1

State2State1

Event2

Receipt event - Event1 Send event - Event2

Event1 [guard]
/send Event2

Figure 5.62 Alternative notations for receipt and send events

192 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

5.5.6.2 Examples
This section presents some examples of state machine diagrams and related
diagramming elements. Further examples will be found in the case study in
Chapter 14.

The block definition diagram in Figure 5.64 shows a single block that models
the ‘Pump’ used in the Coffin Escape Stunt. This was seen previously in Sec-
tion 5.5.1.2 when we looked at example block definition diagrams. The block has a
number of operations and the ‘Pump’ that it models can be in a number of mean-
ingful states, such as being powered down and pumping in either direction. It
should, therefore, have its behaviour modelled using a state machine diagram. This
has been done in Figure 5.65.

As discussed in Section 5.5.1.1, blocks now support additional compartments,
one of which is the classifier behaviours compartment. Since the state machine
in Figure 5.65 defines the behaviour of the ‘Pump’ block, it is an example of a
classifier behaviour. Turning on this compartment results in a block with an extra
compartment, as shown in Figure 5.64, where ‘Pump’ now has an additional
compartment labelled ‘classifier behaviours’. This shows that the ‘Pump’ block
has classifier-level (i.e. at the level of the whole block) behaviour defined by a
state machine which is also named ‘Pump’. This is the very diagram shown in
Figure 5.65.

The state machine diagram in Figure 5.65 has three main states, ‘starting’,
‘working’ and ‘stopping’, an initial state and a final state. The state ‘working’ is a
composite state. It has one region and is therefore a sequential composite state. It
contains three states: ‘pumping forward’, ‘pumping reverse’ and ‘reversing’.

bdd [package] Structural Elements [Pump properties and operations]

«block»
Pump

prime()
flush()
pump()
pumpReverse()
stopPump()

owned behaviors
«stateMachine» Pump

values
 Rate : m^3/s
 CurrentDirection : PumpDirection

classifier behaviours
«stateMachine» Pump

Figure 5.64 Example block definition diagram showing Pump properties
and operations

The SysML Notation 193

The state machine represented by this state machine diagram can be con-
sidered to come into existence when the ‘Pump’ is turned on. When this happens
the state machine diagram begins in the initial state and then immediately transi-
tions to the ‘starting’ state. It will stay in this state until the ‘start’ event is received.
On receipt of this event the transition will fire and the state machine will move into
the ‘pumping forward’ state. There are a number of points to discuss here. First, the
transition has an action ‘CurrentDirection¼ Forward’. As is common with many
actions this is assigning a value to a property of the owning block. Is ‘Current-
Direction’ a property of the ‘Pump’ block? Yes, as it can be seen from Figure 5.64.
So this action is consistent with the structural aspects of the model. Second, the
transition crosses the boundary of the ‘working’ composite state and enters the
‘pumping forward’ state contained within ‘working’. This is perfectly okay and is
very common when working with sequential composite states. This initial transi-
tion and associated behaviour captures the fact that the ‘Pump’ in this example
always starts pumping in the normal forward direction.

Once running, the ‘Pump’ can be switched to pump in a reverse direction.
However, it has to stop pumping normally before it can make this change of
direction. Similarly, if pumping in reverse, it can be switched back to pumping
normally but, again, it has to stop pumping first. The operator does not have to
explicitly tell the ‘Pump’ to stop before switching direction. The ‘Pump’ has to

stm [StateMachine] Pump [Pump operation]

starting

working

pumping forward

entry / pump
do / prime

reversing

do / stopPump

pumping reverse

do / pumpReverse

stopping

entry / flush
do / stopPump

reverse

stop

[CurrentDirection = Reverse]
/CurrentDirection = Forward

reverse

start
/CurrentDirection = Forward

[CurrentDirection = Forward]
/CurrentDirection = Reverse

Figure 5.65 Example state machine diagram showing pump behaviour

194 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

handle this itself. This is what the three states inside ‘working’, together with their
associated transitions, do.

When the ‘pumping forward’ state is entered, the ‘Pump’ primes itself. This is
achieved with an entry activity ‘Entry/prime’. This invokes the ‘prime’ operation
of the ‘Pump’. This cannot be interrupted; the ‘Pump’ will always complete its
‘prime’ operation before it does anything else. Once the ‘Pump’ has finished
priming itself, it then begins pumping via an activity ‘do: pump’. This can be
interrupted. If not interrupted, then the ‘pump’ operation will run to completion. If
it is interrupted, then the ‘pump’ operation will cease and the ‘pumping’ state will
be left along whichever transition fired causing the interruption.

So what transitions are possible from ‘pumping’ and what will cause them
to happen? The most obvious is the transition from ‘pumping’ to ‘reversing’. This
transition has an event ‘reverse’ and no guard condition or action. If ‘reverse’
is received by the state machine diagram while in the ‘pumping’ state, then this
transition will fire and the ‘reversing’ state will be entered. Don’t forget: the ‘do:
pump’ activity can be interrupted, so this event can cause the ‘pump’ operation to
cease prematurely. Another possibility, perhaps not so obvious, is the transition
from the ‘working’ sequential composite state to the ‘stopping’ state. This transi-
tion is drawn from the boundary of ‘working’. This means that it is a valid tran-
sition from all of the states contained within. Essentially all three states have a
transition triggered by the ‘stop’ event to the ‘stopping’ state’. This illustrates the
common use of sequential composite states; they are used to enclose states that all
have the same transitions from them, allowing a cleaner diagram to be produced.
Again, this transition, should it fire, will end the ‘pump’ operation prematurely.

If the transition to ‘reversing’ fires, then the state machine will move into the
‘reversing’ state where an activity will invoke the ‘stopPump’ operation. Again,
this behaviour can be interrupted by the transition triggered by the ‘stop’ event
from the ‘working’ state. However, it cannot be interrupted by either of the two
transitions, which directly leave the ‘reversing’ state. Why? Because neither of the
two transitions from ‘reversing’ has events. They only have guard conditions and
actions. Only transitions with events can interrupt behaviour in a state. Those
without events will be checked once any behaviour inside the state has completed.
Thus, as soon as the ‘stopPump’ operation has finished (assuming the ‘stop’ event
has not caused the transition to ‘stopping’ to fire), then the two guard conditions on
the transitions are checked. Whichever is true determines which transition takes
place. Both of these guard conditions check the value of the ‘CurrentDirection’
property to establish whether the ‘Pump’ is currently pumping in the normal
direction or is pumping in reverse. In this case, the guard condition ‘[CurrentDir-
ection¼Forward]’ will be true, since this is the direction that was set on entry to
the ‘pumping forward’ state. Therefore, the transition to the ‘pumping reverse’
state will fire, and the action ‘CurrentDirection¼Reverse’ is executed to track that
the ‘Pump’ is now in the ‘pumping reverse’ state.

The behaviour of the ‘pumping reverse’ state is now the opposite of the
‘pumping forward’ state. There is no need for the ‘Pump’ to prime itself as this was
already done and the ‘Pump’ has just been pumping, so the ‘pumpReverse’

The SysML Notation 195

operation is immediately invoked. This will either run to completion or be inter-
rupted in exactly the same way as for ‘pump’ in the ‘pumping’ state. A ‘reverse’
event will cause the transition to ‘reversing’ to fire or a ‘stop’ event will cause a
transition to ‘stopping’ to fire. If the transition to ‘reversing’ happens, then the
behaviour is described previously except that the other guard condition is now true
and the transition back to ‘pumping forward’ will take place.

Thus, the ‘start’ event will start the ‘Pump’ pumping normally and each receipt
of the ‘reverse’ event will cause it to toggle to pumping in reverse and then back
to pumping normally, with the ‘Pump’ stopping automatically before changing
direction. When in any of the ‘pumping forward’, ‘reversing’ or ‘pumping reverse’
then receipt of the ‘stop’ event will cause the transition to the ‘stopping’ state to
fire. On entry to this state the ‘Pump’ is flushed (‘Entry/flush’) before the ‘stop-
Pump’ operation is invoked.

If all of the preceding explanation of the behaviour of the state machine dia-
gram in Figure 5.65 seems convoluted, perhaps it will help to reinforce the benefits
of modelling with a language such as SysML. An experienced modeller would have
understood all of the above description simply by looking at the diagram in
Figure 5.65.

Finally, an important consideration when constructing state machine diagrams
is that of determinism. When leaving a state it is important that only one of the
transitions can be followed. This means that the events and guard conditions on all
the transitions from a state must be mutually exclusive; in this way only one
transition, at most, will ever occur. If more than one transition could occur, then the
state machine diagram is said to be non-deterministic and the exact behaviour is
impossible to determine. There is a place for non-deterministic state machine dia-
gram but their discussion is outside the scope of this book.

5.5.6.3 Summary
State machine diagrams realise a behavioural aspect of the model. They model the
order in which things occur and the logical conditions under which they occur for
instances of blocks, known in SysML as instance specifications. They show such
behaviour by relating it to meaningful states that the System Element, modelled by
a block, can be in at any particular time, concentrating on the events that can cause a
change of state (known as a transition) and the behaviour that occurs during such a
transition or that occurs inside a state.

There are a few rules of thumb to apply when creating state machine diagrams:

● All blocks that exhibit behaviour (have operations) must have their behaviour
specified. If the System Element modelled by the block can be in a number of
states, then this behaviour should be modelled using a state machine diagram.
If it does not exhibit such stateful behaviour, then consider using activity dia-
grams. Whichever is chosen, the behavioural aspect of the block must be
modelled.

● All operations in a particular block that has its behaviour modelled using a
state machine diagram must appear on its associated state machine diagram.

196 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

States may be empty and have no activities, which may represent, for example,
an idle state where the System is waiting for an event to occur. Messages are
sent to and received from other state machine diagrams as send events and
receipt events.

Also, remember that there is a difference between behaviour modelled using
actions on a transition and behaviour modelled using activities within a state.
Actions are atomic. They are considered to take zero logical time and once started
cannot be interrupted. Activities, on the other hand, do take time to run and can be
interrupted (but remember that entry activities and exit activities are guaranteed to
complete). It is important to differentiate between activities and actions as they can
have a large impact on the way in which the model of a System will evolve and an
even bigger impact on how it is implemented.

5.5.7 Sequence diagrams
This section introduces and discusses sequence diagrams, which realise a behavioural
aspect of the model. The main aim of the sequence diagram is to show a particular
example of operation of a System, in the same way as movie-makers may draw up a
storyboard. A storyboard shows the sequence of events in a film before it is made.
Such storyboards in MBSE are known as Scenarios. Scenarios highlight pertinent
aspects of a particular situation and ignore all others. Each of these aspects is
represented as an element known as a life line. A life line in SysML represents an
individual participant in an interaction and will refer to an element from another
aspect of the model, such as a block, a part or an actor. Sequence diagrams model
interactions between life lines, showing the messages passed between them with an
emphasis on logical time or the sequence of messages (hence the name).

5.5.7.1 Diagram elements
Sequence diagrams are made up of two main elements, life lines and messages,
along with additional elements that allow other diagrams to be referenced, inter-
action uses, and constructions such as looping and parallel behaviour to be repre-
sented, represented using combined fragments. These elements are shown in
Figure 5.66.

Figure 5.66 shows the partial meta-model for sequence diagrams. From
the model it can be seen that a ‘Sequence Diagram’ is made up of one or more ‘Life
Line’, one or more ‘Message’, zero or more ‘Interaction Uses’ and zero or more
‘Combined Fragment’, which has types ‘Loop Combined Fragment’, ‘Parallel
Combined Fragment’ and ‘Alternative Combined Fragment’. An ‘Interaction Use’
references a ‘Sequence Diagram’ and each ‘Combined Fragment’ spans one or
more ‘Life Line’. A ‘Message’ connects two ‘Occurrence Specification’, each of
which occurs on a ‘Life Line’. Each ‘Life Line’ is made up of zero or more
‘Execution Specification’.

The notation for the sequence diagram is shown in Figure 5.67.
The main element of a sequence diagram is the life line, representing a parti-

cipant in a Scenario over a period of time. It is represented by a rectangle with a

The SysML Notation 197

dashed line hanging below it, as shown in Figure 5.67. The dashed line represents
logical time extending down the diagram, with earlier times at the top and later
times at the bottom. The sequence diagram is the only SysML diagram in which
layout is important, as indicated by this time dimension. A life line will refer to an
element from another aspect of the model, such as a block or an actor; it can be
thought of as an instance of that element that is taking part in the Scenario. This is
reflected in the labelling of the life line, placed inside the rectangle, which takes the
following form:

name : type

The name part of the label is optional and is used to give the life line a unique
identifier in the case where multiple life lines of the same type are used on the same
diagram. The type indicates the block or actor that the life line is an instance of and
the rectangle can be adorned with the stereotype «block» or the stick man symbol to
emphasise that the life line is typed by a block or an actor (see, e.g., Figure 5.73).

The sequence of interaction between life lines is shown by messages drawn
between the sending and receiving life lines. These messages can be annotated with
text describing the nature of the interaction and show the sequence of interactions
through time. The portion of time during which a life line is active is shown by the
small rectangles on the dashed line, known as execution specifications. A life line
can send a message to itself, to show that some internal behaviour is taking place.
See, for example, Figure 5.73. The two occurrence specifications connected by a

«graphic node»
Loop Combined

Fragment

«graphic node»
Alternative Combined

Fragment

«graphic node»
Combined Fragment

Execution
Specification

«graphic node»
Interaction Use

«graphic node»
Life Line

«graphic path»
Message

Occurrence
Specification

«graphic node»
Parallel Combined

Fragment

«diagram»
Sequence Diagram

1..*

0..*

spans

1..*

1

references

0..*

1
connects

2

0..*

1..*

occurs on

1

0..*1..*

1

Figure 5.66 Partial meta-model for the sequence diagram

198 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Life Line 3: Block3Life Line 2: Block2Life Line 1: Block1

alt

Gate

loop

[min, max]

par

ref
Another Sequence Diagram

Loop combined
fragment

Synchronous (call)
message

Life line

Execution
specification

Reply (return)
message

Asynchronous
message

Alternative combined
fragment

Interaction use

Parallel combined
fragment

Figure 5.67 Summary of sequence diagram notation

The SysML Notation 199

message are not explicitly shown but are the points on the life line where a message
leaves and joins a life line.

Complex Scenarios can be represented containing looping, parallel and alter-
native behaviour, shown using various types of combined fragment. In addition,
a sequence diagram can refer to another via the interaction use notation, allowing
more and more complicated Scenarios to be developed. Examples of the combined
fragment and interaction use notation are shown in Figure 5.67. They are described
further in the following subsections. However, it is worth sounding a note of cau-
tion here. The various combined fragment notations can be nested, allowing very
complicated Scenarios to be modelled. In particular, the use of the alternative
combined fragment notation allows alternative paths through a Scenario to be
shown. What this means is that the sequence diagram is showing more than one
Scenario. From a SysML perspective, there is nothing wrong with doing this.
However, from a modelling perspective such an approach can, in all but the sim-
plest of cases, lead to confusing diagrams. Apart from showing very simple alter-
natives on a single diagram the authors would recommend a one diagram, one
scenario approach.

Showing parallel processing
Parallel paths through a Scenario can be shown in sequence diagrams using a
parallel combined fragment. Each parallel path appears in a separate compartment
within the combined fragment frame. The parallel compartments are divided by a
dashed line, and the combined fragment uses the keyword par.

Figure 5.68 shows a sequence diagram with two parallel combined fragments,
each of which has two parallel regions. The first parallel combined fragment shows
the ‘Begin stunt’ message being sent from the ‘Set up’ life line to the ‘Start’ life line
at the same time as the ‘Set up’ life line sends the ‘Begin stunt’ message to the
‘Escape’ life line. Similarly, the second parallel combined fragment shows
the ‘Start escape’ message being sent between the ‘Start’ and ‘Escape’ life lines at
the same time that it is sent between the ‘Escape’ and ‘Monitor’ life lines.

Referencing other diagrams
Often, when modelling Scenarios, common behaviour is observed. Rather than
having to repeat this behaviour on every sequence diagram that needs it, SysML
allows other sequence diagrams to be referenced to allow reuse of Scenarios.

For example, say that we have some common functionality that we want to
show on multiple Scenarios. First, we model this using a sequence diagram. An
example is shown in Figure 5.69.

This functionality can then be reused on another sequence diagram using an
interaction use. Each referenced Scenario appears in a separate frame with the
keyword ref, as shown in Figure 5.70.

The life lines that appear in the sequence diagram referenced must appear on
the referencing diagram and the interaction use must be placed over those life lines
as in Figure 5.70.

SysML version 1.4 introduced the concept of parameters and return values
to sequence diagrams. An interaction use which references such a parameterised

200 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

sequence diagram would include values for each parameter and would also specify
the property of one of the blocks acting as a life line to receive any return value. In
Figure 5.70 this has been done, with the ‘stunt time’ parameter from Figure 5.69 set
to the value ‘120’. Note also the name of the containing package has been removed
from the interaction use in order to declutter the diagram.

For more information on parameterised sequence diagrams, see [1]. However,
it must be noted here that the latest SysML specification (version 1.5 at time of
writing) is somewhat lacking in detail on both the way the notation is used and in
examples (there are none!). Sadly, this is all too typical of the SysML specification.

Showing alternatives
Sometimes two or more Scenarios are so similar that showing alternative paths on a
single diagram rather than one per diagram is desirable. SysML allows Scenarios to
be modelled in this way using alternative combined fragments.

This consists of a frame with the keyword alt that is divided into separate
compartments, one for each alternative, by dashed lines. Each compartment should

seq [package] Scenarios [Successful Stunt - Escapologist]

:Start :Escape :Monitor:Set up

par

par
Start escape

Begin stunt

Begin stunt

Start escape

Figure 5.68 Example sequence diagram showing a parallel combined fragment

The SysML Notation 201

seq [interaction] Preparation [Preparation (stunt time:s)]

:Escape:Set up :Start

par
Begin stunt(stunt time)

Begin stunt(stunt time)

Figure 5.69 Example sequence diagram defining common functionality to
be referenced

seq [package] Scenarios [Successful Stunt - Escapologist - Using Preparation Scenario]

:Start :Escape :Monitor:Set up

par

ref
Preparation(stunt length=120)

Start escape

Start escape

Figure 5.70 Example sequence diagram showing the use of a reference
combined fragment

202 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

have a guard condition that indicates the conditions under which that alternative is
executed. The absence of a guard condition implies a true condition. The guard
condition else can be used to indicate a condition that is true if no other guard
conditions are true. Although there is nothing in SysML to prevent the use of
guard conditions where more than one can evaluate to true, this leads to a non-
deterministic sequence diagram and is to be avoided. An example of a sequence
diagram showing two alternatives is shown in Figure 5.71.

seq [package] Scenarios [Computer Control of Pump - Use of Alt]

:Pump:Pump Controller

:Assistant

alt

[Emergency = FALSE]

[Emergency = TRUE]

flush()

reverse()

pump()

reverse()

prime()

pumpReverse()

stopPump()

stop()

start()

stopPump()

stop()

start()

Figure 5.71 Example sequence diagram showing the use of the alternative
combined fragment

The SysML Notation 203

The diagram in Figure 5.71 shows two Scenarios, since the alternative com-
bined fragment has two compartments. Both Scenarios begin with the ‘Assistant’
sending a ‘start’ message to the ‘Pump Controller’, which itself sends a ‘start’
message to the ‘Pump’. The ‘Pump’ then sends itself two messages, ‘prime’ fol-
lowed by ‘pump’.

In the first Scenario, when the guard ‘Emergency ¼FALSE’ holds, the first
alternative takes place. The ‘Assistant’ sends a ‘stop’ message to the ‘Pump Con-
troller’, which itself sends a ‘stop’ message to the ‘Pump’. The ‘Pump’ then sends
itself two messages, ‘flush’ followed by ‘stopPump’.

In the second Scenario, when the guard ‘Emergency¼TRUE’ holds, the sec-
ond alternative takes place. The ‘Assistant’ sends a ‘reverse’ message to the ‘Pump
Controller’, which itself sends a ‘reverse’ message to the ‘Pump’. The ‘Pump’ then
sends itself two messages, ‘stopPump’ followed by ‘pumpReverse’.

Showing loops
The final combined fragment to be considered allows looping behaviour to be
shown. The looping combined fragment is shown using a frame with the keyword
loop. The keyword may be accompanied by a repetition count specifying a mini-
mum and maximum count as well as a guard condition. The loop is executed while
the guard condition is true but at least the minimum count, irrespective of the
guard condition and never more than the maximum count.

The syntax for loop counts is

● Loop minimum¼ 0, unlimited maximum
● loop(repeat) minimum¼maximum¼ repeat
● loop(min, max) minimum and maximum specified, min <¼max

An example sequence diagram showing a loop combined fragment is shown in
Figure 5.72.

The diagram shows a loop with no repetition count (which is the same as a loop
forever) and a guard condition that indicates that the loop is to continue while the
Coffin Escape Stunt is not complete.

There are many other types of combined fragment defined, but the four dis-
cussed here are the most often used. For details of the other types of combined
fragment, such as the break or opt combined fragments, see [4].

In addition, there is nothing to prevent the nesting of combined fragments. For
example, a loop may have a parallel combined fragment inside it, with instance
uses and perhaps even alternative combined fragments in each parallel region.
Remember, though, that one of the key aims of modelling is to improve the com-
munication of complex ideas and such diagrams, while valid SysML should be used
with caution as diagrams can rapidly become very difficult to understand and make
the communication worse rather than better.

There is much more notation available for use on sequence diagrams, including
the modelling of timing constraints between messages and the distinction between
synchronous and asynchronous messages. See [1,4,5] for further information.

204 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

5.5.7.2 Examples
This section presents some examples of sequence diagrams. Further examples of
sequence diagrams can be found in the case study in Chapter 14.

Figure 5.73 is an example of a sequence diagram that treats the System (in this
case the ‘Coffin Escape’) as a black box; that is, it concentrates on the interactions
between Stakeholder Roles and the System, modelling the System as a single life
line. As well as showing these interactions, it also shows some interactions that are
internal to the System, namely the ‘get in coffin’ and ‘escape’ messages.

Three other interactions are also worthy of comment, namely the ‘begin’,
‘whip-up audience’ and ‘encourage applause’ messages. These are of interest
because they are between Stakeholder Roles rather than between Stakeholder Roles
and the System. Some people (and indeed some SysML tools) would consider such
interactions as illegal.

Nevertheless, these are essential interactions that are needed to fully describe
the Scenario (in this case, that of a successful stunt) as it is impossible to model this
Scenario fully without showing them. When considering the System to be the
‘Coffin Escape’ consisting of equipment, Processes and the Escapologist, then the
Stakeholder Roles shown in Figure 5.73 as actor life lines are outside the System.
But this is a question of context. In the wider context of the stunt being performed
that includes all the necessary supporting roles and the audience, then these

seq [package] Scenarios [Successful Stunt - Audience View - Assistant/Audience Interactio...

:Safety Officer :Assistant :Audience

loop

[While Coffin Escape not complete]

encourage applause

begin

whip-up audience

Figure 5.72 Example sequence diagram showing the use of a loop
combined fragment

The SysML Notation 205

Stakeholder Roles are part of the System and therefore these interactions become
interactions between System Elements.

Figure 5.74 shows a simple Scenario, that of the assistant starting and stopping the
pump used in the stunt. However, unlike in Figure 5.73, the System is no longer treated
as a black box. In this diagram, the individual elements of the System are shown along
with the relevant Stakeholder Role who is shown interacting with one of the System
Elements (the ‘Pump Controller’). The internal interactions between the ‘Pump Con-
troller’ and the ‘Pump’ are also shown, as is the behaviour that takes place inside the
‘Pump’. Thus, it can be seen that when the ‘Pump’ receives a ‘start’ message it primes
itself and then begins pumping. Similarly, on receipt of a ‘stop’ message it first flushes
itself before stopping. Such white box Scenarios are typically developed from black box
Scenarios, which may have been developed earlier during the requirements engineering
process. An equivalent black box Scenario for Figure 5.74 is shown in Figure 5.75.

seq [package] Scenarios [Successful Stunt - Audience View - Black-box Level]

:Safety Officer:Assistant :Audience

:Coffin Escape

whip-up audience

begin

close lid

check

encourage applause

start

escape

start escape

get in coffin

Figure 5.73 Example sequence diagram showing actors as life lines and System
as a single block

206 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

As Figure 5.75 is intended to be the black box Scenario from which
Figure 5.74 is developed, the diagrams should be consistent. One would expect
the interactions between the ‘Assistant’ and the ‘Coffin Escape’ System in
Figure 5.75 to be the same as those between the ‘Assistant’ and the relevant
System Element (in this case the ‘Pump Controller’) in Figure 5.74, as indeed
they are. Similarly, the interactions of the System with itself in Figure 5.75 should
be consistent with those between System Elements in Figure 5.74. In this case,
although the messages are not labelled the same, they are consistent with one
another. The difference here is due to the differing levels of abstraction shown on
the two diagrams. A single message at the black box System level is refined into a
number of messages between and within System Elements when the Scenario is
modelled in more detail.

The final example in this section, Figure 5.76, shows a Scenario where the
System Elements are not pieces of equipment but rather represent Processes that
are carried out as part of the System. The messages between the Processes show
how one Process initiates another, in this case for the Scenario showing the

seq [package] Scenarios [Computer Control of Pump - Successful Stunt]

:Assistant

:Pump:Pump Controller

start()

pump()

stop()

prime()

start()

flush()

stopPump()

stop()

Figure 5.74 Example sequence diagram showing interactions between
System Elements

The SysML Notation 207

seq [package] Scenarios [Computer Control of Pump - Successful Stunt - Audience View]

:Assistant

:Coffin Escape

stop pumping()

stop()

start pumping()

start()

Figure 5.75 Example sequence diagram showing equivalent black box Scenario

seq [package] Scenarios [Successful Stunt - Audience View]

:Monitor:Escape:Set up :Start

par
Start escape

Begin stunt

Start escape

Figure 5.76 Example sequence diagram showing use of parallel combined
fragment

208 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

successful execution of the stunt. In this Scenario the ‘Start’ Process, on com-
pletion, has to trigger the ‘Escape’ and ‘Monitor’ Processes that have to run in
parallel. This is shown by the use of the parallel combined fragment, containing
two parallel regions, surrounding the two ‘Start Escape’ messages sent by the
‘Start’ Process.

5.5.7.3 Summary
Sequence diagrams are used to model Scenarios. They show behaviour through
time, via the passage of messages between life lines that represent the participants
in the Scenario. When modelling Scenarios, this can be done as black box Sce-
narios, modelling the System as a single life line, or as white box Scenarios that
show System Elements:

● Black box Scenarios are often generated when the Scenario is placing the
emphasis on the interactions from the point of view of one or more Stakeholder
Roles. An example of such a diagram is the Stakeholder Scenario View in
ACRE (see Chapter 9).

● White box Scenarios are often generated when the emphasis is on the inter-
actions between System Elements. An example of such a diagram is the
System Scenario View in ACRE (see Chapter 9).

In practice, Stakeholder Roles often have to be shown interacting with System
Elements so the distinction is often blurred.

5.5.8 Activity diagrams
This section looks at another behavioural diagram, the activity diagram. Activity
diagrams, generally, allow very low-level modelling to be performed compared to
the behavioural models seen so far. Where sequence diagrams show the behaviour
between elements and state machine diagrams show the behaviour within elements,
activity diagrams may be used to model the behaviour within an operation. The
other main use for activity diagrams is for modelling Processes. For a detailed
discussion of Process modelling with SysML see Chapters 7 and 8.

5.5.8.1 Diagram elements
The main elements that make up activity diagrams are shown in Figure 5.77.

Figure 5.77 shows a partial meta-model for activity diagrams. It shows that
an ‘Activity Diagram’ is made up of three basic elements: one or more ‘Activity
Node’, one or more ‘Activity Edge’ and zero or more ‘Region’. There are three
main types of ‘Activity Node’, which are the ‘Action’, the ‘Object’ and the ‘Control
Node’ all of which will be discussed in more detail later in this section. The
‘Action’ is where the main emphasis lies in these diagrams and represents a unit of
behaviour on the ‘Activity Diagram’. There are many different types of ‘Action’
available, the discussion of which is beyond the scope of this book. We will treat
them all the same, but for a full discussion see [3]. An ‘Action’ can also have zero
or more ‘Pin’, which can be used to show an ‘Object Flow’ that carries an ‘Object’.
This is discussed further.

The SysML Notation 209

An ‘Activity Edge’ connects one or two ‘Activity Node’; it can connect an
‘Activity Node’ to itself, hence the multiplicity of one or two, rather than just two.
The ‘Activity Edge’ element has two main types – ‘Control Flow’ and ‘Object
Flow’. A ‘Control Flow’ is used to show the main routes through the ‘Activity
Diagram’ and connects together one or two ‘Activity Node’. An ‘Object Flow’ is
used to show the flow of information between one or more ‘Activity Node’ and
does so by carrying the ‘Object’ type of ‘Activity Node’.

The other major element in an activity diagram in the ‘Region’ has two main
types: ‘Interruptible Region’ and ‘Activity Partition’. An ‘Interruptible Region’
allows a boundary to be put into an activity diagram that encloses any actions that
may be interrupted. This is particularly powerful for Systems where behaviour may
be interrupted by atypical conditions, such as software interrupts and emergency
situations. For example, by a direct user interaction or some sort of emergency
event. The ‘Activity Partition’ is the mechanism that is used to visualise swim lanes
that allow different actions to be grouped together for some reason, usually to show
responsibility for the actions.

The diagram in Figure 5.78 shows an expanded view of the types of ‘Control
Node’ that exist in SysML. Most of these go together in twos or threes, so will be
discussed together.

«graphic node»
Action

«diagram»
Activity Diagram

«graphic path»
Activity Edge

«graphic node»
Activity Node

«graphic node»
Activity Partition

«graphic path»
Control Flow

«graphic node»
Control Node

«graphic node»
Interruptible Region

«graphic node»
Object

«graphic path»
Object Flow

«graphic node»
Region

1..* 0..*

1

flows between

2

1

connects together

1..2

1..*

carries

1..*

0..*

interrupts

1..*

1..*

Figure 5.77 Partial meta-model for the activity diagram

210 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● The ‘Initial Node’ shows where the activity diagram starts. Conversely, the end
of the activity diagram is indicated by the ‘Activity Final Node’. The ‘Flow
Final Node’ allows a particular flow to be terminated without actually finishing
the diagram. For example, imagine a situation where there are two parallel
control flows in a diagram and one needs to be halted whereas the other con-
tinues. In this case, a final flow node would be used as it terminates a single
flow but allows the rest of the diagram to continue.

● The ‘Fork Node’ and ‘Join Node’ allow the flow in an activity diagram to be
split into several parallel paths and then re-joined at a later point in the dia-
gram. Fork nodes and join nodes (or forks and joins as they are usually known)
use a concept of token passing, which basically means that whenever a flow is
split into parallel flows by a fork, then imagine that each flow has been given a
token. These flows can only be joined back together again when all tokens are
present on the join flow. It is also possible to specify a Boolean condition on
the join to create more complex rules for re-joining the flows.

«graphic node»
Control Node

«graphic node»
Decision Node

«graphic node»
Final Node

«graphic node»
Fork Node

«graphic node»
Initial Node

«graphic node»
Join Node

«graphic node»
Merge Node

«graphic node»
Activity Final Node

«graphic node»
Flow Final Node

Figure 5.78 Expanded partial meta-model of the activity diagram, focusing
on ‘Control Node’

The SysML Notation 211

● The ‘Decision Node’ and ‘Merge Node’ also complement one another. A
‘Decision Node’ allows a flow to branch off down a particular route according
to a guard condition, whereas a ‘Merge Node’ allows several flows to be
merged back into a single flow.

There are three types of symbol that can be used on an activity diagram to
show the flow of information carried by an ‘Object Flow’: the ‘Object Node’, the
‘Signal’ and the ‘Event’. See Figure 5.79. The ‘Object Node’ is used to represent
information that has been represented elsewhere in the model by a block and which
is forming an input to or an output from an action. It can be thought of a repre-
senting an instance specification. The ‘Event’ symbol is used to show an event
coming into an activity diagram, whereas a ‘Signal’ is used to show an event
leaving an activity diagram. They correspond to receipt events and send events of a
state machine diagram. There is a special type of ‘Event’, known as a ‘Time Event’
that allows the visualisation of explicit timing events.

Each of these diagram elements may be realised by either graphical nodes or
graphical paths, as indicated by their stereotypes, and is illustrated in Figure 5.80.

In addition to the elements mentioned so far, SysML has notation that can be
applied to an ‘Activity Edge’ and an ‘Object Node’. This notation makes use of the
existing constraint and stereotype notation already present in SysML and simply
defines some standard constraints and stereotypes for use on activity diagrams.

The first of these notations allows a rate to be applied to an ‘Activity Edge’
(and, more specifically, normally to an ‘Object Flow’) in order to give an indication
of how often information flows along the edge. Flows can be shown to be discrete
or continuous. This is shown by use of the «discrete» or «continuous» stereotypes
placed on the flow. Alternatively, the actual rate can be shown using a constraint of

«graphic node»
Object

«graphic node»
Event

«graphic node»
Object Node

«graphic node»
Signal

Figure 5.79 Expanded partial meta-model for the activity diagram, focusing on
‘Object Node’

212 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

the form: {rate¼ expression}. For example, if data or material passed along a flow
every minute, then this could be shown by placing the constraint

{rate¼ per 1 minute} on the flow.

The second notation allows for a probability to be applied to an ‘Activity Edge’
(typically on ‘Control Flow’ edges leaving a ‘Decision Node’) and indicates the
probability that the edge will be traversed. It can be represented as a number

Activity Partition: Block2Activity Partition: Block1

Object: Object
Node

Action1 Action2

Action3

Signal

Initial node

Merge node

Control flow

Fork

Action

Join

Object flow

Object node

Decision
node

Flow final
node

Action4

Signal

Control flow with guard
and probability

Activity
partition

Continuous
object flow

{Probability = value %}

{rate =
expression}

Discrete
control flow
with rate

[condition]

«discrete»

[condition]

«continuous»

Figure 5.80 Summary of activity diagram notation

The SysML Notation 213

between 0 and 1 or as a percentage. All the probabilities on edges with the same
source must add up to 1 (or 100%). It is important to note that the actual edge
traversed is governed by the guard conditions on the ‘Decision Node’ and not by
the probability. The probability is nothing more than an additional piece of infor-
mation that can be added to the diagram.

The other notation modifies the behaviour of an ‘Object Node’ and is indicated
by the use of the stereotypes «nobuffer» and «overwrite». If an object node is issued
by an action and is not immediately consumed by its receiving action, then that
object node can block the operation of the originating action until it is consumed by
the receiving action. «nobuffer» and «overwrite» modify this behaviour:

● «nobuffer» means that the marked object node is immediately discarded if the
receiving action is not ready to receive it. The originating action will not be blocked
and can continue to generate object nodes which will be discarded if not yet needed.

● «overwrite» means that the marked object node is overwritten if the receiving
action is not ready to receive it. The originating action will not be blocked and
can continue to generate object nodes. The latest generated will overwrite the
previous one if not yet needed.

Figure 5.81 shows some additional notation that covers interruptible regions and
the use of pins rather than object nodes.

Event1
Action3

Object Node1

Object Node

Action4

Object Node1

Action8

Overwrite object
node on input
pin

Action7

ObjectNode2

Interruptible region Event

Flow final
node

«overwrite»

Figure 5.81 Activity diagram notation for showing interruptible regions and use
of pins rather than object nodes

214 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Interruptible regions are shown by a dashed soft box surrounding the region to
be interrupted. There must always be a normal flow of control through the inter-
ruptible region. In this example, the flow is into ‘Action3’, then to ‘Action4’ and
then out of the region. There must also be an event that causes the interruption:
‘Event1’ in the example. The event is connected by a control flow to an action
outside the interruptible region, which acts as an interrupt handler: ‘Action7’ in the
example. The control flow is either annotated with a lightning bolt symbol, as here,
or may be drawn as such a lightning bolt. In the example above the interruptible
region shows that while ‘Action3’ or ‘Action4’ are taking place, they may be
interrupted by ‘Event1’, which will cause control to transfer to ‘Action7’.

The diagram also shows the notation for a flow final node and shows how pins
may be used instead of explicit object nodes. The part of the diagram involving
‘Action3’ and ‘Action4’ is equivalent to the one shown in Figure 5.82.

Which notation is better, pins or object nodes, is a matter of personal pre-
ference (and perhaps organisational diagramming guidelines and options available
in your SysML tool). The authors are firmly in favour of explicit object nodes
rather than the version using pins.

5.5.8.2 Examples
This section will give a number of examples of activity diagrams. Additional
examples can be found in Chapters 7, 8 and 14.

Figure 5.83 shows an example activity diagram containing a single activity par-
tition. This is labelled with the model element (in this case ‘Assistant’) that is
responsible for all the behaviour taking place inside that activity partition. It is possible
to have multiple such activity partitions and an example is given later in this section.
An activity partition is usually labelled with the name of a block or an actor that
specifies the type of the model element responsible for the activity partition.

The behaviour in this activity diagram begins on receipt of a ‘Start escape’
event, after which control passes into an interruptible region where the action ‘Start
timer’ takes place. Once this action is completed, control falls through a merge

Action3

Action4

«overwrite»
Object Node1

Figure 5.82 Object node notation equivalent to pin notation

The SysML Notation 215

act [activity] Monitor [Monitor]

:Assistant

Start escape

Start timer

Watch coffin

Encourage
applause

Time Out

Emergency

[Escape complete]

[Escape NOT
complete]

Figure 5.83 Example activity diagram showing decision, merge and
interruptible region

216 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

node and the ‘Watch coffin’ action takes place. When this action is completed a
decision node is reached. If the guard condition ‘[Escape completed]’ is true, then
control passes to the ‘Encourage applause’ action, and once this is finished, the
activity final node is reached and the activity diagram terminates. If, instead, the
guard condition ‘[Escape NOT complete]’ is true, then control passes back up to
the merge node before re-entering the ‘Watch coffin’ action. The merge node is
simply used to merge alternative control flows back into a single control flow.

However, the normal behaviour is not the only way in which this activity
diagram can end. If the ‘Time out’ event is received at any time the ‘Start timer’ or
‘Watch coffin’ actions are executing, then the interruptible region is exited and the
‘Emergency’ signal is sent out of this diagram. Note the use of the pin on the signal
in order to connect the event to the signal.

Another activity diagram is shown in Figure 5.84. This time all the behaviour is
the responsibility of the ‘Escapologist’ and the activity diagram begins on receipt of
the ‘Begin stunt’ event. When this is received, control enters a fork node, which leads
to two parallel branches in which the ‘Escapologist’ is undertaking both the ‘Free
hands’ action and the ‘Count down time’ action. Each of these leads into a join node
and when both are completed, then control passes to the ‘Emerge’ action. If either of
the two parallel actions failed to complete, then the ‘Emerge’ action would never be
reached. After ‘Emerge’ is finished, the ‘Escapologist’ executes the ‘Take a bow’
action and then the activity diagram finished via the activity final node.

The final example we will consider here is shown in Figure 5.85. In this
activity diagram there are two activity partitions and we can see from the diagram
that the ‘Assistant’ is responsible for carrying out the ‘Whip-up audience’ and
‘Start pump’ actions and for issuing the ‘Start escape’ signal. The ‘Safety Officer’
is responsible for everything else in the diagram.

On receipt of the ‘Begin stunt’ event, the ‘Safety Officer’ will carry out the
‘Perform final check’ action. When this is complete control enters a decision node
that has two branches leaving it. If the guard condition ‘[Problems found]’ is true,
then the ‘Safety Officer’ carries out the ‘Cancel stunt’ action and activity diagram
terminates via the activity final node.

If, however, the guard condition ‘[No problems]’ is true, then responsibility
passes to the ‘Assistant’ who carries out the ‘Whip-up audience’ and ‘Start pump’
actions in sequence and finally issues the ‘Start escape’ signal. The activity dia-
gram then terminates via the activity final node.

However, this is not the end of the actions that the ‘Assistant’ has to carry out.
How can this be, if there are no further actions in Figure 5.85? Look back at
Figure 5.83. The activity diagram there is kicked off on receipt of a ‘Start escape’
event. This is the very event that the ‘Assistant’ has just issued as the ‘Start escape’
signal in Figure 5.85. The two activity diagrams are connected by this event/signal
pair. This is an excellent example of the kinds of consistency between diagrams that
you should be looking for when modelling. An event that comes into an activity
diagram (or into a state machine diagram as a receipt event) must come from
somewhere. There must be a corresponding signal on another activity diagram (or
send event on a state machine diagram) that is the source of the event. This would,

The SysML Notation 217

perhaps, be less confusing if SysML used the same names across activity diagrams
and state machine diagrams, but Table 5.3 may help you to remember.

Some of the nature of this communication and further consistency can be seen
by looking at Figure 5.76. This shows the communication between a number of
System Elements (actually Processes). The internal behaviour of these processes is
what has been modelled by the activity diagrams earlier in this section. Thus, the
‘Start escape’ signal in Figure 5.85 corresponds to the beginning of the ‘Start
escape’ message in Figure 5.76 as it leaves the ‘:Start’ life line. The Start escape’

act [activity] Escape [Escape]

:Escapologist

Begin stunt

Free hands Count down
time

Emerge

Take a bow

Figure 5.84 Example activity diagram showing fork nodes and join nodes

218 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

event in Figure 5.83 corresponds to the end of the ‘Start escape’ message in
Figure 5.76 as it enters the ‘:Monitor’ life line.

Thus, activity diagrams can communicate with other activity diagrams or with
state machine diagram and vice versa. Furthermore, the messages corresponding
to these events and signals can be modelled as messages on sequence diagrams.
Isn’t consistency great?

act [activity] Start [Start]

:Safety Officer:Assistant

Begin stunt

Perform final
check

Cancel stunt

Whip-up
audience

Start pump

Start
escape

[Problems found]

[No problems]

Figure 5.85 Activity diagram showing multiple activity partitions

The SysML Notation 219

5.5.8.3 Summary
Activity diagrams are very powerful SysML behavioural diagrams, which can be used
to show both low-level behaviour, such as operations, and high-level behaviour, such
as Processes. They are very good for helping to ensure model consistency, relating to
state machine diagrams, sequence diagrams and block definition diagrams.

Activity diagrams concentrate on control and object flow, showing behaviour
defined using actions that use and produce object nodes. That is, they concentrate
on behaviour that deals with information flow and transformation, rather than
behaviour that concentrates on change of state (as in the state machine diagram) or
that concentrates on the sequencing of messages (as in the sequence diagram).
However, all of these diagrams can (and should) be used together to give a com-
plete and consistent model of the interactions between System Elements.

5.5.9 Use case diagrams
The SysML use case diagram realises a behavioural aspect of a model, with an
emphasis on functionality rather than the control and logical timing of the System.
The use case diagram represents the highest level of behavioural abstraction that is
available in the SysML. However, the use case diagram is arguably the easiest
diagram to get wrong in the SysML. There are a number of reasons for this:

● The diagrams themselves look very simple, so simple in fact that they are often
viewed as being a waste of time.

● It is very easy to go into too much detail on a use case diagram and to acci-
dentally start analysis or design, rather than conducting context modelling.

● Use case diagrams are very easy to confuse with data flow diagrams as they
are often perceived as being similar. This is because the symbols look the same
as both use cases (in use case diagrams) and processes (in a data flow diagram)
are represented by ellipses. In addition, both use cases and processes can be
decomposed into lower level elements.

● Use case diagrams make use of perhaps the worst symbol in SysML, the
stick person notation used to represent actors. This is discussed further in
Section 5.5.9.1.

Nevertheless, use case diagrams are central to systems engineering, forming the
basis of the model-based approach to requirements engineering as embodied by the
ACRE approach described in Chapter 9, being used to model the Needs in Context
for the System under development.

Table 5.3 Equivalence of event terminology between
activity and state machine diagrams

Activity diagram State machine diagram

. . . is same as . . .
Event Receipt event
Signal Send event

220 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

5.5.9.1 Diagram elements
Use case diagrams are made up of four main elements as shown in Figure 5.86.

Figure 5.86 shows a partial meta-model for use case diagrams. It shows that a
‘Use Case Diagram’ is made up of one or more ‘Use Case’, zero or more ‘Actor’,
zero or one ‘System Boundary’ and zero or more ‘Relationship’. Each ‘Use Case’
yields an observable result to one or more ‘Actor’. There are three types of
‘Relationship’: the ‘Extend’, ‘Include’ and ‘Association’. A ‘Use Case’ can be
made up of zero or more ‘Extension Point’, each of which defines the condition for
an ‘Extend’ relationship. Each ‘Association’ crosses the ‘System Boundary’.

The notation that is used on use case diagrams is shown in Figure 5.87.
Use case diagrams are composed of four basic elements: use cases, actors,

relationships and a system boundary. As a minimum a use case diagram must
contain at least one use case; all other elements are optional.

«graphic path»
Include

«graphic node»
Actor

«graphic path»
Association

«graphic path»
Extend

Extension Point

«graphic path»
Relationship

«graphic node»
System Boundary

«graphic node»
Use Case

«diagram»
Use Case Diagram

crosses

0..*

1..*

yields an observable result to

1..*

1

defines condition for

1

0..*

1..*

0..*

0..*

Figure 5.86 Partial meta-model for the use case diagram

The SysML Notation 221

Each use case describes behaviour of the system that yields an observable
result to an actor. It is with the actor that the SysML notation is at its weakest, in
terms of both the symbol and the name. The stick man symbol and the name actor
suggest that this concept represents that of a person. This is not the case. An actor
represents the role of a Person, place or thing that interacts with, is impacted by or
has an interest in the System. So, while an actor can, indeed, represent a Person,
it can also be used to represent an Organisation, other System or even a piece of
legislation or a Standard. Furthermore, it is essential to understand that it is the role
that is represented. This means that you should never see the names of People or
Organisations or Standards, etc., on a use case diagram, but the role that they are
playing. An actor named ‘ISO15288’ would be wrong, but one named ‘Systems
Engineering Standard’ would be correct. It is also worth noting that a given role
may be taken by more than one person, place or thing and that a given person, place
or thing may take on more than one role.

In terms of the MBSE Ontology, the actor is directly analogous to the concept
of the Stakeholder Role rather than the concept of the Person. The use case is
directly analogous to the concept of the Use Case that represents a Need that has
been put into Context.

Boundary Name

Use Case4

Actor1

Actor2

Actor3

Use Case1

Use Case2 Use Case3

System boundary

Association

Use case

Actor

Include
relationship

Extend
relationship

Specialisation/
generalisation

«include»

«extend»

Figure 5.87 Summary of use case diagram notation

222 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Use cases are related to actors and to other use cases using a number of dif-
ferent types of relationship:

● Association relationship. This is used to relate use cases to actors and, unlike
when used on a block definition diagram, is a simple unadorned line with
neither name nor multiplicity as can been seen in the association between
‘Actor2’ and ‘Use Case1’ in Figure 5.87.

● Include relationship. This is used when a piece of functionality may be split
from the main use case, for example to be used by another use case. A simple
way to think about this is to consider the included use case as always being part
of the parent use case. This is used to try to spot common functionality within a
use case. It is highly possible that one or more of the decomposed use cases
may be used by another part of the System. It is shown using a dashed line with
an open arrow head, the line bearing the stereotype «include». The direction of
the arrow should make sense when the model is read aloud. In Figure 5.87
‘Use Case1’ includes ‘Use Case3’.

● Extend relationship. This is used when the functionality of the base use case is
being extended in some way. This means that sometimes the functionality of a
use case may change, depending on what happens when the System is running.
A simple way to think about this is to consider the extending use case as
sometimes being part of the parent use case. Extending use cases are often
used to capture special, usually error-handling, behaviour. The extend rela-
tionship is also shown using a dashed line with an open arrow head, the
line bearing the stereotype «extend». It is important to get the direction of
the relationship correct, as it is different from the ‘«include»’ direction. The
direction of the arrow should make sense when the diagram is read aloud. In
Figure 5.87 ‘Use Case4’ extends ‘Use Case1’. Every use case should be
described (normally using text). Such a description must define the extension
points where the behaviour of the use case is extended by the extending use
case. An extension point has no specific graphical notation.

● Specialisation/generalisation relationship. This is exactly the same relation-
ship as found on block definition diagrams and is used when one use case is
a specialisation of another. Just like when used with blocks, generalisation
between use cases allows for inheritance of behaviour and relationships. For
example, consider the use case diagram shown in Figure 5.88. The general Use
Case ‘Allow stunt to be performed using different fluids’ is specialised by the
two Use Cases ‘Perform using concrete’ and ‘Perform using custard’, which
inherit the behaviour described in ‘Allow stunt to be performed using different
fluids’ as well as including the Use Case ‘Ensure fluid chosen is suitable for
venue’, which is included by ‘Allow stunt to be performed using different
fluids’.

In a similar way, generalisation can be used between actors, as is shown in
Figure 5.87, when one actor is a specialisation of another.

The final element that can appear on a use case diagram is the system
boundary, used when describing the Context of a System. As its name suggests, the

The SysML Notation 223

system boundary defines the boundary of the System from a particular point of
view, which is Context. Everything inside the system boundary is part of the Sys-
tem, and everything outside the system boundary is external to the System. Actors
are always outside the system boundary, and indeed, an association between an
actor and a use case that crosses a system boundary indicates that there is an
Interface between the actor and the System (which may be a sophisticated software
and hardware Interface but equally could be an Interface in which a Person passes a
note on a piece of paper to another Person).

System boundaries are not mandatory on a use case diagram. They are used
when use cases are being shown in a Context. Where a use case diagram is being
drawn simply to expand on a use case, as shown in Figure 5.88, then no system
boundary is needed.

5.5.9.2 Examples
This section presents some examples of use case diagrams and related diagram-
ming elements. Further examples of use case diagrams can be found in Chapter 13
and throughout Chapters 7–11 and 14–16. In addition, this section concludes with
some guidance notes on common patterns that are often seen in use case diagrams
and that can guide the modeller in refinement of the use case diagrams.

uc [package] Requirements [Coffin Escapology Stunt - Focus on Fluids]

Allow stunt to be
performed using
different fluids

Ensure that fluid
chosen is suitable

for venue

Perform using concrete
Perform using custard

«include»

Figure 5.88 Example use case diagram showing generalisation

224 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Figure 5.89 shows a use case diagram identifying the high-level Use Cases for
the Coffin Escape Stunt. The Context, as indicated by the presence and title of the
system boundary, is for the stunt System rather than from the point of view of an
individual Stakeholder Role. The relevant high-level Stakeholder Roles are shown
as actors, with associations connecting them to the Use Cases in which they have
an interest and the relationships between the Use Cases are shown. There are two
points worth highlighting about this diagram: the number of Use Cases shown and
the use of the «constrain» dependency.

uc [package] Requirements [Coffin Escapology Stunt - Coffin Escape System Context]

Coffin Escape System Context

Allow stunt to be
performed using

different fluids

Perform coffin
escapology stunt

Fluid to be pumped into
hole under computer

control

Minimise risk to
escapologist

Ensure sufficient air Ensure coffin not
crushed by fluid

Maximise audience
excitement

Escapologist

Safety Officer

Audience

Coffin Maker

«include»

«include»

«include»

«constrain»«constrain»

«include»

Figure 5.89 Example use case diagram showing System Context

The SysML Notation 225

The diagram shows only seven Use Cases, yet this is the top-level use case
diagram showing the Use Cases for the whole coffin stunt System. Surely, there
must be more Use Cases than this? The answer to this is, of course, yes there are.
However, this does not mean that all these Use Cases have to be shown on a single
diagram. Other use case diagrams can be drawn that break these Use Cases down
further and put them into the correct Context. Don’t forget that these diagrams are
produced to aid understanding and communication. A complicated diagram with
tens of Use Cases on it may look impressive but is rarely of any practical use (other
than for illustrating just how complicated the system is). Consider a System such as
an aeroplane. There will be 1000s of Use Cases for the complete System, but how
many high-level Use Cases are there? Probably not many more than ‘Take off
safely’, Land safely’, ‘Have a fully laden range of X km’, ‘Have a carrying capacity
of X kg’, etc.

The second point to discuss is that of the «constrain» dependency, such as the
one between ‘Minimise risk to escapologist’ and ‘Perform coffin escapology stunt’.
The «constrain» dependency is not part of standard SysML but is an extension used
by the authors to show that one use case constrains another in some way. It is
created using the SysML stereotyping mechanisms built into the language that
allows existing language elements to be extended and is discussed in detail in
Section 5.3.

Figure 5.90 shows another use case diagram showing Needs in Context.
However, rather than showing the Use Cases for the entire System, this diagram
shows them from point of view of a single Stakeholder Role, namely the escapol-
ogist. Unsurprisingly some of the Use Cases are also shown in Figure 5.89, since
the Escapologist is one of (if not the) main Stakeholder Roles in any escapology
stunt. However, some of those in Figure 5.89 (such as ‘Maximise audience exci-
tement’) are not of direct interest to the Escapologist and are therefore not shown in
Figure 5.90. Conversely, there are Use Cases that are only relevant to the Esca-
pologist (such as ‘Improve skill level’), which are shown in Figure 5.90 but are not
relevant from the System Context and are therefore not shown in Figure 5.89. This
whole idea of Context is central to the ACRE approach to requirements engineering
discussed in much more detail in Chapter 9. Note also the use of the «constrain»
dependency in Figure 5.90.

As discussed in Section 5.5.9.1 a use case diagram does not have to show any
actors or contain a system boundary. An example of such a use case diagram is
shown in Figure 5.91.

Figure 5.91 is focusing on Use Cases related to the use of different fluids in the
stunt and to the computer control of the pump used in the stunt. Two specific types
of fluids are identified and are shown via the use of the generalisation relationship
between ‘Allow stunt to be performed using different fluids’ and ‘Perform stunt
using concrete’ and ‘Perform stunt using custard’. A Use Case representing special
case behaviour ‘Provide computer-controlled emergency fluid removal’ extends the
standard ‘Fluid to be pumped into hole under computer control’ Use Case.

When developing use case diagrams there are a number of common patterns
that should be looked for as an aid towards the production of good use case

226 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

diagram. This section concludes with a look at these patterns, which cover the
following possible situations:

● Use case at too high a level
● Actor at too high a level
● Repeated actors
● Something missing

Each of these four patterns is discussed in the following sub-sections.

Use case too high-level
One common mistake is to model use cases at too high a level. Consider Figure 5.92.

Figure 5.92 shows a use case, ‘Use Case1’, that is linked to all actors. Such a
pattern may indicate that the use case is at too high a level and that it should be
decomposed further, making use of «include» and «extend» dependencies to link it

uc [package] Requirements [Coffin Escapology Stunt - Escapologist's Context]

Escapologist's Context

Perform coffin
escapology stunt

Minimise risk to
escapologist

Safety Officer
Ensure sufficient air Ensure coffin not

crushed by fluid

Coffin Maker

Audience

Improve skill level Make money

Assistant

«constrain»«include»

«constrain»

«include»«include»

Figure 5.90 Example use case diagram showing a Stakeholder Role’s Context

The SysML Notation 227

to more detailed use cases. The actors would then be associated with the more
detailed use cases rather than all being connected to the top-level use case.

Actor too high-level
Another common error is to model actors at too high a level. Consider Figure 5.93.

Figure 5.93 shows an actor, ‘Actor2’ (drawn with a surrounding box for
emphasis) that is connected to every use case. Such a pattern may indicate that:

● The actor is at too high a level and that it should be decomposed further.
● The diagram has been drawn from the point of view of the Stakeholder Role

represented by that actor.

If the actor is at too high a level, then it should be decomposed further and replaced
on the diagram with the new actors. These actors will then be associated with the
relevant use cases rather than being associated with all the use cases.

uc [package] Requirements [Coffin Escapology Stunt - Focus on Fluids and Computer Control]

Perform coffin
escapology stunt

Allow stunt to be
performed using
different fluids

Fluid to be pumped into
hole under computer

control

Perform using concretePerform using custard
Provide computer-

controlled emergency
fluid removal

«include»

«extend»

«include»

Figure 5.91 Example use case diagram without system boundary or actors

228 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

System

Use Case1

Use Case2

Actor1

Actor2

Actor3

Actor4

Actor5

Figure 5.92 Use case too high level

System

Use Case1

Use Case2

Use Case3

Use Case4

Actor1

Actor2

Actor3

Actor4

Actor5

Figure 5.93 Actor too high level

The SysML Notation 229

If the diagram has been drawn from the point of view of the Stakeholder Role
represented by that actor, that is the use case diagram is drawn for that Stakeholder
Role’s Context, then the actor should be removed from the diagram. The system
boundary should indicate that the diagram is drawn for that Stakeholder Role’s Context.

Repeated actors
Sometimes, a pattern is seen in which two or more actors are connected to the same
use cases. Figure 5.94 shows this.

Here, we see two actors, ‘Actor1’ and ‘Actor 2’ (drawn with a surrounding box
for emphasis), that are both connected to the same three use cases. This pattern may
indicate that the actors are representing the same Stakeholder Role. Alternatively,

System

Use Case1

Use Case2Use Case3

Use Case4

Use Case5

Actor1

Actor2

Actor3

Actor4

Figure 5.94 Repeated actors

230 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

it may indicate that instances of Stakeholder Roles have been used (check for
names of specific people, organisations, standards, etc.). Instances should never be
used. Remember that a Stakeholder Role represents the role of something that has
an interest in the Project, not an actual instance involved. Any duplicate actors
should be removed from the diagram.

Something missing – use cases without actors and actors without use cases
What does it mean if we have use cases or actors that not related to anything?
Consider Figure 5.95.

Figure 5.95 has a use case, ‘Use Case5’, and an actor, ‘Actor5’, that are not
connected to anything else on the diagram.

System

Use Case1

Use Case2

Use Case3

Use Case4

Use Case5

Actor1

Actor2

Actor3

Actor4

Actor5

Figure 5.95 Something missing? Basic use case diagram checks

The SysML Notation 231

‘Use Case5’ has no actors associated with it. There are four possible reasons
for this:

1. The use case is not needed and should be removed from the diagram.
2. There is an actor (or actors) missing that should be added to the diagram and

linked to the use case.
3. There is an internal relationship missing; the use case should be linked to

another use case.
4. There is an external relationship missing; the use case should be linked to an

existing actor.

‘Actor5’ has no use cases associated with it. There are three possible reasons
for this:

1. The actor is not needed and should be removed from the diagram.
2. There is a use case (or use cases) missing that should be added to the diagram

and linked to the actor.
3. There is a relationship missing; the actor should be linked to an existing

use case.

These two errors are very common, particularly when creating initial use case
diagrams, and should be checked for on all use case diagrams.

5.5.9.3 Summary
Use case diagrams show the highest level behaviour of a system and are used to
show Needs (Requirements, Concerns, Goals or Capabilities) in Context, along
with the Stakeholder Roles involved and the relationships between them. This is
the central theme of the ACRE approach described in Chapter 9, realised in its
Requirement Context View.

Care is needed when producing use case diagrams. They should not be over-
decomposed so that they start to look like data flow diagrams and become diagrams
detailing the design of the System as they exist to show high-level behaviour as
Needs in Context. There are a number of common patterns that should be looked
for when producing use case diagrams, which can help you to spot when use cases
or actors are at too high a level, where an actor has been repeated or where there is
something missing from a use case diagram.

5.6 Auxiliary constructs

The SysML specification defines a number of auxiliary constructs, among which is
included the allocation. The allocation will be described here. Some other exam-
ples of auxiliary constructs are given in Chapter 14. For full information on the
other auxiliary constructs, see [1].

An allocation is used to show how various model elements are allocated to and
allocated from other elements. Such allocations may be used to show deployment
or more generally to relate different parts of a model as the design progresses.

232 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Figure 5.96 shows the partial meta-model for allocations and shows that an
‘Allocation’ can be represented in two ways: as an ‘Allocation Compartment’
(either an ‘allocatedFrom Compartment’ or an ‘allocatedTo Compartment’) on an
existing graphic node or as an ‘Allocation Dependency’ between model elements,
with each end of such a dependency equivalent to one of the two types of ‘Allo-
cation Compartment’.

Rather than showing an ‘Allocation Compartment’ as a compartment of the
relevant model element, it can also be shown using a callout note notation. This can
be seen in Figure 5.97, where the notation used for allocations is shown.

Allocations can be shown on diagrams other than the block definition diagram
but the notation used is essentially the same. The following diagrams show exam-
ples of the notation in use.

Figure 5.98 shows allocation of the ‘Escapologist’ to the ‘Coffin’ and the
‘Coffin’ to the ‘Hole’ using the allocation dependency notation. The block defini-
tion diagram here is essentially being used a kind of deployment diagram (a dia-
gram type present in UML but rather inexplicably, given the nature of systems
engineering, absent from the SysML).

Figure 5.99 shows exactly the same information as is shown in Figure 5.98 but
makes use of both allocation compartments and an allocation dependency. Note
also that this diagram is lacking the ‘Hole’ block found on Figure 5.98. The block
and the relationship to it can be deduced from the allocatedTo compartment in the
‘Coffin’ block.

Finally, we can go very minimalist, as in Figure 5.100 where everything
is done using allocation compartments. The diagram also shows how these

«graphic node»
allocatedTo

Compartment

Allocation

Allocation
Compartment

«graphic path»
Allocation

Dependency

«graphic node»
allocatedFrom
Compartment

1

represents end of

1

Figure 5.96 Partial meta-model for allocations

The SysML Notation 233

«block»
Block2

Allocation
dependency

Allocations shown in
call-out note

allocatedFrom
«activity» Activity1

allocatedTo
«block» Block2

allocatedFrom
«activity» Activity1

allocatedTo
«block» Block2

«block»
Block1

Allocations shown as
compartments

«allocate»

Figure 5.97 Summary of allocation notation on a block definition diagram

bdd [package] System [Escapologist and Coffin Deployment]

«block»
Hole

«block»
Coffin

«block»
Escapologist

«allocate»

«allocate»

Figure 5.98 Example block definition diagram showing allocation using a
dependency

234 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

allocation compartments would be shown using the callout note notation. In a
‘‘real’’ model, both notations would not be shown on the same diagram.

5.7 Chapter summary

This chapter has described each of the nine SysML diagrams in turn, along with
some of the auxiliary notation, and has provided examples of their use.

bdd [package] System [Escapologist and Coffin Deployment - Alternate Not...

«block»
Escapologist

«block»
Coffin

allocatedTo
«block» Hole

«allocate»

Figure 5.99 Example block definition diagram showing allocation using
compartments

bdd [package] System [Escapologist and Coffin Deploym...

«block»
Coffin

allocatedFrom
«block» Escapologist

allocatedTo
«block» Hole

«block»
Coffin

allocatedFrom
«block» Escapologist

allocatedTo
«block» Hole

Figure 5.100 Example block definition diagram showing allocation – the
minimalist approach

The SysML Notation 235

In order to conclude this chapter, there are a few pieces of practical advice that
should be borne in mind when modelling using the SysML:

● Use whatever diagrams are appropriate. There is nothing to say that all nine
diagrams should be used in order to have a fully defined System – just use
whatever diagrams are the most appropriate.

● Use whatever syntax is appropriate. The syntax introduced in this book
represents only a fraction of the very rich SysML language. It is possible to
model most aspects of a system using the syntax introduced here. As you
encounter situations that your known syntax cannot cope with, it is time to
learn some more. There is a very good chance that there is a mechanism there,
somewhere, that will.

● Ensure consistency between models. One of the most powerful aspects of the
SysML is the ability to check the consistency between diagrams, which is often
glossed over. Certainly, in order to give a good level of confidence in your
models, these consistency checks are essential.

● Iterate. Nobody ever gets a model right the first time, so iterate! A model is an
evolving entity that will change over time and, as the model becomes more
refined, so the connection to reality will draw closer.

● Keep all models. Never throw away a model, even if it is deemed as incorrect,
as it will help you to document decisions made as the design has evolved.

● Ensure that the system is modelled in both structural and behavioural aspects.
In order to meet most of the above criteria, it is essential that the system is
modelled in both aspects, otherwise the model is incomplete.

● Ensure that the system is modelled at several levels of abstraction. This is one
of the fundamental aspects of modelling and will help to maintain consistency
checks.

Finally, modelling using the SysML should not change the way that you work but
should aid communication and help to avoid ambiguities. Model as many things
as possible, as often as possible, because the more you use the SysML, the more
benefits you will discover.

References

[1] Object Management Group. ‘SysML Specification’ [Online]. 2017. Available
from http://www.omgsysml.org [Accessed January 2018].

[2] Miller G.A. ‘The magical number seven, plus or minus two: some limits on our
capacity for processing information’. Psychological Review. 1956;63:81–97.

[3] Rumbaugh J., Jacobson I. and Booch G. ‘The Unified Modeling Language
Reference Manual’. 2nd edition. Boston, MA: Addison-Wesley; 2005.

[4] Booch G., Rumbaugh J. and Jacobson I. ‘The Unified Modeling Language
User Guide’. 2nd edition. Boston, MA: Addison-Wesley; 2005.

[5] Holt J. ‘UML for Systems Engineering – Watching the Wheels’. 2nd edition.
IET Publishing: Stevenage, UK; 2004.

236 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Chapter 6

Diagramming Guidelines

6.1 Introduction

Producing consistent SysML (and Unified Modelling Language (UML)) diagrams
that have a common look and feel is crucial to efficient and effective modelling.
One of the easiest ways of helping to ensure consistency within SysML models is to
set and follow effective naming and diagramming conventions that ensure a com-
mon look and feel across diagrams and help to ensure that diagrams are easy to
read. Such guidelines should also save time by limiting the number of stylistic
choices faced, allowing focus to be directed to the modelling rather than the
drawing. This chapter defines a set of rules and guidelines to be followed when
producing SysML diagrams.

Following this introduction, Section 6.2 defines rules to be applied to elements
on SysML structural and behavioural diagrams together with stereotypes. This is
followed by Section 6.3 which defines rules for naming SysML diagrams. Finally,
Section 6.4 defines rules for specific diagram types and gives some guidelines on
producing diagrams using SysML CASE tools.

The guidelines presented here are those used by the authors and are, in part,
based on [1]. The guidelines form part of their SysML modelling Standard, i.e. the
adoption by the authors is not optional. Of course, for the reader, these are only
guidelines and can therefore be followed, changed or ignored. Nevertheless, it is
recommended that a defined SysML modelling standard be produced and enforced
as part of the reader’s systems engineering processes.

6.2 Naming conventions

This section defines general naming guidelines that should be followed when pro-
ducing SysML diagrams.

When modelling Standards or producing models for customers, any naming
conventions described in the Standard or used by the customer should be followed.

6.2.1 Structural diagrams
Figure 6.1 illustrates the naming conventions to be followed when producing
SysML structural diagrams.

«block»
Block Name

operation name (Paremeter_name: Parameter Type): Return Type

flow properties
 in Flow property name : Property Type

values
 Property name : Property Type

Block name should be
singular

Compartments are
optional; they may be
turned off to aid clarity

Property names are
noun phrases

Operation names are
verb phrases - use
strong verbs where
possible

The direction (in, out,
inout) of flow properties
MUST be stated

Compartments must be
named where possible
(and supported by your
tool)

Role name

Always show
multiplicity, even when
'1'

Name associations with active
voice using sentence
construction and always show
direction

A note - can contain
ANY style of content

«requirement»
Requirement name

id = "Unique identifier"
text = "The System shall ..."

«interfaceBlock»
Interface Name

operation name (Paremeter_name: Parameter Type): Return Type

Package Name

«constraint»
Constraint Type

constraints
{Parameter name = f(Other parameter name)}

parameters
 Parameter name : Parameter Type
 Other parameter name : Parameter Type

If the constraint is a Boolean test (e.g. 'if ...'),
then it should start with a lower-case letter

Model elements that represent types should have the initial
letter of each word capitalised, e.g. Block Name, Property Type,
etc.

This will apply to:
• Blocks
• Interfaces
• Constraint blocks
• Operation & constraint parameter types
• Operation return types
• Packages
• Value properties
• Flow property types
• Port types

1

association
name

1..*

Figure 6.1 Naming conventions – structural diagrams

238 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The case of the text used in all elements indicates the convention to be adopted
for that element. For example, an association should be named all in lower case
whereas a property should be named in sentence case (i.e. initial word starts with a
capital letter, all others with a lower case letter).

The naming conventions shown in Figure 6.1 are summarised in Table 6.1.

With the naming conventions for structural diagrams defined, the next section
discusses the naming guidelines for behavioural diagrams.

Table 6.1 Structural diagram naming conventions

Diagram item Naming conventions

Block Name should have each word capitalised
Name should be singular
Compartments can be turned off to aid clarity. If necessary, add a

comment to the diagram so that reader of the diagram knows that
information has been omitted from the diagram

Compartments should be named if the tool supports this. Note that
some tools are inconsistent in their naming of compartments

Block property Property names should be noun phrases
Property names should be in sentence case
Property types should have each word capitalised
The direction of flow properties must be stated

Operation Operation names are verb phrases; strong verbs should be used
where possible

Operation names should be in lower case with spaces between
words. NOTE: When modelling software, operation names
should be named in camel case, for example ‘checkTime’

Parameter names should be in sentence case, but with underscores
replacing spaces, e.g. ‘Time_server’

Parameter types should have each word capitalised
Operation return types should have each word capitalised

Interface Name should have each word capitalised

Association Name associations using the active voice where possible
Name should be in lower case
Direction must be shown
Always show multiplicity, even when it is ‘1’
Role names should be in sentence case

Requirement Name should be in sentence case

Package Package name should have each word capitalised

Constraint block Name should have each word capitalised
Parameter names should be in sentence case
Parameter types should have each word capitalised
If the constraint relationship is a Boolean test, then it should start

with a lower case letter, e.g. ‘if . . . ’
Note A note can contain any style of content

Diagramming Guidelines 239

6.2.2 Behavioural diagrams
Figure 6.2 illustrates the naming conventions to be followed when producing
SysML behavioural diagrams.

Lifeline name:
Lifeline Type

Other lifeline name:
Lifeline Type

message name(parameter value): Return Type

Use case name

Actor Name

Begin use case name
with a strong verb

activity name

NOTE: activities and states are 'soft
boxes', i.e. rectangles with rounded
corners and not 'sausages'.

state name

Guard conditions may contain
references to properties, and so may
start with initial caps.

e.g. Attribute name = value
[guard condition]

Figure 6.2 Naming conventions – behavioural diagrams

240 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The case of the text used in all elements indicates the convention to be adopted
for that element. For example, a message should be named all in lower case
whereas a use case should be named in sentence case (i.e. initial word starts with a
capital letter, all others with a lower case letter).

The naming conventions shown in Figure 6.2 are summarised in Table 6.2.

With the naming conventions for behavioural diagrams defined, the next
section discusses the naming guidelines for stereotypes.

6.2.3 Stereotypes
Figure 6.3 illustrates the naming conventions to be followed when using stereotypes.

The naming conventions shown in Figure 6.3 are summarised in Table 6.3.
With the naming conventions for stereotypes defined, the next section discusses

the naming of diagrams.

6.3 Diagram frame labels

This section defines guidelines to be followed when labelling diagrams.
All SysML diagrams must have a diagram frame that contains the name of the

diagram. Each diagram should be named in the following fashion:

<frame tag> [model element type] <model element name> [diagram name]

Each part is separated by a space and the frame tag may be emboldened if
supported by your SysML tool. The model element type and diagram name parts of
the name are in brackets. The frame tag and model element name are mandatory.

Table 6.2 Behavioural diagram naming conventions

Diagram
item

Naming conventions

Life line Instance name should in sentence case
Type name should have each word capitalised

Message Message name should be in the same case as the operation or event that they
correspond to (see Table 6.1)

Parameter values should be in lower case
Return types should have each word capitalised

Use case Name should be in sentence case
Name should begin with a strong verb

Actor Name should have each word capitalised

State Names should be in lower case
Symbol is a rectangle with rounded corners (a ‘‘soft box’’) and not a sausage

with semi-circular end

Activity Names should be in lower case
Symbol is a rectangle with rounded corners (a ‘‘soft box’’) and not a sausage

with semi-circular end

Guard
conditions

Guard conditions may contain references to properties (see Figure 6.1 and
Table 6.1) and so may start with initial capitals. Otherwise, the condition
should be in lower case

Diagramming Guidelines 241

The abbreviations shown in Table 6.4 should be used to indicate the type of
diagram – known in SysML as the frame tag. If using a tool that automatically adds
a diagram frame and that does not allow the frame tags to be changed, then the tag
names used by the tool will be used.

The following shows the model element type associated with the different
diagram kinds:

● Activity diagram – activity
● Block definition diagram – block, package or constraint block
● Internal block diagram – block or constraint block
● Package diagram – package or model
● Parametric diagram – block or constraint block

«block»
Block1

«block»
Block2

Stereotypes are lower case except for those which are abbreviations
or acronyms such as «HTTP» or SysML meta-types such as
Association.

Multiple stereotypes applied to same item should appear above
each other if possible. Note that not all tools support this and many
place stereotypes in a single pair of « »s separated by commas.

«TLA» Tags:
my tag = value

Tags defined on
stereotypes are lower
case.

1

«TLA,my stereotype»

1

Figure 6.3 Naming conventions – stereotypes

Table 6.3 Stereotype naming conventions

Diagram item Naming conventions

Stereotype Stereotypes are lower case except for those which are abbreviations or
acronyms such as «HTTP» or SysML meta-types such as Association

Multiple stereotypes applied to same item should appear above each other if
possible. Note that not all tools support this and many place stereotypes in
a single pair of « »s separated by commas

Tag Tags defined on stereotypes are lower case

242 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● Requirement diagram – package or requirement
● Sequence diagram – interaction
● State machine diagram – state machine
● Use case diagram – package

The model element type indicates the namespace for the elements contained on the
diagram.

The model element name identifies which model element type the diagram is
describing.

The diagram name is used to give the diagram a unique name. This is particularly
important when different diagrams of the same type are drawn for the same model
element. The diagram name would differentiate between these diagrams since they
would have the same diagram kind, model element type and model element name.

Some examples will help:
A block definition diagram is created inside a package named ‘‘System Struc-

ture’’. The diagram shows the structural hierarchy. The diagram might be named:

bdd [package] System Structure [Structural Hierarchy]

The first three parts of the name are determined by its type and ‘‘owner’’.
A second block definition diagram is created in the same package and shows

the properties and operations of the System Elements. It could be named:

bdd [package] System Structure [Properties and Operations of System Elements]

Note that the first three parts of the name are the same, since the diagram type is
the same as is its owner. The [diagram name] element of the full name differentiates
between them.

A parametric diagram is created for a block named ‘‘System’’. The diagram
shows power consumption. The diagram could be named:

par [block] System [System Power Consumption]

Table 6.4 Diagram frame labels

Diagram type Frame tag

Activity diagram act
Block definition diagram bdd
Internal block diagram ibd
Package diagram pkg
Parametric diagram par
Requirement diagram req
State machine diagram stm
Sequence diagram sd or seq (tool dependent!)
Use case diagram uc

Diagramming Guidelines 243

The following capitalisation rules should be applied:

● The frame tag should be lower case and emboldened if possible.
● The model element type should be lower case. (Note: the SysML specification

is inconsistent on this, as are many SysML tools.)
● The model element name will have the same capitalisation as the element it

corresponds to in the model.
● The diagram name element should have each word capitalised.

When producing diagrams that are based on a Framework that defines a number of
Views (well, technically Viewpoints – see Chapters 3 and 11 for a discussion
of the differences between Viewpoints and Views) which have their own abbre-
viations, then

● The View abbreviation should be in upper case. Lower case letters are allowed
in order to distinguish Views that would otherwise have the same abbreviation.
For example, in a model-based requirement engineering Framework, a Stake-
holder Scenario View might have the abbreviation SSV, whereas a System
Scenario View might have the abbreviation SysSV.

● The View abbreviation should replace the standard SysML frame tag. If the
SysML tool being used does not allow replacement of frame tags, then the
View abbreviation should be added to the diagram name element, separated
by a hyphen.

For example, an Ontology Definition View has been defined as part of an Archi-
tectural Framework meta-model. It has been given the abbreviation ODV. The
diagram is used for SysML block definition diagram. An Ontology Definition View
is created in a package called MBSE Ontology and is intended to show a simplified
Ontology. The diagram frame for this diagram would look like Figure 6.4.

In a tool that doesn’t allow replacement of frame tags, the diagram frame
would look like Figure 6.5.

bdd [package] MBSE Ontology [ODV - Simplified Ontology]

Figure 6.5 Example diagram frame showing user-defined view abbreviation
added to diagram name

ODV [Package] MBSE Ontology [Simplified Ontology]

Figure 6.4 Example diagram frame showing user-defined view abbreviation
replacing frame tag

244 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

6.4 Additional guidelines

This section contains additional guidelines that apply to particular diagram types.

6.4.1 Block and internal block diagrams – showing interfaces
This section defines guidelines to be followed when producing block definition
diagrams and internal block diagrams that show interfaces.

The guidelines shown in Figure 6.6 are summarised in Table 6.5.
With the guidelines for interfaces defined, the next section discusses the

guidelines for the related subject of item flows.

6.4.2 Block and internal block diagrams – showing item flows
This section defines guidelines to be followed when producing block definition
diagrams and internal block diagrams that show item flows.

The guidelines shown in Figure 6.7 are summarised in Table 6.6.

«block»
Block1

Port1 name: Port Type

Interface Y

«block»
Block2

PortB name

Interface Z

Port type shown

Required interfaces should be placed on
the right of the block or part. If this is not
possible, try to place them on the
bottom of the block or part.

Where possible, place the
interface label above the socket
symbol. When a required and
provided interface are
connected on a diagram use a
single label.

Provided interfaces should be placed on
the left of the block or part. If this is not
possible, try to place them on the top of
the block or part.

Port name and
type turned off

Port type turned
off

Interface X

Figure 6.6 Block and internal block diagrams – showing interfaces

Diagramming Guidelines 245

Table 6.5 Interface naming conventions

Diagram item Guidelines

Provided
interface

Place on the left of the block or part. If this is not possible, try to place them
on the top of the block or part

Where possible, place the interface label above the ball symbol. When
required and provided interface are connected on a diagram (as for
Interface X in Figure 6.6), use a single label

Required
interface

Place on the right of the block or part. If this is not possible, try to place
them on the bottom of the block or part

Where possible, place the interface label above the socket symbol. When
required and provided interface are connected on a diagram (as for
Interface X in Figure 6.6), use a single label

Port Port name should be in sentence case
Port type should have each word capitalised (corresponding to the model

element that types the port)
Port names and/or types can be omitted for clarity

Block1

Part name: Block3

PortY name: ~Port Type

PortX name

:Block2

Port2 name: Port Type

Port1 name

Ports with outgoing flows and ports with two-way, non-
conjugated flows should be placed on the right of the
block or part. If this is not possible, try to place them on
the bottom of the block or part.

Ports with incoming flows and ports with two-way,
conjugated flows should be placed on the left of the
block or part. If this is not possible, try to place them
on the top of the block or part.

Port types should be omitted
from a diagram for clarity only.

Port Type

Figure 6.7 Block and internal block diagrams – showing item flows

246 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

With the guidelines for item flows defined, the next section discusses the
guidelines for activity diagrams.

6.4.3 Activity diagrams
This section defines guidelines to be followed when producing activity diagrams.

The guidelines shown in Figure 6.8 are summarised in Table 6.7.
With the guidelines for activity diagrams defined, the next section discusses

issues around tool settings.

6.4.4 Default tool settings
All SysML tools have default settings that control the appearance of diagrams in many
ways, such as colour, navigability, etc. This section discusses some of these issues.

6.4.4.1 The use of colour
The use of colour can be used to add extra information to a diagram or to make
diagrams clearer. However, colour should not be used without careful considera-
tion. As a general rule, all diagram elements should be drawn with black text on a
white background. Where colour is used, the diagram must include a key that
explains the colour scheme used.

In addition, some tools allow diagrams to be produced that have 3D effects,
gradient fills, shadows and curved lines that can be applied to diagram elements.
These should not be used and should be turned off in the tools options. As an
example, the following three diagrams are taken from a SysML tool.

Figure 6.9 shows the diagram as produced by the tool with the default
graphical options turned on (but with the colour used for the blocks replaced with
grey). Clearly, this diagram is not fit for purpose. The use of curved connectors

Table 6.6 Item flow naming conventions

Diagram item Guidelines

Port with incoming flows Place on the left of the block or part. If this is not possible,
try to place them on the top of the block or part

Port with outgoing flows Place on the right of the block or part. If this is not possible,
try to place them on the bottom of the block or part

Port with conjugated flows Place on the left of the block or part. If this is not possible, try
to place them on the top of the block or part

Port with two-way,
non-conjugated flows

Place on the right of the block or part. If this is not possible,
try to place them on the bottom of the block or part

Port Port name should be in sentence case
Port type should have each word capitalised (corresponding to

the model element that types the port)
Port types can be omitted only for single-direction ports

Item flow Item flow name should be in sentence case
Item flow type should be in upper case
Item flow name and type should be placed above the connector

along which it flows

Diagramming Guidelines 247

ac�vity 1

ac�vity 2

ac�vity 3 ac�vity 4

ac�vity 5

ac�vity 4

ac�vity 1

ac�vity 2

ac�vity 3

ac�vity 5

Beware ac�vi�es (or states on a
state machine diagram) with no
input - suggests missing edge or
ini�al node.

Forks should only have 1 input -
use a merge if necessary.

Ac�vi�es should only have 1
input - use a merge if necessary.

Beware ac�vi�es (or states on a
state machine diagram) with no
output - suggests missing edge
or final node.

Figure 6.8 Activity diagrams

Table 6.7 Activity diagram guidelines

Diagram item Guidelines

Activity Check that all activities (or states on a state machine diagram) have an
input. Missing inputs suggest a missing edge or initial node

Check that all activities (or states on a state machine diagram) have an
output. Missing outputs suggest a missing edge or final node

Activities should have only one input. Use a merge if necessary
Fork Forks should have only one input. Use a merge if necessary

makes the diagram almost unreadable and the 3D effects and shadowing do nothing
to add to either the clarity or meaning of the diagram.

The same diagram, but without the use of curved lines, 3D effects and shadows,
is shown in Figure 6.10.

1

1

1

1

«block»
Block1

«block»
Block2

«block»
Block3

«block»
Block4

«block»
Block5

1

1

1

1

Figure 6.9 Example block definition diagram showing inappropriate use of
shading and other graphical effects

1

1

1

1

«block»
Block1

«block»
Block2

«block»
Block3

«block»
Block4

«block»
Block5

1

11

Figure 6.10 Example block definition diagram showing use of colour

Diagramming Guidelines 249

The diagram, like the original in Figure 6.9, makes use of colour, with the blocks
being filled with a pink background (here rendered as a grey background to the
blocks). If colour is required, then thought should be given to its choice and purpose.
For example:

● How well will the colour reproduce when printed in black and white or
greyscale?

● Are any fonts or other symbols that lie on top of the colour readable?
● Will the chosen colours be problematic to those who are colour-blind?
● What meaning is attributed to the colours used?
● Have such meanings been made clear in a key?

Using colour is problematical at best. If it must be used, use it sparingly. The SysML
specification does NOT define colours for SysML elements. The best approach is to
use simple black and white, as shown in Figure 6.11.

6.4.4.2 Navigability
In each of the figures in Section 6.4.4.1, the compositions from ‘Block1’ all have an
open arrowhead at the part end of the relationship. These arrowheads are used to
show the navigability of the relationship. However, this is a concept that is mainly
needed when modelling software (the notation is part of SysML through its inheri-
tance from the UML) and is used less often in more general systems modelling.

The arrowheads are shown on these diagrams because, in the tool used to pro-
duce these diagrams, the display of navigability is turned on by default. This requires
the user to change this default setting, if the tool allows this, or, if not permitted,
requires the user to edit the setting for each association when added to the diagram.

1

1

1

1

«block»
Block1

«block»
Block2

«block»
Block3

«block»
Block4

«block»
Block5

1

1

1

1

Figure 6.11 Example block definition diagram rendered in black and white

250 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

6.4.4.3 Other common settings
Other common diagramming settings that need to be considered include the display
of role names on associations, whether whole-part relationships should default to
composition or aggregation, whether association names should be displayed by
default, whether compositions, aggregations and generalisation relationships
should be displayed in a tree layout and what colours should be used for diagram
elements such as blocks, requirements and use cases.

A SysML tool should allow such settings to be changed once for a model and
not force the modeller to change the settings for every diagram. Even more desir-
able is the ability to define these settings for all models created with the tool. This
allows standard settings to be rolled out across an entire organisation. Unfortu-
nately, not all tools allow changes to default settings to be made.

6.5 Chapter summary

This chapter has presented a number of guidelines and conventions that should be
followed to ensure that the diagrams in a SysML model have a common look and
feel. These guidelines are a starting point only; feel free to use them but remember
that any such guidelines should be tailored to the needs of your Organisation. Pro-
ducing a SysML modelling Standard that is incorporated into the reader’s systems
engineering Processes is to be encouraged as a way of enforcing the guidelines.

In addition, issues regarding the use of colour, shading, curved lines, default
relationship settings, etc. should be considered and guidelines produced. If possible,
the tool should be configured so that these defined settings are set as defaults.

Reference

[1] Ambler S.W. ‘The Elements of UML 2.0 Style’. New York; Cambridge
University Press; 2005.

Diagramming Guidelines 251

This page intentionally left blank

Part 3 – Applications

P3.1 Overview

This part is structured according to the diagram in Figure P3.1.

Part 3 looks at how model-based systems engineering can be applied in a
practical manner by considering a number of applications. This part comprises five
main chapters.

● ‘Chapter 7 – Process Modelling with MBSE’. This chapter introduces an
established approach for modelling Processes using MBSE. This approach,
known as the seven views, is fully described and then illustrated using an
example Process model.

«block»
Part 3 – Applications

«block»
Chapter 7 – Process
Modelling with MBSE

«block»
Chapter 8 – Expanded

Process Modelling

«block»
Chapter 9 – Requirements

Modelling with MBSE

«block»
Chapter 10 – Expanded

Requirements Modelling –
Systems of Systems

«block»
Chapter 11 – Architectures

and Architectural
Frameworks with MBSE

«block»
Chapter 12 – Value Chain

Modelling

Figure P3.1 Structure of ‘Part 3 – Applications’

● ‘Chapter 8 – Expanded Process Modelling’. This chapter builds upon the seven
views approach that was described in the previous chapter by presenting a
number of advanced applications of Process modelling including modelling
Standards, demonstrating compliance, modelling Competence, modelling Life
Cycles and modelling Project management.

● ‘Chapter 9 – Requirements Modelling with MBSE’. This chapter looks at an
approach for modelling Requirements using MBSE. The approach describes a
Context-based approach for modelling Requirements that may be used for
Projects of differing degrees of size and rigour. The concept of a Requirement
is described as being a special type of Need, alongside Goals, Capabilities and
Concerns, all of which can be modelled using this approach.

● ‘Chapter 10 – Expanded Requirements Modelling – Systems of Systems’. This
chapter builds on the basic approach introduced in the previous chapter by
applying the same technique to Systems of Systems. Several new concepts are
introduced and discussed that make the application of modelling to Systems of
Systems different from its application Systems and, based on this, several new
Views are described.

● ‘Chapter 11 – Architectures and Architectural Frameworks with MBSE’. This
chapter concentrates on the fundamental building blocks required for building
Architectures and their underlying Architectural Frameworks. The approach to
defining architecture Viewpoints and their associated Views is used throughout
this book.

● ‘Chapter 12 – Value Chain Modelling’. This chapter looks at a more business-
focused application of MBSE, that of Value Chain Modelling. This involves
looking at how the value of different work activities in a business may be
modelled and their origins identified in order to make business decisions.

The approach taken for all of these application areas is the same as is used
throughout the book, that of producing ‘Ontology, Framework and Views’. All of
this go to show how important the modelling is to everything that we do in MBSE,
including the approach itself.

254 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Chapter 7

Process Modelling with MBSE

7.1 Introduction

This chapter looks at a model-based approach to Process modelling, which,
although at first appearances, may seem quite simple, it will be shown that the
application of modelling Processes has myriad uses in Systems Engineering.

The basic ‘‘seven views’’ approach that is described in this chapter may be
applied to many other areas of Systems Engineering, such as modelling Standards,
compliance, Life Cycle modelling, Competence modelling and project manage-
ment. These examples will be expanded upon in Chapter 8.

The definition of the ‘‘seven views’’ follows the basic ‘Ontology, Framework
and Views’ approach, which is used throughout this book.

7.1.1 Background
In Chapter 15, we will be looking at some of the Needs behind providing a good
Process, whereas this chapter looks at the specific Needs of Process modelling.
The basic Needs behind these two areas, the provision of a Process and Process
modelling, result in two different Contexts being produced. As we are concerned
with Process modelling here, the following Context describes the Need for Process
modelling.

The diagram in Figure 7.1 shows the overall Context that describes the use
cases for Process modelling.

The main use case is concerned with defining an approach to Process model-
ling (‘Define approach to process modelling’) which has three main inclusions:

● There must be a mechanism for allowing the basic Needs of the Process to be
defined (‘Provide needs definition’). This is a fundamental Need for all aspects
of the MBSE approach that is advocated in this book and the area of Process
modelling is no exception.

● Obviously, there must be a mechanism to allow the Process itself to be defined
(‘Provide process definition’). This will have to meet the basic Needs of the
Process that are defined in the previous point.

● If the Need and the Process have been defined, then there must be a mechanism
in place to allow the Process definition to be validated against the Need
(‘Provide process validation’).

There are three main constraints that are applied to defining the approach, which are:

● The approach must be able to be used with different types of Process that exist
at different levels of abstraction (‘Be applicable to different levels of process’),
such as high-level Standards (‘ . . . standards’), medium levels of Process
(‘ . . . processes’) and low-level procedures (‘ . . . procedures’). The specific
issue of modelling Standards is discussed in more detail in Chapter 8.

● The approach must be expandable for different applications (‘Be expandable’) –
this is covered in more detail in Chapter 8, which discusses more applications
of the approach described in this chapter.

● The approach must allow for various Processes to be mapped together (‘Allow
mapping between processes’).

When considering any approach to Process modelling, there are a number of key
features of Processes that must be taken into account and that are described as
follows.

● Missing information. One very real danger that occurs when modelling any-
thing, not just Processes, is that too much information may be inadvertently
missed out. A Process model that is too simplified will not add the amount of
value that an appropriately modelled one will and, likewise, a Process model
that contains too much detail will be riddled with complexity and all its asso-
ciated problems. Reaching the appropriate level of abstraction can be very

Process Modelling Context

«concern»
Define approach for
process modelling

«concern»

Provide needs definition

«concern»
Provide process

definition
«concern»

Provide process
validation

«concern»

Be expandable

«concern»

...for competence

«concern»

... for life cycles

«concern»

... for projects

«concern»
Be applicable to
different levels of

process

«concern»

... standards

«concern»

... processes
«concern»

... guidelines

«concern»
Allow mapping between

processes

«stakeholder role»
Process Modeller

«stakeholder role»
Systems Engineering

Manager

«concern»
Ensure consistency
with MBSE approach

«concern»
Define ontology

«stakeholder role»
Standard

«include»

«constrain»

«include» «include»

«include»

«constrain»

«constrain»

«constrain»

Figure 7.1 Process modelling Context

256 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

difficult to achieve, therefore some guidance is required for obtaining the
correct level of detail.

● Realistic Processes. Another problem that occurs with Process modelling is of
ensuring the Process really reflects the actual practices carried out in real life.
This occurs as Processes are usually modelled as abstract notions that are
thought about theoretically before being put into practice. This is all well and
good, but it is just as important to think about the real-life execution of such
Processes that are referred to as Process instances or, to put it another way,
real-life examples of the Processes being executed in the organisation.

● Process partitioning. Any Process model has the potential to contain a very
large number of Processes and it is important to be able to partition them in
some way. The approach to partitioning Processes into groups can take many
forms. For example, many Organisations will take the structure of an interna-
tional Standard as the basis for the main Process partitions. Rather than using
an international Standard or best practice model, Processes are also often
grouped in terms of their functionality, or in terms of areas of responsibility.
The actual approach taken will depend on the Organisation and the nature of
the applications of the Process, but somewhere this decision must be made and
recorded in some way.

● Process iteration within a Process. When Processes have been identified and
the key features defined, it is important to be able to define how the Activities
in the Process are carried out – the order in which these Activities are executed,
the conditions under which they are executed and any timing constraints that
may come into play. Very often, the internal workings of a Process will be
defined as a linear set of Activities, whereas in real life, many Processes will
exhibit a high degree of looping. For example, most Processes will have
decision points and, by the very nature of a decision point, there will be more
than one option based on a decision. These different options will result in
different paths of flow through a process resulting in a high degree of iteration.
Caution must be exercised when identifying iteration as the more the iterations
within a diagram, the higher the level of complexity.

● Process iteration with Process instances. In real life, it is possible to execute
many instantiations of a single Process at the same time. Consider any
transaction-processing system where it is a key feature of the System to be able
to process transactions in parallel, rather than in a simple sequence.

● Complexity and interactions. Interactions exist at many levels in a Process
model in both its structural definition and its behaviour. These interactions can
be identified visually by looking at the graphical paths (lines) on any diagram
that connect together the graphical nodes (shapes).

● Traceability. One of the most important goals for any quality system is that of
traceability. It is essential to be able to trace from any point of any Life Cycle,
right back to the original Needs of the Projects. For example, during an audit
the auditor may point at any part of the system that is being developed and ask
which of the original Needs that part of the System is meeting. The same is true
for the Process model, it is essential that all the Artefacts are not only identified

Process Modelling with MBSE 257

but that they are also fully traceable. For example, a delegate-booking Process
may require an invoice to be produced and sent out to a customer, but if there is
no traceability between the booking Process and an associated invoicing Pro-
cess then the whole Process will fail.

Any approach that is adopted to model Processes must take in account these points
and be able to address them in some way. The approach that is advocated in this
book, the so-called ‘‘seven views’’ approach, addresses all of these points through
its Context-based approach to modelling.

7.2 Approach

The ‘‘seven views’’ approach to Process modelling has been used successfully in
both industry and academia for over two decades. The approach is truly model-
based and uses a Context-based approach to create the various Views. The ‘‘seven
views’’ approach is defined using the basic ‘Ontology, Framework and Views’ style
that has been adopted throughout this book.

The ‘‘seven views’’ approach to Process modelling may be realised using any
suitable modelling notation, such as BPMN [1,2], UML [3,4] and flow charts [5]. For
the purposes of this book, the SysML will be used to visualise each of the Views, but
for a more complete discussion on other visualisation techniques, see [6].

7.2.1 The MBSE Ontology (revisited)
A subset of the MBSE Ontology may now be considered that is related directly to
Process modelling.

The diagram in Figure 7.2 shows the subset of the MBSE Ontology that has
been identified as being relevant for Process modelling. Most of the Ontology
Elements shown here should not come as any real surprise as they may be clearly
identified as relating to Process engineering simply by their proximity to the
‘Process’ element from the MBSE Ontology. There is one element, however, that
is not obviously shown as being related to the MBSE Ontology, and that is the
concept of the ‘Process Context’, which is one type of ‘Context’. The concept of
a ‘Core Element’ from the MBSE Ontology was introduced and discussed in
Chapter 2, which was defined as being an ‘Ontology Element’ that applies to one or
more ‘Basic Element’ from the ontology. As ‘Context’ is identified as a ‘Core
Element’ it actually applies to more Ontology Elements, which is shown in the
standard MBSE Ontology, and one of these unshown relationships is between
‘Process’ and ‘Context’ using the concept of the ‘Process Context’. This is the
relationship that can be seen in this diagram.

7.2.2 The Framework
The ‘‘seven views’’ Framework comprises a number of Viewpoints that will be used to
define a number of Views. These Viewpoints are identified in the diagram in Figure 7.3.

258 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

«ontology element»
Activity

«ontology element»
Artefact

«ontology element»
Process

«ontology element»
Process Context

«ontology element»
Process Execution

Group

«ontology element»
Service

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
Process Group

1..*

yields an observable
result to

1..*
1..*

1

1

is responsible for1..*

1

consumes1..*

1..*

realises

1..*

1..*

1..*

1

1..*

1..*

is executed during

1

1

represents the need for

1..*

1..*

satisfies

1..*

1..*

1..*produces/consumes

1..*

{incomplete}

Figure 7.2 Subset of the MBSE Ontology focused on Process modelling

«viewpoint»
Information Viewpoint

«viewpoint»
Process Behaviour

Viewpoint

«viewpoint»
Process Content

Viewpoint

«viewpoint»
Process Instance

Viewpoint

«viewpoint»
Process Structure

Viewpoint

«viewpoint»
Requirement Context

Viewpoint

«viewpoint»
Stakeholder Viewpoint

1..*

defines artefacts in

1

1..*

defines execution of processes in

11

defines ontology for

1..*

1

defines stakeholder roles in

1..*

1..*

defines artefacts in
1..*

1..*

defines behaviour for
1

1..*

defines processes that
satisfy

1..*

Figure 7.3 The Framework Viewpoints for Process modelling

Process Modelling with MBSE 259

The diagram here shows the main Viewpoints that are needed according to the
‘‘seven views’’ approach Framework. It should be noted that for each of the seven
Views from which the approach gets its unoriginal name, an associated Viewpoint
will need to be defined that describes its structure, which is what is shown here. The
seven basic Viewpoints that have been defined are:

● The ‘Requirement Context Viewpoint’ (RCV). The ‘RCV’ defines the Context
for the Process or set of Processes. It will identify a number of Use Cases, based
on the Needs for a Process and any relevant Stakeholder Roles that are required.

● The ‘Stakeholder Viewpoint’ (SV). The ‘SV’ identifies the Stakeholder Roles
that have an interest in the Processes being defined. It presents Stakeholder
Roles in a classification hierarchy and allows additional relationships, such as
managerial responsibility.

● The ‘Process Structure Viewpoint’ (PSV). The ‘PSV’ specifies concepts and
terminology that will be used for the Process modelling in the form of an
Ontology. If the Process modelling is taken as part of a larger MBSE exercise,
then the Process Structure View will be a subset of the MBSE Ontology.

● The ‘Process Content Viewpoint’ (PCV). The ‘PCV’ identifies the actual
Processes, showing the Activities carried out and the Artefacts produced and
consumed. The Process Content View may be considered as the library of
Processes that is available to any Process-related Stakeholder Roles.

● The ‘Process Behaviour Viewpoint’ (PBV). The ‘PBV’ shows how each indi-
vidual Process behaves in terms of the order of Activities within a Process, the
flow of Artefacts through the Process, Stakeholder Role responsibilities and,
where relevant, Resource usage. This is the Viewpoint that most people think
of when considering Process modelling.

● The ‘Information Viewpoint’ (IV). The ‘IV’ identifies all the Artefacts pro-
duced or consumed by Activities within a Process and the inter-relationships
between them.

● The ‘Process Instance Viewpoint’ (PIV). The ‘PIV’ shows instances of Pro-
cesses in the Process Execution Groups.

These Viewpoints are expanded upon in the following sections, using an example
Process model. This is a bespoke process model that is compliant with ISO 15288
and that was originally developed as an educational tool for teaching and training
purposes. The process is known as STUMPI – STUdents Managing Process Intel-
ligently and it has been used very successfully for over a decade.

7.2.3 The Viewpoints
7.2.3.1 The Requirement Context Viewpoint
Viewpoint rationale
As with all aspects of Systems Engineering, it is essential that everything that we do
adds value to our work activity. In order to ensure that we are adding value, it is
essential that we understand what it is we are setting out to achieve. Process
modelling is no different, so it is crucial that we understand what we want from the

260 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Process in the first place or, in other words, we need to understand the Needs for
that Process.

The RCV actually shows the Context of the Process. The techniques used to
model this Context are exactly the same as the techniques used to perform model-
based requirements engineering, as detailed in Chapter 9 where the ACRE
(Approach to Context-based Requirements Engineering) is introduced. The RCV
that is presented in this section is analogous to the RCV using ACRE.

The RCV forms the basis for the validation activities for the Process modelling
as it is essential that we can demonstrate that the Process model is fit for purpose. If
the purpose is unknown, then it is impossible to validate. The Process model may
actually work as a functional set of Processes (it may be verified), but unless it
satisfies a set of defined Needs, then the Process model is not demonstrably useful.

To summarise, therefore, there must always be a RCV for a Process. A Process
without any defined need may be verified but may never be validated.

Viewpoint definition
The subset of the MBSE Ontology that relates to Process modelling is shown in
Figure 7.4, with the relevant Ontology Elements highlighted.

The diagram here shows that the Ontology Elements that are important for
model-based Process engineering are: the ‘Stakeholder Role’, the ‘Use Case’ and
the ‘Process Context’.

«ontology element»
Activity

«ontology element»
Artefact

«ontology element»
Process

«ontology element»
Process Context

«ontology element»
Process Execution

Group

«ontology element»
Service

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
Process Group

1..*

1..*

1

1

consumes1..*

1..*

realises

1..*

{incomplete}

1..*produces/consumes

1..*

1..*

yields an observable
result to

1..*

1..*

1..*

satisfies

1..*

1

represents the need for

1..*

1

is responsible for1..*

1..*

1

1..*

1..*

is executed during

1

Figure 7.4 Definition of the Requirement Context Viewpoint

Process Modelling with MBSE 261

This whole Viewpoint shows a single Context that relates to a Process or set of
Processes.

Viewpoint relationships
The diagram in Figure 7.5 shows the relationships between the RCV and other
Viewpoints in the ‘‘seven views’’ approach. The diagram here is actually a subset of
the MBSE Process Framework, which will be shown in its entirety later in this
chapter.

The ‘RCV’ has relationships with the ‘PCV’ and the ‘PIV’. These relationships
lead to the definition of the following Rules, which may be used to enforce com-
pliance with the ‘‘seven views’’ approach.

● At least one Requirement Context View must exist for the Processes.
● At least one Process Instance View must exist for each use case in the Process

Context View that needs to be validated.
● Each Stakeholder Role on the Process Context View, represented as a SysML

actor, must exist on the accompanying Stakeholder View.

These Rules may be used as a basis for automation for the ‘‘seven views’’ approach.

View visualisation
The Requirement Context View is visualised in SysML using a use case diagram,
as shown in Figure 7.6.

«viewpoint»
Process Instance

Viewpoint

«viewpoint»
Requirement Context

Viewpoint

«viewpoint»
Stakeholder Viewpoint

«ontology element»
Stakeholder Role

«ontology element»
Use Case

«ontology element»
Process

1..*

1..*satisfies

1..*

1..*

1..*

Figure 7.5 Relationships between the Requirement Context Viewpoint and
other Viewpoints

262 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Figure 7.6 shows the ‘Requirement Context View’ for the STUMPI Process.
The main aim of the STUMPI Context is to allow a set of Processes for Systems
Engineering development to be defined (‘Define development processes’), which
can be used for both engineering (‘Define engineering processes’) and management
(‘Define management processes’) processes. This definition of Processes must
allow the user to:

● Define Activities (‘Define activities’) that allow the Process to be executed.
● Define Artefacts (‘Define artefacts’) that will allow the inputs and outputs for

the Process to be specified.
● Define roles (‘Define roles’) that will allow the Stakeholder Roles for the

Process to be identified and defined.

The main constraints on the process definition are to:

● Ensure that the approach can be taught, learned and adopted quickly (‘Ensure
ease of use’),

● Ensure that the approach complies with best practice (‘Ensure compliance with
standards’),

● Ensure that the approach promotes the ‘‘seven views’’ approach (‘Ensure use of
‘‘seven views’’ approach’).

This Process Context View provides the basis against which the resultant Processes
may be validated.

RCV [Package] RCV - STUMPI [RCV - STUMPI]

STUMPI - Process Context

«goal»
Define development

process

«capability»
Ensure ease of use

«capability»
... in terms of
complexity

«capability»
...in terms of speed

of adoption

«capability»
Ensure use of "seven

views" approach

«capability»
Ensure compliance

with standards

«capability»
Define engineering

processes

«capability»
Define management

processes

{incomplete}
«capability»

Define activities

«capability»
Define artefacts

«capability»
Define roles

«stakeholder role»
User

«stakeholder role»
Standard

«stakeholder role»
Systems Engineer

«stakeholder role»
Project Manager

«include»

«constrain»«constrain»

«include»«include»

«constrain»

Figure 7.6 Example Requirement Context View for the STUMPI Process

Process Modelling with MBSE 263

View discussion
The Requirement Context View is very important as it will form the basis for
validating each Process. It is quite often the case that a set of Processes is defined
that is fully verified, but that is not validated. The difference between verification
and validation can never be repeated enough, so here it is again, but this time
relating to Processes.

● Process verification. Process verification is concerned with ensuring that the
Process works properly – that it is correct, consistent and will respond to a set
of inputs in a predictable fashion. Verification, generally speaking, demon-
strates that something can be demonstrated to meet a specification.

● Process validation. Process validation is more subtle than Process verification,
as Process validation basically asks whether the Process actually achieves what
it is supposed to (meets its Needs). It is perfectly possible for a Process model
to be correct and working (verified) but that does not meet the need for the
Process model, in which case the Process model is useless.

It is the Requirement Context View that will provide an understanding of exactly
why the Process model is needed in the first place. If the Need for the Process
model is not known, then how on earth can a Process model be validated? The
answer, of course, is that validation is impossible without an understanding of what
the basic Needs are.

One of the features of a robust Process model is its ability to remain valid over a
long period of time. In order to do this, the Process model must evolve to react to the
changing environment in which it lives. As time goes on, changes will occur in sur-
rounding environment, so it is important that this can be captured in some way, and it
is the Requirement Context View that achieves this. Examples of changes include:

● Changes to Stakeholder Roles, realised by actors. By the very definition of the
term Stakeholder Role, they each have some sort of interest in the System;
therefore, if one of the Stakeholder Roles changes in some way, then there is a
potential impact on the System which requires investigation.

● Changes in related Process models. This is actually a variation of the point
above, but is worthy of its own discussion. Invariably, a Process model will not
exist in isolation and will have to co-exist with a number of other Process
models, such as related Standards, and procedures. It is quite possible and,
indeed quite common, for these external Process models to change in some
way and to render elements of the actual Process model redundant, incorrect or
simply out of date.

● Changes in the Organisation. Organisations are living entities and, as such, are
subject to change due to any number of factors, such as technology changes,
best practice changes, new business areas opening up, and automation of pro-
duction. As the Organisation evolves so must the Process model to reflect this.

These changes are nothing new but, in many instances, they often go unnoticed as the
Process model still functions in a correct fashion, but it can no longer meet its new
purpose. It is quite common for a Process model to be verified and validated when it is
first defined. However, as time goes on, the basic Needs change, as discussed above,

264 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

which leads to a non-validated, yet still-verified Process model. It is the fact that the
Process model remains verified that leads to complacency. Therefore, it is crucial that
any Process model is continuously assessed on a regular basis, maybe once or twice
per year, in order to make sure that: the Needs for the Process model are still accurate
and that the Process model itself can be validated against these Needs.

The Requirement Context View, therefore, is essential for ensuring that the
Process model is correct and can be validated over a period of time, and that it
evolves to reflect any changes in the environment.

7.2.3.2 The Stakeholder Viewpoint
Viewpoint rationale
In order to understand the value that any Process adds to our work activities, it is
essential that we can identify and understand any Stakeholder Roles that have an
interest in the Process.

The SV identifies the Stakeholder Roles that have an interest in the Processes
being defined. It presents Stakeholder Roles in a classification hierarchy and
allows additional relationships, such as managerial responsibility, to be added. The
Stakeholder Roles appearing on the Stakeholder View must be consistent with
those shown on the RCV in the form of actors.

Viewpoint definition
The subset of the MBSE Ontology that relates to modelling Processes is shown in
Figure 7.7, with the relevant Ontology Elements highlighted.

«ontology element»
Activity

«ontology element»
Artefact

«ontology element»
Process

«ontology element»
Process Context

«ontology element»
Process Execution

Group

«ontology element»
Service

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
Process Group

1..*

1..*

1

1

consumes1..*

1..*

realises

1..*

{incomplete}

1..*produces/consumes

1..*

1..*

yields an observable
result to

1..*

1..*

1..*

satisfies

1..*

1

represents the need for

1..*

1

is responsible for1..*

1..*

1

1..*

1..*

is executed during

1

Figure 7.7 Definition of the Stakeholder Viewpoint

Process Modelling with MBSE 265

The diagram here shows that the Ontology Element that is important for
modelling Processes is the ‘Stakeholder Role’.

Viewpoint relationships
The diagram in Figure 7.8 shows the relationships between the SV and other
Viewpoints in the ‘‘seven views’’ approach. The diagram here is actually a subset of
the MBSE Process Framework that will be shown in its entirety later in this chapter.

The ‘SV’ has relationships with the ‘PCV’, the ‘PBV’ and the ‘RCV’. These
relationships lead to the definition of the following Rules, which may be used to
enforce compliance with the ‘‘seven views’’ approach.

● Each Stakeholder Role on the Stakeholder View must exist as a swim lane
owner on a Process Behaviour View.

● Each Stakeholder Role represented as an actor on the Process Context View
must exist as a Stakeholder Role on the Stakeholder View.

These Rules may be used as a basis for automation for the ‘‘seven views’’ approach.

View visualisation
The Stakeholder View is visualised in SysML using a block definition diagram,
as shown in Figure 7.9.

The diagram here shows the ‘Stakeholder View’ for the STUMPI Process,
where a single block represents each Stakeholder Role. It is also possible to
visualise each Stakeholder Role as an actor, rather than a block, it is the modeller’s
choice.

View discussion
The Stakeholder View represents a simple classification of the different types of
Stakeholder Roles that are involved with the Process. The Stakeholder View is
realised in SysML with a block definition diagram, with each Stakeholder Role
being represented by a single block or actor.

«viewpoint»
Requirement Context

Viewpoint

«viewpoint»
Stakeholder Viewpoint

«ontology element»
Stakeholder Role

«ontology element»
Use Case

1..* 1..*

1..*

Figure 7.8 Relationships between the Stakeholder Viewpoint and other
Viewpoints

266 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

It is typical for a single Stakeholder View to be drawn up that represents many
or, in some cases, all Stakeholder Roles in an Organisation, rather than creating one
on a project-by-project basis. This is a tremendous help when it comes to trying to
get an idea of the big picture of an Organisation and can be invaluable when it
comes to making sure that Processes are consistent with one another.

The biggest mistake made by people when defining Stakeholder Roles is that
they refer to them by individual names, such as the name of a Person of an Orga-
nisation. It is the role of the Person or Organisation, rather than the actual name that
is of interest from the modelling point of view. There are several reasons for this:

● Multiple roles. It is possible and, indeed, very common for a single Person to
have more than one Stakeholder Role. Consider the roles taken on by any
single Person in an Organisation and, in the vast majority of cases, each Person
will play more than one role. This is important as the roles played by an
Organisation, for example, can be wildly different, yet have the same name
associated with them. This becomes particularly relevant when considering
Competences, which will be discussed in Chapter 8, which discusses advanced
process modelling.

● Multiple names. It is equally common for a single Stakeholder Role to have
many names associated with it. In some cases, particularly when it comes to

CDV [Package] SV - STUMPI [SV - STUMPI]

«stakeholder role»
Stakeholder Role

«stakeholder role»
Customer

«stakeholder role»
External

«stakeholder role»
Supplier

«block»
User

«block»
Operator

«stakeholder role»
Sponsor

«stakeholder role»
Standard

«block»
Legal

«stakeholder role»
Systems Engineer

«block»
Systems Engineering

Manager

«block»
Project Manager

«block»
Requirements Engineer

«block»
Tester

«block»
Builder

«stakeholder role»
Systems Modeller

«stakeholder role»
Reviewer

Figure 7.9 Example Requirement Context View for the STUMPI Process

Process Modelling with MBSE 267

users of a system, there can be millions of names associated with a single
Stakeholder Role.

● Robustness. By thinking of roles, rather than names, a model that is robust
towards change is generated. Imagine how unmanageable the model would
be – if every time the name associated with a Stakeholder Role changed then
the model had to be changed! Not only is this impractical simply from people
moving jobs (particularly in large organisations), but it is also possible that
the number of names associated with a single Stakeholder Role will increase as
the Project progresses through the development Life Cycle.

Therefore, always think of the role, rather than names, when thinking of Stake-
holder Roles.

When generating a list of Stakeholder Roles, it is very easy to get things wrong
and for two totally different reasons. The first reason is that, invariably, if one was
to write down a list of Stakeholder associated with a Process, then there would be
something missing. On the other hand, there will also be some Stakeholder Roles
on the list who are not involved at all with the Project! The only way to have any
confidence that the Stakeholder Role list is correct is to look at how and where the
Stakeholder Roles occur on the different Views of the approach.

There are three main types of ‘Stakeholder’: ‘Customer’, ‘External’ and
‘Supplier’. This three-way split is typical for many systems and can be a very good
place to start thinking. These terms are defines as follows:

● The ‘Supplier’ Stakeholder Role refers to all the roles that are associated with
providing a Service or Product that relates to the development of the System.

● The ‘External’ Stakeholder Role refers to all the roles that are not Supplier
roles that have an interest in the System, but that cannot be argued with.

● The ‘Customer’ Stakeholder Role refers to all the roles that receive the Service
or Product associated with the System and that may be reasoned with in some
way and compromises reached.

One way to think of the Supplier Stakeholder Roles is that they represent ‘‘us’’ in
terms of who develops and delivers the System, whereas the External and Customer
represents the ‘‘them’’. The main difference between the External and Customer
Stakeholder Roles is that it is far easier to reach a compromise with Customers
rather than Externals, as the Externals tend to be standards, legislation, etc. that are
far-less flexible that the Customer. One other point to consider is that, regardless
which Stakeholder Role we are considering, we are always trying to keep all
Stakeholder Roles satisfied.

In terms of the ‘Customer’ Stakeholder Roles, three have been identified here:

● ‘User’, this Stakeholder Role represents all the end users of a System. In the
case of a transport system, this role would represent the passengers and, hence,
there may be millions of names associated with this role. Likewise, in a
healthcare system, this role would represent the actual patients who are
retrieving treatment.

268 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● ‘Operator’, this Stakeholder Role represents the people who will be configur-
ing, controlling and operating the System. In the case of the transport system,
this role would cover a range of roles ranging from tickets sales, to driving the
vehicles, to controlling the position of vehicles, route planning, etc. In the case
of the healthcare system, this role would again cover a number of other roles
including doctors, nurses, surgeons and administrators.

● ‘Sponsor’, this Stakeholder Role represents whoever is providing the financial
backing for the System. In the case of the transport system this may be gov-
ernment related, private or some combination of the two. Similarly, the
healthcare system may have a number of different names associated with it.

In terms of the ‘External’ Stakeholder Roles, two main roles have been identified:

● ‘Standard’, this Stakeholder Role represents standards and standard bodies that
may constrain the development and operations of a System in some way. This
may relate to safety standards, security, etc.

● ‘Legal’, this Stakeholder Role relates to legal roles that may impact the System
in some way, for example, data protection laws, and health and safety
legislation.

In terms of ‘Supplier’, three main Stakeholder Roles have been identified:

● ‘Systems Engineer’, this role represents technical roles, such as engineers and
scientists.

● ‘Systems Engineering Manager’, that includes all management-related roles,
such as project managers, process managers and configuration managers.

The Stakeholder View is the same as the Stakeholder Context Definition View that
is used as part of the ACRE approach to model-based requirements engineering, in
that it identifies Stakeholder Roles. However, the purpose behind the two is subtly
different. The Stakeholder View is intended to identify Stakeholder Roles in order
that they can be used as part of the larger Process model (for responsibilities,
competencies, etc.), whereas the Stakeholder Context Definition View identifies
Stakeholder Roles in order to help to define a number of Contexts based on these
roles.

7.2.3.3 The Process Structure Viewpoint
Viewpoint rationale
It has already been mentioned several times in this book why understanding the
concepts and terms associated with any aspect of Systems Engineering is so
important. Indeed, one of the main philosophies of this book is to ensure that there
is always an Ontology in place that identifies and defines the concepts and terms.
The PSV is essentially the Ontology for the Process. If the Process modelling is
being carried out as part of a larger Systems Engineering activity (which it should
be!), then the MBSE Ontology may be used for the Process Structure View. In the
event that the Process modelling is being carried out as its own activity, a PSV must
be created.

Process Modelling with MBSE 269

Viewpoint definition
As the PSV is itself an Ontology, the Ontology for the View actually sits at the
meta-model level, as discussed in Chapter 2, and as shown in the diagram in
Figure 7.10.

The diagram shows that the ‘PSV’ is focused on the ‘Ontology’ and, hence,
one or more ‘Ontology Element’ that make up the ‘Ontology’. Again, it should be
stressed that this view may very well exist in the form of the MBSE Ontology.

Viewpoint relationships
The Process Structure View actually has relationships with all the other Views, as it
forms the Ontology and, therefore, defines the concepts and terms used in all of the
other six Views.

View visualisation
The Process Structure View is visualised in SysML using a block definition dia-
gram, as shown in Figure 7.11.

The diagram in Figure 7.11 shows the ‘Process Structure View’ for the
STUMPI processes. Note that the ‘Process Structure View’ shown in Figure 7.11
considers Process-related concepts that are used for additional modelling, such as
the ‘Life Cycle’, ‘Stage’ and ‘Process Execution Group’.

● A Process Structure View, or Ontology, must exist for each Process model.
● Each element in the Process Structure view must be instantiated to form the

other six Views.

The Process Structure View is unusual as it sits at a higher conceptual level than the
other Views and, therefore, does not have the same type of consistency checks with
the other Views, as it provides the concepts and terminology for all Views.

View discussion
The Process Structure View specifies the structure of concepts and the terminology
used when defining Processes. The Process Structure View defines this vocabulary

«ontology element»
Ontology

«ontology element»
Ontology Element

1..*

1

Figure 7.10 Definition of the Process Structure Viewpoint

270 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

in order to ensure that consistency of terminology is used. If many different Pro-
cesses have to be mapped to each other, then the Process Structure Views for each
set of Processes form the basis for this process mapping, allowing the terminology
used in one Process model to be related to the terminology used in another.

The Process Structure View may also be used as a basis for complexity ana-
lysis. This is an interesting area that does not fall within the scope of this book, but
a full discussion can be seen in [6].

CDV [Package] PSV - STUMPI [PSV - STUMPI]

«ontology element»
Life Cycle

«ontology element»
Stage

«ontology element»
Process Execution Group

«ontology element»
STUMPI Process Model

«ontology element»
Process Group

«ontology element»
Process

«ontology element»
Artefact

«ontology element»
Activity

«ontology element»
Stakeholder Role

1..*

is executed during

1

1..*

1

is responsible for

1..*

1..*

1..*

is executed during
1

1..*

1..*

produces/consumes

1..*

Figure 7.11 Example Process Structure View for the STUMPI process

Process Modelling with MBSE 271

7.2.3.4 The Process Content Viewpoint
Viewpoint rationale
When a number of Processes have been identified and defined, it is natural for them
to form some sort of Process library, which presents the available Processes to
potential users. The library of Processes is represented in the ‘‘seven views’’
approach as the PCV.

The Process Content View identifies the Processes available, showing the
Activities carried out and the Artefacts produced and consumed. It may show
general associations and dependencies between Processes. It is important to
understand that the PCV only identifies Processes. It does not show how they are
carried out, which is the role of the PBV.

Viewpoint definition
The subset of the MBSE Ontology that relates to process modelling is shown in
Figure 7.12, with the relevant Ontology Elements highlighted.

The diagram in Figure 7.12 shows that the Ontology Elements that are
important for modelling Process are: the ‘Process’, the ‘Activity’ and the ‘Artefact’.

Viewpoint relationships
The diagram in Figure 7.13 shows the relationships between the Process Content View
and other Views in the ‘‘seven views’’ approach. The diagram is actually a subset of
the MBSE Process Framework, which will be shown in its entirety later in this chapter.

«ontology element»
Activity

«ontology element»
Artefact

«ontology element»
Process

«ontology element»
Process Context

«ontology element»
Process Execution

Group

«ontology element»
Service

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
Process Group

1..*

1..*

1

1

consumes1..*

1..*

realises

1..*

{incomplete}

1..*produces/consumes

1..*

1..*

yields an observable
result to

1..*

1..*

1..*

satisfies

1..*

1

represents the need for

1..*

1

is responsible for1..*

1..*

1

1..*

1..*

is executed during

1

Figure 7.12 View definition of the Process Content View

272 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The ‘PCV’ has relationships with the ‘PBV’, the ‘RCV’, the ‘IV’ and the
‘PIV’. These relationships lead to the definition of the following Rules, which may
be used to enforce compliance with the ‘‘seven views’’ approach.

● Each Process in the Process Content View must have at least one Process
Behaviour View to define its behaviour.

● Each Artefact in the Process Content View (represented as a property on its
parent block) must exist as an Artefact (represented by a block) in the Infor-
mation View.

● Each Process Instance (represented by a life line) in the Process Instance View
must be an instance of a Process (represented by a block) on the Process
Content View.

● Each Artefact in the Process Content View (represented as a property on its
parent block) must exist as an Artefact (represented by an instance specifica-
tion) on its associated Process Behaviour View.

● Each Activity in the Process Content View (represented as a SysML operation
on its parent block) must exist as an Activity (represented by a SysML activity)
on its associated Process behaviour View(s).

These Rules may be used as a basis for automation for the ‘‘seven views’’ approach.

«viewpoint»
Information Viewpoint

«viewpoint»
Process Behaviour

Viewpoint

«viewpoint»
Process Content

Viewpoint

«viewpoint»
Process Instance

Viewpoint

«ontology element»
Use Case

«ontology element»
Process

«ontology element»
Activity

«ontology element»
Artefact

1..*
produces/consumes

1..*

1..*

1..*

1..*

identifies artefacts for1

1..*

1..*satisfies

1..*

1..*

defines behaviour for

1

1..*

1..*1..*

Figure 7.13 Relationships between the Process Content Viewpoint and other
Viewpoints

Process Modelling with MBSE 273

View visualisation
The Process Content View is visualised using a block definition diagram, as shown
in Figure 7.14.

The diagram here shows the ‘Process Content View’ for the STUMPI pro-
cesses. Each Process is represented by a single block with each Artefact represented
by a property and each Activity by an operation.

View discussion
The Process Content View shows the actual content, in terms of Activities and
Artefacts by representing each Process as a single block. Due to the large number of
Processes within an Organisation, it is usual to produce a Process Content View for
each classification, or Process grouping, from the Process Content View. The
STUMPI process model, for example, has two main process groups (‘Engineering’
and ‘Management’), each of which will have its own Process Content View.

By adopting this presentation style, it is possible to represent an entire Process
by a single block, while showing all of its Artefacts and Activities. This notation not

PCV [Package] PCV - STUMPI [PCV - STUMPI]

«process group»
Engineering Group

«process»
Design Process

«artefact»
Analysis model document: Analysis Model Document
Design behaviour: Design Behaviour
Design model: Design Model
Design model document: Design Model Document
Design review report: Review Report
Design scenario: Design Scenario

«activity»
define system behaviour()
define system structure()
generate scenarios()
produce design model document()
review()

«process»
Implementation Process

«artefact»
Design model document: Design Model Document
Implementation review report: Review Report
System: System
System element: System Element

«activity»
construct unit()
integrate()
review()

«process»
Verification and Validation Process

«artefact»
Analysis model document: Analysis Model Document
Design model document: Design Model Document
Stakeholder need document: Stakeholder Need Document
System: System
Test: Test Specification
Test item: Test Item
Test result: Test Result
Test review report: Review Report

«activity»
define tests()
execute tests()
review()

«process»
Stakeholder Needs Process

«artefact»
Acceptance criteria: Acceptance Criteria
Need: Need
Needs set: Need Set
Project description: Project Description
Stakeholder Need document: Stakeholder NeedDocument
Stakeholder need review: Review Report
Stakeholder set: Stakeholder Set

analyse needs()
define acceptance criteria()
elicit needs()
identify stakeholders()
produce stakeholder needs document()
review()

«process»
Analysis Process

«artefact»
Analysis model: Analysis Model
Analysis model document: Analysis Model Document
Analysis review report: Review Report
Analysis scenario: Analysis Scenario
Assumption list: Assumption List
Interface specification: Interface Specification
Stakeholder need document: Stakeholder NeedDocument

«activity»
analyse need model()
document assumptions()
generate scenarios()
identify interfaces()
produce analysis model document()
review()

Figure 7.14 Example Process Content View for the STUMPI Process showing
the ‘Engineering Group’ Processes

274 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

only is simple and concise, but also allows an idea of the complexity of each
Process to be ascertained, albeit at a very high level, simply by looking at the
number of properties and operations and the ratio of their numbers.

An ideal block that represents a Process should contain around seven proper-
ties (plus or minus two) and operations for a well-balanced Process. This is because
the number of things that a human can remember at any one time is defined as 7,
plus or minus 2 – quite by coincidence, this is also the number of Views in the
MBSE Process Framework. Bearing this simple rule in mind, there are a number of
issues to look for when analysing Processes:

● Too many Activities. If a Process exists with far more than 9 (7 þ 2) Activities,
then the chance of someone being able to understand this Process begins to
diminish as the higher number of Activities increases. There are simply too
many steps involved in this task, which will, potentially, lead to complexity
when the Process is executed. This high number could be due to the fact that
the Activities represent very small steps of behaviour, which means that the
level of granularity of the Activities should be changed so that fewer Activities
represent the same behaviour. This high number could also be due to the fact
that there is simply too much going on in this single Process, and maybe the
Process should be broken down into two or more simpler Processes that
describe the same behaviour. As to which of these two reasons is the cause,
this will become more apparent when another View – the Process Behaviour
View – is looked at for a Process.

● Too many Artefacts. The same principles can be applied when the number of
Artefacts, represented by properties, is excessive. An excessive number of
Artefacts may be due to the fact that the individual Artefacts are too detailed
and that the level of granularity of information needs to be raised.

● Too few Artefacts. Following on from the previous point, too few Artefacts
result in exactly the same problems but, this time, the danger lies in over-
simplifying the Artefacts of the Process.

● Too few Activities. The situation where the number of Activities defined is very
low, typically one or two, can mean one of three things. The first is that the
Activities will be identified at a very high level. The second possibility is that the
Process itself may be too detailed and it maybe needs to be abstracted into
another, related Process. The third possibility is, of course, that the diagram is
correct, but this is quite unlikely, bearing in mind the first two possibilities.

● No Activities or no Artefacts. If the situation arises where the number of
Artefacts or the number of Activities is zero, then alarm bells should start to go
off immediately. This is simply wrong! Consider the situation where Activities
exist, yet there are no Artefacts. In this case it means that it is impossible to
demonstrate that a Process has been executed – there is no evidence identified
for any of its Activity execution. Also consider the situation where there are
Artefacts but no Activities – where do the Artefacts come from? It may be the
Artefacts are part of a data store, in which case the owner-block is not a Pro-
cess, but some sort of storage element. It should be noted that this does not

Process Modelling with MBSE 275

apply to an abstract block that will sometimes simply represent a grouping of
lower level Processes.

● Out-of-balance ratio. A quick yet often accurate way to judge how well balanced
a Process is to consider the ratio of the Artefacts to Activities on the block.
Although there are no hard rules for this, an ideal Process should have between
five and nine of both Artefacts and Activities. It is also possible to gain an
appreciation of how well thought-out a Process is by looking at the ratio.

The Process Content View encapsulates all of the Processes that exist within the
Process model and, therefore, gives a good overview of the scope of the capability
of an Organisation in the various Process groups.

7.2.3.5 The Process Behaviour Viewpoint
Viewpoint rationale
The ‘‘seven views’’ approach allows for a library of Processes to be identified in the
form of the PCV where each Process is defined in terms of its Artefacts and
Activities. The PCV does a good job of defining the structure of each Process, but
does not attempt to define the internal behaviour of the Process, which is the pur-
pose of the PBV.

Viewpoint definition
The subset of the MBSE Ontology that relates to Process modelling is shown in
Figure 7.15, with the relevant Ontology Elements highlighted.

«ontology element»
Activity

«ontology element»
Artefact

«ontology element»
Process

«ontology element»
Process Context

«ontology element»
Process Execution

Group

«ontology element»
Service

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
Process Group

1..*

1..*

1

1

consumes1..*

1..*

realises

1..*

{incomplete}

1..*produces/consumes

1..*

1..*

yields an observable
result to

1..*

1..*

1..*

satisfies

1..*

1

represents the need for

1..*

1

is responsible for1..*

1..*

1

1..*

1..*

is executed during

1

«ontology element»
Activity

1..*

Figure 7.15 Definition of the Process Behaviour Viewpoint

276 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram here shows that the Ontology Elements that are important for
modelling Processes are: the ‘Stakeholder Role’, the ‘Artefact’ and the ‘Activity’.

Viewpoint relationships
The diagram in Figure 7.16 shows the relationships between the PBV and other
Viewpoints in the ‘‘seven views’’ approach.

The ‘PBV’ has relationships with the ‘PCV’, the ‘IV’, the ‘SV’ and the ‘PIV’.
These relationships lead to the definition of the following Rules, which may be
used to enforce compliance with the ‘‘seven views’’ approach.

● Each Process (represented by a block) in the Process Content View that exhi-
bits behaviour (Activities represented as operations) must have one or more
Process Behaviour View associated with it that defines its behaviour.

● Each Artefact in the Process Content View (represented as a property on its
parent block) must exist as an Artefact (represented by an instance specifica-
tion) on its associated Process behaviour View.

● Each Activity in the Process Content View (represented as an operation on its
parent block) must exist as an Activity (represented by an activity) on its
associated Process behaviour View.

● Each Stakeholder Role on the Stakeholder View must exist as a swim lane
owner on a Process Behaviour View.

«viewpoint»
Information Viewpoint

«viewpoint»
Process Behaviour

Viewpoint

«viewpoint»
Process Instance

Viewpoint

«viewpoint»
Requirement Context

Viewpoint

«viewpoint»
Stakeholder Viewpoint

«ontology element»
Stakeholder Role

«ontology element»
Use Case

«ontology element»
Process

«ontology element»
Activity

«ontology element»
Artefact

1..*

1..*
produces/consumes

1..*

1..*

1..*

identifies artefacts for1

1..*

1

is responsible for

1..*

1..*satisfies

1..*

1..*

1..*

defines behaviour for

1

1..*

1..*1..*

1..*

Figure 7.16 Relationships between the Process Behaviour Viewpoint and
other Viewpoints

Process Modelling with MBSE 277

These Rules may be used as a basis for automation for the ‘‘seven views’’
approach.

View visualisation
The Process Behaviour View is visualised in SysML using an activity diagram,
as shown in Figure 7.17.

The diagram here shows the ‘Process Behaviour View’ for the STUMPI
‘Design’ Process.

PBV [Package] PBV - Design Process [PBV - Design Process]

«stakeholder role» :Reviewer«stakeholder role» :Systems Modeller

define system behaviour
(Design Process::)

generate scenarios
(Design Process::)

produce design model
document

(Design Process::)

define system structure
(Design Process::)

review
(Design Process::)

Analysis model document:
Analysis Model Document

Design model: Design
Model

Design scenario: Design
Scenario

Design behaviour: Design
Behaviour

Design model document:
Design Model Document

Design review report:
Review Report

Figure 7.17 Example Process Behaviour View for the STUMPI Process showing
the ‘Design’ Process

278 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

View discussion
The Process Behaviour View shows how an individual Process behaves and
each Process identified on the Process Content View should have a Process
Behaviour View that defines its behaviour. A Process Behaviour View shows the
order of Activities within a Process, the flow of information through the Process
(i.e. the flow of Artefacts around the Process) and the responsibilities, in terms of
Stakeholder Roles, for carrying out the Activities. The Activities and Artefacts
shown on a Process Behaviour View must be consistent with those shown for the
Process on a Process Content View, and the Stakeholder Roles indicating
responsibility must appear on both the Stakeholder View and the Requirement
Context View.

The Process Behaviour View should be as simple as possible while still adding
value to the process model. There are a few warning signs to look out for, however:

● A single swim lane. Although this is certainly possible, it can often be an
indication that the Stakeholder Role identified is either the name of a Person
(rather than the Stakeholder Role name) who holds many roles, or the role that
has been taken from too high in the hierarchy of the Stakeholder View.

● Too many possible execution paths. Remembering that complexity manifests
itself through relationships rather than the nodes in the diagram, a diagram that
is too messy or looks like a spider’s nest should be avoided. In many cases
this is the sign of a poorly understood or uncontrolled Process. Bear in mind
that some structure should exist within the Process, so having every activity
related to every other one can be needless.

● Single execution path. Some Processes are truly linear in their behaviour with
no possible deviation from the single thread of execution defined. Although
this is possible, it is very unlikely in all, but the most trivial of Processes. Bear
in mind that many Processes will have at least one decision point involved –
certainly in any Process that contains any sort of review, checking or testing
activity will have at least two possible outcomes in each case. Where this is the
case, there will be different paths of execution and iterations.

It is also possible to show any other Stakeholder Roles that are involved, yet not
responsible. This is done by showing participating roles in the activity in brackets –
for example ‘(Project manager)’ or may even be indicated by an actor with an
association to the relevant activity.

7.2.3.6 The Information Viewpoint
Viewpoint rationale
The ‘‘seven views’’ approach requires that Processes are defined in terms of their
Activities, Artefacts and Stakeholder Roles. It is very important to understand
which Artefacts are produced and consumed by which Activities, as shown on the
PBV but it is equally important to understand the Artefacts themselves form a
structural point of view. This structural view may take the form of looking at the
internal structure of a single Artefact or may consider the relationships between the
various Artefacts. This structure is captured in the IV.

Process Modelling with MBSE 279

Viewpoint definition
The subset of the MBSE Ontology that relates to modelling Processes is shown in
Figure 7.18, with the relevant Ontology Elements highlighted.

The diagram here shows that the Ontology Element that is important for
modelling processes is the ‘Artefact’.

Viewpoint relationships
The diagram in Figure 7.19 shows the relationships between the IV and other
Viewpoints in the ‘‘seven views’’ approach.

The ‘IV’ has relationships with the ‘PCV’ and the ‘PBV’. These relationships
lead to the definition of the following Rules that may be used to enforce compliance
with the ‘‘seven views’’ approach.

● Each Artefact, represented as a block, on the Information View must exist as an
Artefact, represented as a block instance on at least one Process Behaviour
View.

● Each Artefact, represented as a block, on the Information View must exist as an
Artefact, represented as a property on at least the Process Content View.

These Rules may be used as a basis for automation for the ‘seven views’ approach.

«ontology element»
Activity

«ontology element»
Artefact

«ontology element»
Process

«ontology element»
Process Context

«ontology element»
Process Execution

Group

«ontology element»
Service

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
Process Group

1..*

1..*

1

1

consumes1..*

1..*

realises

1..*

{incomplete}

1..*produces/consumes

1..*

1..*

yields an observable
result to

1..*

1..*

1..*

satisfies

1..*

1

represents the need for

1..*

1

is responsible for1..*

1..*

1

1..*

is executed during

1

Figure 7.18 Definition of the Information Viewpoint

280 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

View visualisation
The Information View is visualised in SysML using a block definition diagram,
as shown in Figure 7.20.

The diagram here shows a high-level Information View for the STUMPI
Process set that emphasises the relationships between Artefacts from different
Processes. This is useful in terms of traceability across the entire Process set.

The diagram in Figure 7.21 shows the Information View for the ‘Analysis’
Process. Note how the structure of the ‘Analysis Model Document’ is shown
together with its relationships to Artefacts from other STUMPI Processes.

View discussion
The Information View identifies all the Artefacts produced or consumed by a Process
or set of Processes, showing the relationships between them. An Information View

«viewpoint»
Information Viewpoint

«viewpoint»
Process Behaviour

Viewpoint

«viewpoint»
Process Content

Viewpoint

«ontology element»
Process

«ontology element»
Activity

«ontology element»
Artefact

1..*
produces/consumes

1..*

1..*

1..*

1..*

identifies artefacts for1

1..*

1..*

defines behaviour for

1

1..*

1..*1..*

Figure 7.19 Relationships between the Information View and other Views

Process Modelling with MBSE 281

can be created at both a high level or a low level. A high-level Information View will
typically identify Artefacts and relationships, whereas a low-level Information View
will typically show the detailed structure and content of individual Artefacts.

IV [Package] IV - STUMPI [IV - STUMPI - High level]

«artefact»
Project Description

«artefact»
Stakeholder Need

Document

«artefact»
Analysis Model

Document

«artefact»
Design Model Document

«artefact»
System

1

implements

1

1

is abstracted from
1

1
is derived from

1

1..*
is derived from

1

Figure 7.20 Example Information View for the STUMPI Process showing
traceability paths

IV [Package] IV - STUMPI [IV - STUMPI - structure]

«artefact»
Analysis Model Document

«artefact»
Stakeholder Need

Document

«artefact»
Review Report

«artefact»
Analysis Model

«artefact»
Analysis Scenario

«artefact»
Interface Specification

«artefact»
Assumption List

1..*1

1

is derived from

1

1

1..*

verifies

1

1..*

reviews

1

1..*

Figure 7.21 Example Information View for the STUMPI Process showing
Artefact structure

282 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The Information View is concerned with identifying the key Artefacts from the
system and then identifying their inter-relationships. This viewpoint is crucial for
two main reasons:

● Inter-process consistency. A large part of the complexity involved with Process
models is derived from the interactions between the Processes, rather than the
internal working of each Process. In order to make sure that Processes are
compatible (e.g. that their respective inputs and outputs match up), it is vital to
have an understanding of both the main Artefacts of the Processes and their
inter-relationships.

● Process automation. If the Process model is going to be used at a practical level
by a group, or several groups, of people, then process automation will be a
point worth considering. In order to automate Processes, it is important to
understand what each Artefact looks like (maybe a template will be defined for
each one) and how these Artefacts relate to one another. In fact, very often it
will be individual parts of each Artefact that relate to their parts of Artefacts,
rather than the entire Artefacts relating to one another.

The Information View may be modelled at several levels of abstraction in order to
represent the elements and their inter-relationships, and also the individual structure
of each Artefact.

7.2.3.7 The Process Instance Viewpoint
Viewpoint rationale
The ‘‘seven views’’ approach allows for the Needs for the Process to be understood
(using use cases in the RCV) and the Processes that satisfy those Needs to be
defined (using the Process Content View) point but is essential that it can be shown
that the Processes do, indeed, satisfy these original use cases. This is achieved using
the Process Instance View.

Viewpoint definition
The subset of the MBSE Ontology that relates to modelling Processes is shown in
Figure 7.22, with the relevant Ontology Elements highlighted.

The diagram here shows that the Ontology Elements that are important for
Process modelling are: the ‘Process Execution Group’ and the ‘Process’.

Viewpoint relationships
Figure 7.23 shows the relationships between the PIV and other Viewpoints in the
seven views approach. The diagram here is actually a subset of the MBSE Process
Framework, which will be shown in its entirety later in this chapter.

The ‘PIV’ has relationships with the ‘PCV’ and the ‘RCV’. These relationships
lead to the definition of the following Rules that may be used to enforce compliance
with the ‘‘seven views’’ approach.

● Each Process Instance (represented by a SysML life line) in the Process
Instance View must be an instance of a Process (represented by a SysML
block) on the Process Content View.

Process Modelling with MBSE 283

● Each Process Instance View (represented as a SysML sequence diagram) must
represent an instance of one or more Use Case (represented as SysML use
cases) on the Requirement Context View.

These rules may be used as a basis for automation for the ‘‘seven views’’ approach.

«ontology element»
Activity

«ontology element»
Artefact

«ontology element»
Process

«ontology element»
Process Context

«ontology element»
Process Execution

Group

«ontology element»
Service

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
Process Group

1..*

1..*

1

1

consumes1..*

1..*

realises

1..*

{incomplete}

1..*produces/consumes

1..*

1..*

yields an observable
result to

1..*

1..*

1..*

satisfies

1..*

1

represents the need for

1..*

1

is responsible for1..*

1..*

1

1..*

1..*

is executed during

1

Figure 7.22 Definition of the Process Instance View

«viewpoint»
Process Instance

Viewpoint

«ontology element»
Use Case

«ontology element»
Process

1..*satisfies

1..*

Figure 7.23 Relationships between the Process Instance Viewpoint and other
Viewpoints

284 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

View visualisation
The Process Instance View is visualised in SysML using a sequence diagram,
as shown in Figure 7.24.

The diagram here shows the ‘Process Instance View’ for the STUMPI Pro-
cesses, where the emphasis is on the interactions between Process instances.

View discussion
The Process Instance View shows instances of Processes and the Stakeholder Roles
involved in order to validate the Processes by relating the execution of a sequence
of Processes back to the Use Case for the Process. Each Process Instance View
along with its associated Requirement Context View ensures that the Processes are
fit for purpose and that all the Use Cases for the Processes are met.

The Process Instance View is a set of diagrams that provides the main validation for
the Process model. It is the Process Instance View that relates the actual Processes that
are specified back to the source use cases and validates that each Use Case has been met.
The basic elements of the Process Instance View are executions of (or instances of)
individual Processes. For each Use Case from the Requirement Context View, it should
be possible to execute a number of Scenarios in order to validate that Use Case.

The Process Instance View is realised by a sequence diagram, with the main
elements being executions of processes (represented by life lines) and their inter-
actions (represented by SysML interactions).

The Process Instance View looks very similar to the Validation Views used in
the ACRE approach to requirements modelling, but their application, however, is
subtly different. The Process Instance Views are used to validate a set of Processes

PIV [Package] PIV - STUMPI [PIV - STUMPI]

«process»
Stakeholder Needs

Process

«process»
Analysis Process

«process»
Design Process

«process»
Implementation

Process

«process»
Verification and

Validation Process

start next process()

start next process()

start()

start next process()

start next process()

Figure 7.24 Example Process Instance View for the STUMPI Process

Process Modelling with MBSE 285

against their Use Cases. The Validation Views, on the other hand, are used to
explore a number of possible Scenarios related to a specific Use Case.

7.3 The process modelling framework

The complete MBSE Process modelling Framework for the ‘‘seven views’’
approach to Process modelling is shown in the diagram in Figure 7.25.

The diagram here shows the complete MBSE Process modelling Framework
for the ‘‘seven views’’ approach to Process modelling. Notice that this diagram
brings together each of the diagrams that was used previously to show relationships
between Viewpoints.

7.4 Using the process modelling framework

There are a number of ways that the ‘‘seven views’’ can be used to add value to any
Process modelling exercise. This section introduces several different Scenarios that
describe how the approach may be used and then discusses the advantages of its use

«viewpoint»
Information Viewpoint

«viewpoint»
Process Behaviour

Viewpoint

«viewpoint»
Process Content

Viewpoint

«viewpoint»
Process Instance

Viewpoint

«viewpoint»
Process Structure

Viewpoint

«viewpoint»
Requirement Context

Viewpoint

«viewpoint»
Stakeholder Viewpoint

«ontology element»
Stakeholder Role

«ontology element»
Use Case

«ontology element»
Process

«ontology element»
Activity

«ontology element»
Artefact

1..*

1

defines ontology for

1..*

1..*
produces/consumes

1..*

1..*

1..*

1..*

identifies artefacts for1

1..*

1

is responsible for

1..*

1..*satisfies

1..*

1..*

1..*

defines behaviour for

1

1..*

1..*1..*

1..*

Figure 7.25 Complete Framework for Process modelling

286 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

for each Scenario. This is not intended to be an exhaustive list of possible Scenarios
but presents a good spread that illustrates the flexibility of the approach itself.

7.4.1 Analysing existing Processes
In many cases, it is desirable to look at and analyse existing Processes. Some
possible reasons for wanting to do this include:

● As part of a Process improvement exercise. A Process model is a living entity
and, as such, it needs to be constantly monitored and, where necessary, chan-
ged and improved.

● To identify the causes of failure in the Process. It is relatively easy to simply
define a Process but rather more difficult to ensure that it is an accurate
reflection of real life and that it is effective. Therefore, these modelling tech-
niques can be used to capture and analyse existing Processes. This is particu-
larly effective when trying to understand why something has gone wrong and
can be a very powerful tool for examining the causes of failures and disasters.

● To gain an appreciation of an undocumented or complex Process. In many
cases, Processes are represented as text descriptions, which can be very long
and verbose. In such cases, it is desirable to have a simplified version of the
Process description so that an appreciation of how the Process fits together and
works can be gained. This is particularly powerful for looking at Standards,
Processes and procedures that are out of the control of the actual Organisation,
such as mandated standards, government initiatives.

● As a part of audit or assessment. When carrying out any sort of process-based
audit or assessment, it is crucial to have an understanding of both the Process
under review and the Standard to which the Process is being audited or
assessed. This is actually a powerful combination of the first two points in this
section – the Process being audited must be modelled to gain an appreciation
and the Standard being audited against must also be modelled.

In terms of how the approach would be used for the previous points, Figure 7.26
shows an example scenario of the order in which the various Views in the approach
may be created.

The diagram in Figure 7.26 shows an example Scenario that represents the
order of creation of the Views when analysing an existing process model. The first
View that is created is the ‘Process Content View’ as, in cases where a Process
model exists and is well documented, this is often the easiest View to construct
first. The ‘Process Content View’ may then be used as a basis for abstracting the
‘Process Structure View’, as the structure can be most easily extracted from
existing content. The next View to be created is the ‘Process Instance View’ as, in
many cases, examples of Scenarios will be given as part of the Process description.
From the ‘Process Content View’ for the Process and the ‘Process Instance View’,
it is then possible to abstract right back up to the top-level ‘Requirement Context
View’. A natural progression from the ‘Requirement Context View’ and the ‘Pro-
cess Instance View’ is the ‘Stakeholder View’, as many of the Stakeholder Roles

Process Modelling with MBSE 287

will have been identified between each of these two Views. The Artefacts of the
Process, which have been identified from the ‘Process Content View’ and the
information flow in the ‘Process Instance View’, can now form the basis of
the ‘Information View’. Finally, the ‘Process Behaviour View’ may be extracted
from the low-level Process descriptions.

7.4.2 Creating a new process document from scratch
In some cases, such as the start of a new business or perhaps the creation of a brand
new Process description for an impending audit or assessment, it is desirable to start
a Process description from scratch with, in effect, a blank sheet of paper. Although
this situation does not occur very often in real-life industry, it is a very good
exercise to get the feel for Process modelling, whether it is to understand the how
the modelling works or, indeed, to understand Process models in the first place.

The generation of information in the situation of creating a Process document
from scratch can be summarised in Figure 7.27.

The diagram in Figure 7.27 shows a simple Scenario to represent creating a Pro-
cess document from scratch. As with all the situations, or Scenarios, described in this
section, the order of generation of the Views is by no means carved in stone, but gives
an idea of how the information in the Process model may be used in different ways.

In a situation like this, a good first step is to think about the Needs of the
Processes themselves. For example, the main Need for a Process may be to ‘protect
human life’ in the case of a safety standard, or to ‘process’ applications in the case
of a patient admission system. This highest level Need can then be broken down into

PIV [Package] Creating Views [Analysing existing]

:Process Content
View

:Process Structure
View

:Process Instance
View

:Need Context
View

:Stakeholder View :Information View :Process Behaviour
View

Figure 7.26 Example scenario – analysing existing Processes

288 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

lower level Needs that can relate directly to Processes. Also, it is usual for the highest
level Needs to have a number of constraints associated with them, for example
meeting another Standard, working in a particular environment or Context, or even
working with an existing System. It is also usual to start thinking about the Stake-
holder Roles that interact with the Processes at this point. When these Needs are put
into Context, they become Use Cases (represented as SysML use cases) on the
‘Process Context View’ and actors may be used to represent the Stakeholder Roles.

Once the ‘Requirement Context View’ has been established, it is then possible to
think about how its Use Cases could possibly be realised, by identifying a number
of Scenarios in the form of one or more ‘Process Instance View’. Each Scenario
represents the execution of a number of Processes that satisfy a specific Use Case.
From the ‘Process Instance View’ it is possible to create a list of Processes that are
needed along with the dependencies between them. Once the Processes have been
identified, there are a number of possible routes, such as defining the ‘Process
Content View’, ‘Process Structure View’ or even the ‘Information View’.

7.4.3 Abstracting tacit process knowledge for a new System
It is often the case that the Process knowledge that is required in order to create the
Process model only exists inside people’s heads. In such a situation, it is necessary
to both observe the Process in action and talk to the relevant Stakeholder Roles to
try to gain any complex knowledge that may not be immediately perceived when
observing. Caution must be exercised, however, as it is often easy to be misdirected

PIV [Package] Creating Views [From scratch]

:Process Behaviour
View

:Information View:Stakeholder View:Need Context
View

:Process Instance
View

:Process Structure
View

:Process Content
View

Figure 7.27 Example scenario – creating a process model from scratch

Process Modelling with MBSE 289

and miss some aspects of the Process under investigation. An incomplete and
inaccurate Process description is often more harmful than no Process at all.

It should be stressed here that there are many reasons why such misdirection
may occur:

● Deliberate misdirection. This often occurs in a working environment where the
staff are unhappy – perhaps, they do not take their job seriously, are worried
about being replaced or are simply mischievous! In such cases, it is important
to know what questions to ask the relevant Stakeholder Roles and to compare
the answers with other answers from the same Stakeholder Role or maybe from
other Stakeholder Roles. The MBSE Process Framework and MBSE Ontology
provide the information required to know which questions to ask which Person
holding which Stakeholder Roles at what time.

● Misdirection by assumption. Assumption, as the old adage goes, is the mother of
all foul-ups and the basic problem here is that the Activities carried out by the
Stakeholder Roles seem so obvious that they are never mentioned. For example,
when it comes to testing a TV set, before any tests can be carried out the TV set
must have the power to be switched on. It is this type of obvious information that
is often omitted as people simply assume that it is known or done.

● Misdirection by ignorance. It may be that the Person who is describing the
Process does not fully understand the Process in the first place. In such situa-
tions, it is unlikely that an accurate Process description will be provided.

The diagram in Figure 7.28 shows the order of creation of the Views for this
situation.

PIV [Package] Creating Views [Tacit new]

:Process Behaviour
View

:Information View:Stakeholder View :Need Context
View

:Process Instance
View

:Process Structure
View

:Process Content
View

Figure 7.28 Process Instance View for abstracting tacit Process knowledge
for a new System

290 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 7.28 shows the order that the Views are created in for
this situation. The first View that is generated is the ‘Stakeholder View’, as this will
identify which Stakeholder Roles exist and provide a basis for knowing who to talk
to concerning the Process behaviours. Therefore, the second View to be generated
is the ‘Process Behaviour View’, which will consist of a number of diagrams – one
for each Process that exhibits behaviour in the form of activities. Once the process
behaviours have been created, it is then possible to abstract the ‘Process Content
View’ from them and, from there, the ‘Process Instance View’. From the ‘Process
Instance View’ and the ‘Process Content View’, it is then possible to create the
‘Requirement Context View’ and the ‘Information View’. Finally, the ‘Process
Structure View’ may be abstracted.

7.4.4 Abstracting tacit process knowledge for an existing System
This situation is similar to the previous one except, in this case, there is some
recorded Process information already in existence. Therefore, any Process knowledge
may be realised by written information, Standards, existing Process models, etc.

The diagram in Figure 7.29 shows the order of creation of the Views for the
situation for abstracting tacit Process knowledge for an existing system. In this
case, the ‘Process Structure View’ is created first, based on the limited Process
knowledge available. It is then possible to generate the ‘Process Content View’ and,
from this, the ‘Information View’. The ‘Stakeholder View’ is generated next which,
again, is abstracted from existing documentation. Now that the Stakeholder Roles

PIV [Package] Creating Views [Tacit existing]

:Process Behaviour
View

:Information View :Stakeholder View :Need Context
View

:Process Instance
View

:Process Structure
View

:Process Content
View

Figure 7.29 Process Instance View for abstracting tacit Process knowledge
for an existing system

Process Modelling with MBSE 291

and the Processes have been identified, it is possible to put them together into
scenarios and to generate the ‘Process Instance View’. As the ‘Process Instance
View’ and the ‘Process Content View’ have been identified, the ‘Requirement
Context View’ can be abstracted. Finally, the detailed ‘Process Behaviour View’
may be generated.

7.4.5 Process improvement for existing Processes
This situation occurs when there is an existing Process model that has been well
defined and well documented. As part of the continuous Process improvement
exercise, a basic review is carried out on a regular basis, say every 6 months, and
rather than a full Process model analysis as shown in Figure 7.28, this time a partial
analysis is carried out.

The diagram in Figure 7.30 shows the situation for Process improvement. The
first View that is generated here is the ‘Requirement Context View’. This is done to
check that the original Needs for the Process have not changed in any way. Once
the Needs have been checked and any new ones added, the ‘Process Structure
View’ is generated to check that the basic Ontology for the Process is unchanged.
The main part of this exercise is then to look at the ‘Process Content View’ to
identify all the existing Processes. Finally, the ‘Process Instance View’ is created
that validates the ‘Requirement Context View’.

The example shown here does not need to include all of the Views in the
approach as everything has gone according to plan in the Process improvement
exercise – there are no changes to be made.

PIV [Package] Creating Views [Process improvement]

:Process Content
View

:Process Structure
View

:Process Instance
View

:Need Context
View

Figure 7.30 Process Instance View for Process improvement

292 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Consider now what would happen if the Process Instance View has been used
as a basis for a gap analysis to ensure that the existing Processes meet their original
Needs. Where gaps are found, the new Processes must be added to the Process
Content View. This would then entail creating the remainder of the Views as there
has been a major change to the Process model and, hence, all views must be
revisited.

7.4.6 Summary
It should be stressed that the examples discussed here are just that – examples. Do
not feel constrained by the Scenarios provided here as each one could be changed,
as long as there is some rationale behind the order of execution of Processes that is
specified in the Process Instance Views.

In terms of the order of creation of the Views, it should be clear by now that
there is no strict order that is carved in stone, as the actual order will depend on the
situation at hand. There are, however, a few common patterns in the various Pro-
cess Instance Views shown here, which is only natural as they are based on the
structural consistency checks that were described earlier in this chapter as part of
the definition of each View. The structural checks are based on the associations in
the MBSE Process Framework and the MBSE Ontology; therefore, if the Process
Content View and the Requirement Context View are known, then the Requirement
Context View is an obvious place to go next. Likewise, if the Process Instance
View and the Stakeholder View are known, then the Requirement Context View
could be a good next move.

Keep in mind that the more that the MBSE Process Framework is understood
and becomes ingrained as a natural part of Process modelling, then the more natural
these scenarios will become, and the more robust the final Process will be.

7.5 Summary

This chapter has introduced an approach to model Process in the form of the ‘‘seven
views’’. The development of ‘‘seven views’’ follows the same ‘Ontology, Frame-
work and Views’ approach that is used throughout this book.

The application of the ‘‘seven views’’ approach was applied to a bespoke
Process model in the form of STUMPI.

Chapter 8 goes on to show how the ‘‘seven views’’ approach may be expanded
and used in a number of other applications, including modelling Standards, showing
compliance, Life Cycle modelling, Competence modelling and Project planning.

References

[1] Business Process Model and Notation. Available from http://www.omg.org/
cgi-bin/doc?bmi/2007-6-5.

[2] White S.A. and Goldstine D.M. ‘BPMN Modeling and Reference Guide:
Understanding and Using BPMN’. Florida, USA: Herman; 1972.

Process Modelling with MBSE 293

[3] Holt J. ‘UML for Systems Engineering – Watching the Wheels’. 2nd edition.
Stevenage, UK: IEE Publishing; 2004.

[4] Rumbaugh J., Booch G. and Jacobson I. ‘The UML 2.0 Reference Manual’.
Boston, USA: Addison Wesley Publishing; 2004.

[5] ISO. Information Processing – Documentation Symbols and Conventions for
Data, Program and System Flowcharts, Program Network Charts and System
Resources Charts. International Organization for Standardization; 1985. ISO
5807:1985.

[6] Holt J. ‘A Pragmatic Guide to Business Process Modelling’. 2nd edition.
Swindon, UK: BCS Publishing; 2009.

294 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Chapter 8

Expanded Process Modelling

8.1 Introduction

This chapter considers how the ‘‘seven views’’ approach that was introduced in the
previous chapter may be used as a basis for various model-based systems engi-
neering (MBSE) applications.

8.1.1 Background
The basic Context for Process modelling that was introduced in the previous
chapter contained a number of constraints that were not discussed in detail. The
Process modelling context is shown again in the diagram in Figure 8.1.

Process modelling Context

«concern»
Define approach to
process modelling

«concern»
Allow mapping between

processes
«concern»

Be expandable

«concern»

... for competence

«concern»

... for life cycles

«concern»

... for projects

«concern»

Provide needs definition

«concern»
Provide process

definition

«concern»
Provide process

validation

«concern»
Be applicable to
different levels of

process

«concern»

... standards

«concern»

...processes

«concern»

...procedures

{incomplete}

«stakeholder role»
Process Modeller

«stakeholder role»
Standard

«stakeholder role»
Systems Engineering

Manager«include»

«constrain»

«constrain»

«include»

«constrain»

«include»

Figure 8.1 Process modelling context

The diagram here shows the Context for Process modelling, most of which was
discussed in the previous chapter. The main use case that was considered was
‘Define approach to Process modelling’ and its three inclusions, and the approach
that was proposed to satisfy these use cases was the ‘‘seven views’’ approach to
Process modelling. The basic ‘‘seven views’’ approach is very flexible and may be
used for more applications than traditional Process-related activities. This chapter
considers how this basic approach may be expanded for a number of areas, in
particular:

● Expanding Process modelling with Standards modelling (‘Be applicable to
different levels of Process . . . standards’), where the application of the ‘‘seven
views’’ approach to established Standards, in particular ISO 15288.

● Expanding Process modelling with compliance mapping (‘Allow mapping
between Processes’), where showing the relationships between any two (or
more) Process models will be discussed.

● Expanding Process modelling with competence (‘Be expandable, . . . for com-
petence’), where Competence and competency-related views are discussed.

● Expanding Process modelling with life cycles (‘Be expandable . . . for life
cycles’), where Life Cycles and Life Cycle Model Views are discussed.

● Expanding Process modelling with project management (‘Be expandable . . .
for projects’), where Project management-related Views are discussed.

These expanded uses of Process modelling are not intended to be exhaustive but are
intended to provide examples of how the modelling can, and should, be applied to
areas that may not be traditionally associated with MBSE. These examples also
provide some good examples of how some Views may be visualised using non-
SysML notation yet, through the use of the ‘Ontology, Framework and Views’
approach, remain consistent with the overall MBSE approach. This is achieved by
expanding the MBSE Ontology and, therefore, providing the mechanism for addi-
tional Views to be defined.

8.2 Expanded Process modelling – standards modelling

An excellent application for Process modelling and, in particular, the ‘‘seven
views’’ approach is that of modelling Standards.

The standard that is used here as an example is ‘ISO/IEC 15288:2008 – soft-
ware and systems life cycle Processes’ (abbreviated to ‘ISO 15288’) [1]. The ISO
15288 standard is the most widely used standard in the world and, as such, is a
staple reference in any systems engineering endeavour.

This is a straightforward application of the ‘‘seven views’’ approach and does
not, therefore, require the Ontology and Framework to be defined, as it is the same
as the basic approach discussed in the previous chapter. One general comment to
bear in mind, however, is that the full set of ‘‘seven views’’ does not exist for ISO
15288. This is because high-level standards, such as international standards and
industry standards, tend to focus more on what needs to be achieved rather than

296 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

exactly how it should be achieved. The Views that are shown here are the
Requirement Context View, Process Structure View, Stakeholder View and Process
Content View.

The ‘‘seven views’’ Process model is shown here at a high level and some
general comments are made. For reasons of clarity, the Process Content View does
not show the Task level of detail but stops at the Activity level. For the full, detailed
model, see Appendix E.

8.2.1 Views
8.2.1.1 ISO 15288 – Requirement Context View
The Requirement Context View for a Standard will be typically abstracted from the
overview of the Standard at the beginning of the document. Every Standard begins
with a definition of its purpose and aims and so, this is perfect information for
creating the Requirement Context View (Figure 8.2).

RCV [Package] RCV - Context Views [RCV - ISO 15288]

Standard Developer Context

«concern»
Establish common

framework for describing
life cycle of systems

«concern»
Allow use of
processes

«concern»

.. for acquisition
«concern»

.. for supply

«concern»
Harmonise with
other standards

«concern»

Define terminology
«concern»

Define processes

«concern»
.. for managing life

cycle stages

«concern»
.. for support of

process definition

«concern»
.. for support of
process control

«concern»
.. for support of

process
improvement

«stakeholder role»
System

«stakeholder role»
Organisation

«stakeholder role»
Project

«stakeholder role»
Life Cycle Standard

«include»

«include»

«constrain»

«include»

Figure 8.2 ISO 15288 – Requirement Context View

Expanded Process Modelling 297

The diagram here shows the Requirement Context View for ISO 15288. The
main use case is to ‘Establish common framework for describing the life cycle of
systems’. This has three main inclusions and a single constraint, which are

● ‘Define Processes’ that then has four specialisations that reflect the different
Process areas that are required by the Standard.

● ‘Define terminology’ that identifies the need for a common vocabulary.
● ‘Allow use of Processes’ that states that the Processes should be suitable for

both acquisition and supply (shown by the specialisations).
● ‘Harmonise with other standards’ that requires that other Standards should be

complied with, where appropriate.

It should be clear from these high-level use cases that there is a natural link between
the Standard and the ‘‘seven views’’.

8.2.1.2 ISO 15288 – Stakeholder View
The ISO 15288 Standard identifies a number of Stakeholder Roles that are shown in
the diagram in Figure 8.3.

SV [Package] SV - Stakeholder Views [SV - Stakeholder Views]

«stakeholder role»
Stakeholder Role

«stakeholder role»
Customer

«stakeholder role»
External

«stakeholder role»
Supplier

«stakeholder role»
User

«stakeholder role»
System

«stakeholder role»
Organisation

«stakeholder role»
Project

«stakeholder role»
Standard

«stakeholder role»
Life Cycle Standard

«stakeholder role»
Standard Developer

Figure 8.3 Example Stakeholder View

298 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram shows the various Stakeholder Roles in ISO 15288. The first thing
to notice is that there are not very many of them, which is typical for a high-level
standard. The Stakeholder Roles that are identified tend to be very high level ones
that provide very broad categories for compliance.

The Ontology for ISO 15288 is shown in the Process Structure View. This
View has been used previously, as it was one of the references for the MBSE
Ontology that is used throughout this book.

The diagram here shows the Ontology for ISO 15288 (Figure 8.4). It is inter-
esting to see that the Standard basically defines one or more ‘Process’ and proposes

PSV [Package] Process Ontology [PSV - Process Ontology View]

«ontology element»
Process

«ontology element»
Process Purpose

«ontology element»
Outcome

«ontology element»
Activity

«ontology element»
Task

«ontology element»
Process Group

«ontology element»
Life Cycle

«ontology element»
Stage

«ontology element»
ISO 15288:2015

«ontology element»
Resource

1..*

contributes to

1..*

1..*utilises/consumes

1..*

1..*

1..*

1..*

is executed during

1..*

1..*

1

describes goals of

1 1..*

4

1 proposes use of

1

1..*

Figure 8.4 ISO 15288 – Process Structure View

Expanded Process Modelling 299

a ‘Life Cycle’ and that the terminology used in the Ontology reflects that. This is a
typical pattern that can be seen in many Standards as many quality standards are
essentially Process based and, hence, the emphasis will be solely on Processes and
Life Cycles.

The Ontology is extended on the next diagram to emphasise the types of
‘Stage’ that make up the ‘Life Cycle’ (Figure 8.5).

The diagram here shows a slightly different aspect of the overall Ontology for
ISO 15288. In this view, the emphasis is on the different types of Life Cycle Stages
and also the concept of the ‘Decision Gate’.

There are six Stages that are identified in the Standard, which are

● The ‘Conception’ Stage, which covers the identification, analysis and specifi-
cation of all the Needs for the Project. This may also include prototyping, trade
studies, research or whatever is necessary to formalise the requirements set.

● The ‘Development’ Stage, which covers all the analysis and design for the
Project and results in the complete System solution.

● The ‘Production’ Stage, which covers the production of the System of Interest,
either as a one-off in the case of bespoke systems or full manufacture in the
case of volume Systems. This Stage also includes the transition to operation.

● The ‘Utilisation’ Stage, which covers the operation of the System at the target
environment.

SV [Package] Process Ontology [Process Ontology - Life Cycle and Stages]

«ontology element»
Life Cycle

«ontology element»
Stage

«ontology element»
Conception

«ontology element»
Development

«ontology element»
Production

«ontology element»
Utilisation

«ontology element»
Support

«ontology element»
Retirement

«ontology element»
Decision Gate

«ontology element»
Decision Option

«ontology element»
Execute Next Stage

«ontology element»
Continue this Stage

«ontology element»
Go to Previous Stage

«ontology element»
Hold Project Activity

«ontology element»
Terminate Project

11..*

1

Figure 8.5 ISO 15288 – Process Structure View showing ‘Stage’ and ‘Gate’

300 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● The ‘Support’ Stage, which provides the maintenance, logistics and support for
the system of operation while it is being operated.

● The ‘Retirement’ Stage, which covers the removal of the System of Interest
and all related Processes or support mechanisms from service.

A ‘Decision Gate’ will usually manifest itself as some sort of review that takes
place at the end of a ‘Stage’ and that makes a decision (‘Decision Option’) on what
action to take next. The five basic types of ‘Decision Option’ are

● ‘Execute next stage’ where the current Stage has gone according to plan and
the Project may progress.

● ‘Continue this stage’ where more work needs to be carried out before the
Project can progress to the next Stage. This will often require another ‘Deci-
sion Gate’ review to be executed.

● ‘Go to previous stage’ where something has happened that results in rework
and going back to a previous Stage.

● ‘Hold project activity’ where all work on the Project is halted, pending further
investigations.

● ‘Terminate project’ where, for whatever reason, it has been decided that the
Project will be killed off.

Again, it should be stressed that the information in the Standard is there to provide
recommendations and suggestions as to how the Life Cycle should be executed.

8.2.1.3 ISO 15288 – Process Content View
The Process Content View for ISO 15288 is by far and away the most populated of
the ‘‘seven views’’. Again, this is because one of the main requirements for the
standard, from the Requirement Context View, was to define a set of Processes in
four areas (Figure 8.6).

The first of the Process Content Views shows the four basic types of ‘Process
Group’, which are

● ‘Organisational Project-enabling Processes Group’, which collects together all
Processes that apply across the whole Organisation, all staff and all Projects.

● ‘Technical Processes Group’, which collects together the Processes that most
people will associate with systems engineering and that cover areas such as
requirements and design.

● ‘Project Processes Group’, which collects together Processes that are applied
on a project-by-project basis, such as project planning and risk management.

● ‘Agreement Processes Group’, which collects together Processes that describe
the customer and supplier relationship in the Project.

Some of these Process Groups are shown in more detail in the following Pro-
cess Content Views (Figure 8.7) and the whole model for the Standard is presented
in Appendix E.

The diagram shows the two high-level Processes that are suggested for the
‘Agreement Processes Group’. The Process Outcomes are shown as block

Expanded Process Modelling 301

bdd [package] PCV - Process Groups [PCV - Process Groups]

«process group»
Process Group

«process group»
Organizational Project-

enabling

«process group»
Technical Management

«process group»
Technical

«process group»
Agreement

Figure 8.6 ISO 15288 – Process Content View showing types of ‘Process Group’

bdd [package] PCV - Agreement [PCV - Agreement]

«process group»
Agreement

«process»
Acquisition Process

«outcome»
A product or service complying with the agreement is accepted
A request for supply is prepared
Acquirer obligations defined in the agreement are satisfied
An agreement is established between the acquirer and supplier
One or more suppliers are selected

references
 : Advertise the acquisition and select the supplier
 : Accept the product or service
 : Establish and maintain an agreement
 : Monitor the agreement
 : Prepare for the acquisition

«process»
Supply Process

«outcome»
A product or service is provided
A response to the acquirer's request is produced
An acquirer for a product or service is identified
An agreement is established between the acquirer and supplier
Responsibility for the acquired product or service is transferred
Supplier obligations defined in the agreement are satisfied

references
 : Establish and maintain an agreement
 : Deliver and support the product or service
 : Execute the agreement
 : Prepare for the supply
 : Respond to a tender

11

Figure 8.7 ISO 15288 – Process Content View showing ‘Agreement Processes Group’

302 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

properties and the Process Activities are shown as block operations. It should be
noted that each of the Activities on this diagram is broken down into more detail, in
the form of one or more ‘Task’. These Tasks are not shown in this diagram for the
sake of brevity and readability but are fully defined in Appendix E.

One of the first things to notice is that there are only two Processes in the
Agreement Processes Group. This reflects where the emphasis of this standard
lies – in the technical areas rather than agreement. This is an area where the use of
other, complementary standards comes into play. When compared to some of the
other Process Groups, for example the ‘Technical Processes Group’, it can be seen
that there is far more of an emphasis in other areas.

The Views that have been introduced so far can now be used as a start point for
compliance mapping between two or more Standards and/or Process models.

8.2.2 Summary
This section has shown how the ‘‘seven views’’ approach to Process modelling can
be applied to a Standard – in this case ISO 15288. Due to the nature of the standard,
only a subset of the Views was produced as the standard itself and does not cover
detailed aspects of each Process.

Performing this Process modelling on a Standard is a very interesting and
useful exercise and provides a number of benefits:

● Increased understanding of the Standard. The very fact that the Standard is being
modelled means that some thought and analysis need to be carried out. Also,
relationships between different aspects of the Standards will be highlighted that
provide a more complete understanding of the big picture of the Standard.

● Identification of problem areas of the Standard. By applying the modelling to a
Standard, an increased understanding of any problems associated with the
Standard is gained, for example inconsistencies within the Standard (such as
differences in terminology), areas of complexity and whether or not the Stan-
dard achieves what it sets out to do.

● Basis for compliance. Demonstrating compliance with a Standard is an
essential part of any quality system, audit or assessment. These models of
Standards can be used as an integral part of these activities.

An example of using the Standard Process model is provided in the next section,
where compliance mapping will be discussed.

8.3 Expanded Process modelling – compliance mapping

One way to inspire other people’s confidence in your business is to demonstrate
that the approach taken by your organisation is compliant with an established best
practice approach. In other words, it is very beneficial to be able to map your own
Processes back to source standards.

This section, therefore, is concerned with the ‘Allow mapping between Pro-
cesses’ Use Case from Figure 8.1.

Expanded Process Modelling 303

The way that an approach is demonstrated is usually carried out in one of two
ways, through an assessment or through an audit. The Process model that is being
audited against (usually a Standard) will be referred to as the source, whereas the
Process model under review will be referred to as the target. In both audits and
assessments, there are three aspects of the Process model that are being
examined:

● Source standard compliance. The first thing to look for is whether or not there
is a basic mapping between the source Standard and the target Process.

● Process implementation. The next thing to look for is whether or not the target
Process is being implemented on real Projects. Examples of the use of Pro-
cesses being used on Projects, or Process instances as they are known, are
sought and then these are either audited or assessed.

● Process effectiveness. The third thing that is looked for is whether or not the
target Process is effective. Are any metrics being taken and the Process
improved as time goes on? Are the requirements for the Process correct and up
to date? And so on.

Although both assessments and audits share the same basic aims, they are executed
in very different ways:

● Audit. An audit tends to be more formal than an assessment. An audit is usually
carried out by a third-party, independent body to enforce the source Standard.
This source Standard, for example ISO 9001, must be well understood and the
audit will often make use of specific checklists that enable each part of the
Standard to be checked against the target Process. For an audit, a documented
Process model must exist; otherwise, the full audit cannot take place. The
output of an audit is typically a straight pass or fail result with an indication of
which specific parts of the source Standard were not met – or non-compliances
as they are often known.

● Assessment. An assessment tends to be more informal than an audit and may
be carried out either by independent third parties or by suitably qualified
people inside the Organisation. Examples of assessment Standards include
ISO 15504 (software Process assessment) [ISO 15504] and CMM (capability
maturity model) [CMM]. An assessment starts out with a blank sheet of paper
and the target Process is then abstracted and the results of this abstraction are
then assessed. This means that the target Process may be well documented, in
which case the abstraction is relatively simple, or there may be no doc-
umentation whatsoever (the Process exists purely in someone’s head), in which
case the abstraction is not so straightforward. Of course, one advantage of this
is that any target Process may be effectively assessed, even if it is not formally
documented. The output of an assessment is typically a profile, rather than a
simple pass or fail that provides effective feedback about how mature each
Process is. There is usually a scale of five or so levels that indicates the
maturity – a low number indicating an immature and uncontrolled Process and
a high number indicating a mature and controlled Process.

304 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

A common aspect of both approaches is being able to demonstrate basic com-
pliance between the source Standard and the target Process, and this is where,
initially, Process mapping comes in.

There are several inherent problems associated with Process mapping:

● Terminology differences. Perhaps the most common problem between different
standards or Process models is one of communication – the actual terminology is
very different. For example, consider the different words that may be employed
to indicate the Activities (using the terminology adopted in this book) within a
Process, such as task, step, practice and action. Although these seem like minor
differences, what about the situation where the same word is used, such as
Process, but has different definitions in each Process model. It is essential,
therefore, that these differences in language can be identified and clarified.

● Volume of data. In many cases, it is desirable to map, not just between two
Processes but between many. It is not uncommon to find a list of relevant
Standards, either in a requirements specification or in a Project contract that
forms a formal obligation for the Project. It should be borne in mind, however,
that realistically if there are 50 Standards listed, then this means, potentially, 50
audits or assessments must be carried out. The sheer volume of data involved
here, not to mention the time and effort involved, would be phenomenal.

● Meaningful metrics. There is an old adage that anything that cannot be mea-
sured cannot be controlled [2]; therefore, it is important that measurements
and, hence, metrics can be applied to the Process mapping in order to
demonstrate how effective the mapping is. However, coming up with mean-
ingful metrics is often difficult, so any effective Process mapping should be
capable of being measured in some way.

The remainder of this section defines an example of a Process for Process mapping
that meets all of the requirements laid out above. Of course, this Process is merely an
example and is not the only approach that can be taken to perform Process mapping,
but it is one that has proven to be simple yet effective for real-life situations.

8.3.1 Process Mapping Process (PoMP)
This section introduces a simple Process for Process mapping, known as PoMP
(Process for Mapping Processes) which is, of course, defined using the ‘‘seven
views’’ approach. For reasons of clarity, not all of the ‘‘seven views’’ are shown
here. However, a full definition of the Processes can be found in Appendix E.

8.3.1.1 PoMP – Process Structure View
The Process structure view will be a subset of the MBSE Ontology with a focus on
Process (shown in Figure 7.2) that is used in this book.

8.3.1.2 PoMP – Requirement Context View
The first View that will be considered here will be the ‘Requirement Context View’
that will look at why we are defining the Process mapping Process in the first
place. This is realised in the use case diagram (Figure 8.8).

Expanded Process Modelling 305

The diagram in Figure 8.8 shows a simple Requirement Context View for a
mapping Process. Note that one of the main use cases is stated quite simply as
‘Develop Process mapping Processes’ which has two actors associated with it – the
‘Process Modeller’ which represents the person or group of people who will be
developing the Process and the ‘Reviewer’. There is one single constraint on this
use case, which is to ‘Inspire confidence’ and is related to the ‘Sponsor’ and the
‘Standard Enforcer’. In this case, the exercise is being carried out at the request of
Sponsors who require some confidence that their Processes map onto the relevant
standards, shown as the ‘Comply with best practice’ use case. The ‘Standard
Enforcer’ is involved as any mapping that is produced and any compliance issues
discovered will need to be approved by the appropriate authority. The ‘Standard’
represents the model to be mapped against.

8.3.1.3 PoMP – Stakeholder View
The Stakeholder View can be abstracted from the actors that were identified in the
Requirement Context View and then arranged into a classification hierarchy, as
shown in Figure 8.9.

The diagram in Figure 8.9 identifies the Stakeholder Roles that are relevant to
the Project. These Stakeholder Roles are consistent with the actors on the Process
Context View and also the names that govern each swim lane in the Process
Behaviour View.

RCV [Package] RCV - PoMP [RCV - PoMP]

Process Mapping Context

«concern»
Develop process
mapping process

«concern»
Comply with best

practice

«concern»

Inspire confidence

«stakeholder role»
Reviewer

«stakeholder role»
Process Modeller

«stakeholder role»
Standard

«stakeholder role»
Standard Enforcer

«stakeholder role»
Sponsor

«constrain» «include»

Figure 8.8 PoMP – Requirement Context View

306 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The Stakeholder Roles that have been identified are as follows:

● ‘Sponsor’ – the role of the Person or Organisation who is paying for the Pro-
cess mapping exercise, maybe as part of an audit or assessment.

● ‘Standard Enforcer’ – the role of the Person or people who will be carrying out
the audit or assessment. In the case of an audit, these people will be indepen-
dent of the target Organisation or, in the case of an assessment, these people
may be either internal or external to the target Organisation.

● ‘Process Modeller’ – the role of the Person or people who are defining the
Process mapping approach.

● ‘Standard’ – this represents the role of the source Standard. It may seem a little
odd to have a Standard as a Stakeholder Role but it meets all the requirements
of being one – it is outside the boundary of the System and has an interest in
the Project.

● ‘Reviewer’ – the role of the Person or people who are responsible for the
review Activities in the Process.

SV [Package] SV - PoMP [SV - PoMP]

«stakeholder role»
Stakeholder Role

«stakeholder role»
Customer «stakeholder role»

External
«stakeholder role»

Supplier

«stakeholder role»
Sponsor

«stakeholder role»
Standard

«stakeholder role»
Standard Enforcer

«stakeholder role»
Systems Engineer

«stakeholder role»
Systems Modeller

«stakeholder role»
Reviewer

Figure 8.9 PoMP – Stakeholder View

Expanded Process Modelling 307

Now that the Context and the Stakeholder Roles have been identified, it is time to look
at the actual Processes that need to be defined in order to meet the original Needs.

8.3.1.4 PoMP – Process Content View
The Process Content View for Process mapping consists initially of three Processes
as shown in Figure 8.10.

The diagram in Figure 8.10 shows the Process Content View that identifies the
Processes that have been created along with their relevant Artefacts (represented by
properties) and Activities (represented by operations). These are the three Processes
that will be executed in order to meet the use cases from Figure 8.8.

The three Processes that have been identified are described as follows:

● ‘Process Identification’. The aim of this Process is to identify all the relevant
source Processes that are applicable to the mapping exercise. The source Pro-
cesses here are the Processes that are being assessed against. One of the main
outputs here is the ‘Process quagmire’ which is a variation of the Information
View and is realised by a block definition diagram where each block represents
a different source Process. In the situation where only a single source Standard
is being used, then this quagmire is quite simple (more of a puddle than a
quagmire); however, as soon as more than one source Standard is used, the

PCV [Package] PCV - PoMP [PCV - PoMP]

«process group»
Process Mapping

«process»
Process Identification

«artefact»
Consensus model: Consensus Model
Process model: Process Model Set-up
Process quagmire: Process Quagmire
Review comments: Review Comment

«activity»
define quagmire()
develop process model()
identify source standards()
review()

«process»
Process Model Set-up

«artefact»
Process model: Process Model
Process quagmire: Process Quagmire
Review comments: Review Comment
Scope: Scope

«activity»
define scope()
identify source process model()
identify target process model()
review()

«process»
Process Analysis

«artefact»
Process mapping: Process Mapping
Process model: Process Model
Review comments: Review Comment

«activity»
identify gaps()
identify links()
produce process mapping()
review()

Figure 8.10 PoMP – Process Content View

308 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

complexity increases and the quagmire becomes deeper and deeper. The Pro-
cess models for each source Process are also either identified (if they already
exist) or generated (if they do not exist). Note that the target Processes is also
identified at this point.

● ‘Process Model Set-up’. The main aim of this Process is to define the scope of
the assessment or audit (which Processes in the target Process will be eval-
uated) and then to identify the relevant parts of each source Process.

● ‘Process Analysis’. The aim of this Process is to actually perform the mapping
between the source Processes and the target Process. This involves looking for
both links between them as well as gaps.

In terms of the way that these Processes are executed, they are quite tightly cou-
pled. This means that the relationships between the Processes are actually depen-
dencies and, hence, does not allow for much freedom in terms of variation of
execution. This can be seen in the diagram by the dependency relationships that
exist between the Processes.

The full Process model for PoMP is described in Appendix F and shows all of
the remaining Views.

8.3.2 Using PoMP
This section provides an example of how the PoMP Processes may be executed. In
this example, there are a number of source Standards and a single target Process,
which is STUMPI, which was described in the previous chapter.

8.3.2.1 The ‘Process Identification’ Process
The ‘identify source standards’ Activity
This Activity aims to identify one or more source standards that will be used as part
of the compliance mapping exercise. These source standards will include ISO
15504 – software Process assessment [3], ISO 15288 – software and systems life
cycle management [1], ISO 9001:2008 Quality management systems – Require-
ments [4], ISO/IEC 12207 Systems and software engineering – software life cycle
Processes [5] and, finally, CMMI – capability maturity model integration [6]. In
real projects, there is often a set of pre-defined standards that must be complied
with provided as part of the requirements documentation or project description. The
target Process is also identified at this point as the STUMPI Process Model.

The ‘define quagmire’ Activity
The quagmire identifies any related Standards or Processes that may have an
influence on the Process mapping exercise. The quagmire has been constructed and
is shown in Figure 8.11.

The diagram in Figure 8.11 shows a Process quagmire for the exercise, where
‘ISO 15288:2008’ maps to ‘ISO 15504’ which maps to both ‘ISO 12207’ and ‘ISO
9001’. Also, ‘ISO 12207’ maps to ‘CMMI’. The target Process is also shown here,
as ‘STUMPI Process Model’ that maps to ‘ISO 15288:2008’.

Expanded Process Modelling 309

For the sake of clarity and brevity, the purpose of this exercise is to focus on
the relationship between ‘STUMPI Process Model’ (the target) and ‘ISO
15288:2008’ (one of the sources). If this exercise was taken further, it would be
possible to provide a full mapping between all of these standards based on the
relationships between them in the quagmire.

The ‘develop Process model’ Activity
In this Activity, any necessary Process models will be produced. The two main
Views that will be used as a basis for the basic Process mapping are the Process
Structure View and the Process Content View. The purpose of producing the Pro-
cess Structure Views is to provide a basis for mapping terminology between the
source and target Processes. The purpose of producing the Process Content Views
is to provide a basis of mapping between the Processes and their relevant parts
(Activities, Artefacts and Stakeholder Roles) between the source and target
Processes.

The diagram in Figure 8.12 shows the Process Structure View for both the
source (ISO 15288 – shown on the left) and target Process (STUMPI – shown on
the right). There are some immediate similarities in terms of the patterns of blocks
in the diagram and also in terms of the names that are being used. These will be
discussed later when the ‘Process Analysis’ Process is executed.

IV [Package] IV - PoMP [IV - Process Quagmire]

«artefact»
STUMPI Process Model

«artefact»
ISO 15288:2015

«artefact»
ISO 15504

«artefact»
ISO 12207

«artefact»
CMMI

«artefact»
ISO 9001

1
maps to

1

0..1

maps to

1

1
maps to

1 1

maps to

1

1
maps to

1

Figure 8.11 Process quagmire

310 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Along with the main concepts that are shown here, it is also possible to drop
down a level of detail and examine the two concepts of ‘Process Group’ that exist in
each Process model using the Process Content View.

IV [Package] PSV - PoMP [PSV - Ontology Mapping]

«ontology element»
ISO 15288:2015

«ontology element»
Process Group

«ontology element»
Life Cycle

«ontology element»
Process

«ontology element»
Outcome

«ontology element»
Process Purpose

«ontology element»
Activity

«ontology element»
Resource

«ontology element»
Task

«ontology element»
Stage

«ontology element»
STUMPI Process Model

«ontology element»
Process Group

«ontology element»
Process

«ontology element»
Artefact

«ontology element»
Activity

«ontology element»
Stakeholder Role

«ontology element»
Life Cycle

«ontology element»
Process Execution Group

«ontology element»
Stage

1..*

1..*

1

proposes use of

14

1..*

1..*

is executed during

1

1..*

is executed during

1..*

1..*

is executed during

1

1

describes goals of
1

1..*

utilises/consumes

1..*

1..*

produces/consumes

1..*

1..*1..*

1..*

contributes to

1..*

1..*

1..*

1..*

1

is responsible for

1..*

Figure 8.12 Showing compliance of the Ontologies using the Process Structure View

PCV [Package] PCV - PoMP [PCV - Process Mapping]

«process group»
Process Group

«process group»
Technical Management

«process group»
Technical

«process group»
Agreement

«process group»
Organizational Project-

enabling

«ontology element»
Process Group

«process group»
Management Group

«process group»
Engineering Group

Figure 8.13 Compliance of Process groups using the Process Content View

Expanded Process Modelling 311

The diagram in Figure 8.13 shows part of the Process Content View for both the
source and target Processes. This is not the entire Process Content View but is the subset
of the target Process model that will be defined by the scope. Again, the basic patterns
look quite different, but this will be explored during the ‘Process analysis’ Process.

The ‘review’ Activity
At this point, there would be a review of the Artefacts that have been produced
so far in the Process. Once this review has been completed satisfactorily, the next
Process can be invoked.

8.3.2.2 The ‘Process Model set-up’ Process
The ‘identify source Process model’ Activity
Based on the Process quagmire, the source Process model has been identified as ‘ISO
15288 – software and systems life cycle management’. Depending on the number of
Process models involved, this activity may be almost trivial, as in this example. This is
because there is only a single mapping being investigated. In the situation where there
are many Process mapping being investigated, this activity becomes more complex.

The ‘identify target Process model’ Activity
Based on the Process quagmire, the target Process model has been identified as
‘STUMPI Process Model’. Again, in this example, this Activity is quite trivial.

The ‘define scope’ Activity
The next step is to look at the target Process model and to identify which elements of the
terminology will be mapped and which Processes are to be involved in the mapping
exercise. For the sake of brevity for this example, the exercise will be limited to

● Mapping between the terminology used in both Process models, provided by
the development of the Process Structure Views in the Process Model, pro-
duced as an output of the ‘develop Process model’ Activity on the Process
Identification Process.

● Mapping between the requirement-related Processes in the two Process mod-
els, provided by the development of the Process Content Views in the Process
Model, produced as an output of the ‘develop Process model’ Activity on the
Process Identification Process.

Of course, this scope will be far larger in a real-life scenario, but the main princi-
ples may be illustrated with the very limited scope presented here.

The ‘review’ Activity
As with many Processes, there is a review Activity at the end of the Process that
must be passed before progress can be made to the next Process form the Process
Instance View.

8.3.2.3 The ‘Process analysis’ Process
The ‘identify gaps’ Activity
This Activity will use the information in Figure 8.12 to try to identify any gaps in
the mapping between the two Standards. Therefore, the question that will be asked

312 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

will be ‘are there any features of the source Process model that do not map onto the
target Process model’ and vice versa.

The ‘identify links’ Activity
This Activity will use the information in Figure 8.12 to try to identify any links
in the mapping between the source and target. Therefore, the question that will be
asked will be ‘for each feature of the target Process model, which features of the
source Process model map onto it’.

The ‘produce Process mapping’ Activity
This is the Activity where the actual results of the previous two Activities
are recorded. This can be done using any appropriate mechanism and simple
tables will be used here to capture the results. This mapping will occur at different
levels.

The information in Table 8.1 shows the basic mapping between the two views
shown in Figure 8.12. This highlights the differences in the basic language being
used in both source and target. At this level, there are several one-to-one mappings
along with some minor inconsistencies and one non-mapped concept.

The same approach to mapping may be carried out at the next level down, by
looking at the types of ‘Process Group’.

The information in Table 8.2 shows the mapping between the two Views
shown in Figure 8.13. This establishes the mapping between the terms used for the
Process Groups.

Table 8.1 Basic terminology mapping

ISO 15288
(source)

STUMPI
(target)

Comment

Process Group Process Group Exact match of terminology and concepts
Process Process Exact match of terminology and concepts
Process

Outcome
Artefact ‘Process Outcome’ and ‘Artefact’ are not directly analo-

gous, although they are related. Artefacts and deliver-
ables of the Process contribute towards achieving the
overall outcome that is defined in ISO 15288

Activity Activity Match of terminology and concepts, although ‘Activity’ in
ISO 15288 is described at a higher level and has its
details defined by one or more ‘Task’

Task There is no analogous concept for ‘Task’ in STUMPI, but a
mapping will exist between the tasks in ISO 15288 and
the description of activities in STUMPI

Life Cycle Life Cycle Exact match of terminology and concepts
Stage Stage Exact match of terminology and concepts
Purpose There is no analogous concept for ‘Purpose’ in STUMPI,

but a property of ‘Stage’ is ‘Purpose’ that provides the
mapping

Resource There is no analogous concept for ‘Resource’ in STUMPI

Expanded Process Modelling 313

The next step is to look at the Processes that exist within the Process Groups.
Remember that the scope of this mapping exercise is limited to the requirement-
related Processes. These Processes exist in the ‘Technical Processes Group’ in ISO
15288 (source) and in the ‘Engineering Group’ in STUMPI (target). Therefore, the
following table is limited to only investigating these Processes. Care must be
exercised, however, as it was highlighted earlier in Figure 8.12 that there is an extra
level of detail in the ISO 15288 Process model when it comes to describing Pro-
cesses, which is shown in Table 8.3.

The information in Table 8.3 shows the mapping between the Process terms
that are being used in the source and target. Note where there are gaps in the
mapping and also the many cases where more explanation is required. This could
be because the target Process model, in this case STUMPI, is defined at a very high
level (which is the case) or it could be because the target Process does simply not
comply with the source Process.

Notice that a lot of the comments here relate to the qualifier of ‘if a model-
based approach is adopted’. This is particularly interesting as there is a model-based
approach that is advocated in Chapter 9, known as the Approach to Context-based
Requirements Engineering, or ACRE. One of the claims made by ACRE is that its
View-based approach can be used with a number of different Processes. If this is the
case, then surely the ACRE views can be mapped to the STUMPI which should
answer the queries raised above. This is taken further in Chapter 15 where a more
complex mapping is explored.

The ‘review’ Activity
Once more, there is a review Activity before the Process is completed.

8.3.3 Summary
This section has discussed how Process modelling can be used as an enabler for
compliance mapping between any two or more Processes or Standards. The
examples used here were the STUMPI as the target, which was introduced in
Chapter 7, and ISO 15288 as the source that was introduced earlier in this chapter.

Table 8.2 Process grouping terminology mapping

ISO 15288 Process
Group (source)

STUMPI Process
Group (target)

Comment

Agreement Processes Group No mapping
Organisational Project-

enabling Processes Group
No mapping

Project Processes Group Management Group Mapping exists – specifically, the
mapping is from STUMPI to the
‘Project Management Process’

Technical Processes Group Engineering Group Mapping exists

314 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Table 8.3 Process terminology mapping

ISO 15288 (source) STUMPI Activity
(target)

Comment

Requirements analysis process Stakeholder
requirements

Activity Task

Define systems
requirements

Define functional boundary of
system

Analyse requirements Part of defining the context if a
model-based approach is adopted

Define each system function,
Analyse requirements

Analyse requirements Part of defining the use cases as part of
the context if a model-based approach
is adopted

Define implementation constraints Analyse requirements Part of defining the use cases as part of
the context if a model-based approach
is adopted

Define technical and quality
metrics

Not covered

Specify requirements/functions
that relate to critical qualities

Analyse requirements Part of defining the use cases as part of the
context if a model-based approach is
adopted

Analyse and maintain
system requirements

Analyse integrity of system
requirements

Analyse requirements Part of analysing use cases in the context if
a model-based approach is adopted

Feedback analysed requirements Review Customer involvement in the review
Demonstrate traceability between

system/stakeholder
requirements

Inherent part of Model using the Ontology

Maintain system requirements Inherent part of Model management

Stakeholder requirements definition process

Activity Task

Elicit stakeholder
requirements

Identify stakeholders Identify stakeholders Part of defining a stakeholder view if a
model-based approach is adopted

Elicit stakeholder requirements Elicit requirements Initial list of requirements
Define stakeholder

requirements
Define solution constraints Analyse requirements Part of analysing use cases in the context if

a model-based approach is adopted
Define activity sequences Define acceptance

criteria
Part of defining scenarios if a model-based

approach is adopted
Identify user/system interactions Define acceptance

criteria
Part of defining scenarios if a model-based

approach is adopted
Specify requirements and func-

tions relating to critical
qualities

Analyse requirements Part of analysing use cases in the context if
a model-based approach is adopted

Analyse and maintain
stakeholder
requirements

Analyse elicited requirements Analyse requirements Part of analysing use cases in the context if
a model-based approach is adopted

Resolve requirements problem Analyse requirements Part of analysing use cases in the context if
a model-based approach is adopted

Feedback analysed requirements Review Customer involvement in the review
Confirm stakeholder requirements Review Customer involvement in the review
Record stakeholder requirements Produce stakeholder

requirements
document

Maintain requirements traceability Inherent part of Model using the Ontology

Expanded Process Modelling 315

8.4 Expanded Process modelling – competence

One of the main themes of this book is stressing the importance of ‘People, Process
and Tools’ and, clearly, the previous chapter dealt extensively with modelling
Processes. This Process modelling may be extended to include extra views that
allow Competence to be modelled.

For a full definition of the Processes that relate to competency assessment,
including Competency Frameworks, see Chapter 14, Annex F and Annex G.

8.4.1 The expanded MBSE Ontology
The MBSE Ontology already includes elements that represent competence and its
related concepts and terms. The subset of the MBSE Ontology identified for model-
based Process engineering has its scope expanded and is shown in Figure 8.14.

«ontology element»
Evidence Type

«ontology element»
Lead

«ontology element»
Level

«ontology element»
Awareness

«ontology element»
Support

«ontology element»
Expert

«ontology element»
Indicator

«ontology element»
Competence

«ontology element»
Competency

«ontology element»
Competency Area

«ontology element»
Competency Scope

«ontology element»
Competency Profile

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Person

1

describes measured
abilities of

1

1
is assessed against

1

1

is held at

1

1

classifies

1..*

1..*

1

1..*

describes
desired

1

1

1..*

holds

1..*

1

requires

1

1

exhibits

1

1

defines admissable evidence for

1..*

1..*
1

1..*

describes measured

1

Figure 8.14 Expanded MBSE Ontology focused on Competence

316 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram here shows the MBSE Ontology expanded to include concepts
relating to Competence. These concepts have already been covered in detail in
Chapter 3 and are expanded upon on in Chapter 14, so no further discussion will be
entered into here.

8.4.2 The Framework
Four new Views associated with Competence are shown in the diagram in
Figure 8.15. The diagram here shows that there are four types of ‘Competence
View’ that have been identified: the ‘Framework View’, the ‘Applicable Compe-
tency View’, ‘Competency Scope View’ and the ‘Competency Profile View’ both
of which are described in the next four sections.

8.4.3 Views
8.4.3.1 The Framework View
View rationale
The main aim of the Framework View is to provide an understanding of any source
Frameworks that are intended to be used as part of the competency assessment
exercise. The Framework View is composed of a number of models of source
frameworks that can then be mapped to a generic framework.

View definition
The elements of the MBSE Ontology that are concerned with the ‘Framework
View’ are highlighted in the diagram in Figure 8.16.

VRV [Package] Viewpoint Relationship View [Viewpoint Relationship View]

«viewpoint»
Framework Viewpoint

«viewpoint»
Competency Scope

Viewpoint

«viewpoint»
Applicable Competency

Viewpoint

«viewpoint»
Competency Profile

Viewpoint

1..*

is generated against

1

1..*

references

1..* 1..*

is generated against

1

Figure 8.15 The Framework Views for Competence

Expanded Process Modelling 317

Figure 8.16 shows that the main element that is of interest for the ‘Framework
View’ is the ‘Competency Framework’. As the ‘Competency Framework’ defines
one or more ‘Competence’, this is also of interest.

View relationships
The Framework View is mainly related to the ‘Applicable Competency View’
as this is actually a subset of the ‘Framework View’ and references the
frameworks in it.

View visualisation
The Framework View may be visualised by a SysML block definition diagram as
shown in the diagram in Figure 8.17.

The diagram in Figure 8.17 shows a ‘Framework View’ for a specific com-
petency framework, in this case the INCOSE Systems Engineering Competencies

«ontology element»
Evidence Type

«ontology element»
Lead

«ontology element»
Level

«ontology element»
Awareness

«ontology element»
Support

«ontology element»
Expert

«ontology element»
Indicator

«ontology element»
Competence

«ontology element»
Competency

«ontology element»
Competency Area

«ontology element»
Competency Scope

«ontology element»
Competency Profile

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Person

1

describes measured
abilities of

1

1

is assessed against

1

1

is held at

1

1

classifies

1..*

1..*

1

1..*

describes
desired

1

1

1..*

holds

1..*

1

requires

1

1

exhibits

1

1

defines admissable evidence for

1..*

1..*
1

1..*

describes measured

1

Figure 8.16 View definition for Framework View

318 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Framework [7]. The ‘Framework View’ is essentially an Ontology for a specific
Competency Framework. This may then be used as a basis for generating the
‘Applicable Competency View’ and, hence, for traceability back to source Com-
petency Frameworks.

The following Rule applies to the ‘Framework View’:

● The ‘Applicable Competency View’ must be a subset of one or more of the
frameworks contained in the ‘Framework View’.

This relationship may be used as a basis for Process automation.

ODV [Package] ODV - INCOSE Competencies Framework [ODV - INCOSE Competencies Framework]

«ontology element»
Systems Engineering

Ability

«ontology element»
Competency

«ontology element»
Supporting Technique

«ontology element»
Basic Skills and Behaviour

«ontology element»
Domain Knowledge

«ontology element»
Theme

«ontology element»
Indicator

«ontology element»
Level

«ontology element»
Awareness

«ontology element»
Supervised Practitioner

«ontology element»
Practitioner

«ontology element»
Expert

1..*1..* 1..*

1..*

1

is held at

1

1..* 1..*

Figure 8.17 Example Framework View

Expanded Process Modelling 319

View discussion
The Framework View is an Ontology for a specific Competency Framework. One
or more of these Views may then be used as the basis for generating the Applicable
Competency View which forms the basis of a competency assessment exercise.

When analysing any Competency Framework, we can actually employ the
‘‘seven views’’ approach to create the models. With this in mind, the creation of a
Framework View may be thought of as generating the Process Structure View and
the Process Content View, where the Process Structure View would show the
Ontology and the Process Content View would show the detail of the Competencies
that make up the Competency Framework.

Again, notice how we are using the same techniques, in this case the ‘‘seven
views’’ approach, for different areas of modelling which increases the value of the
model and the techniques we use to create them.

8.4.3.2 The Applicable Competency View
View rationale
The main aim of the Applicable Competency View is to define a subset of one or
more Competencies that are applicable for a particular Organisation unit. When we
create models of Competency Frameworks, it allows us to understand the specific
Competencies and the relationships between them. In almost all cases, the set
of Competencies in the source Framework will be greater than the Competencies that
are relevant for a specific business; therefore, the Applicable Competency View
contains a pared-down set of Competencies from one or more source Framework.

View definition
The elements of the MBSE Ontology that are concerned with the Applicable
Competency View are highlighted in the diagram in Figure 8.18.

The diagram in Figure 8.18 shows the elements of the MBSE Ontology that are
of interest for the ‘Applicable Competency View’. A set of one of ‘Competence’
and, hence, one or more ‘Competency’ and ‘Level’ are defined as part of this View.

View relationships
The ‘Applicable Competency View’ is related to both the ‘Framework View’ and
the ‘Competency Scope View’. The ‘Framework View’ provides the source Com-
petencies that make up the ‘Applicable Competency View’. The ‘Competency
Scope View’ takes the ‘Applicable Competency View’ and defines the Levels,
Evidence Types and so on that are required for the input to a competency assess-
ment exercise.

The following Rules apply to the ‘Framework View’:

● The ‘Applicable Competency View’ must be a subset of one or more of the
frameworks contained in the ‘Framework View’.

● The ‘Competency Scope View’ must be a copy of the ‘Applicable Competency
View’ that has the Levels and Evidence Types defined.

These relationships may be used as a basis for Process automation.

320 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

View visualisation
The Applicable Competency View is visualised using a simple table, an example of
which is shown in the diagram in Figure 8.19.

The diagram in Figure 8.19 shows an example of an ‘Applicable Competency
Set’. The view itself is a table where the horizontal axis shows one or more
‘Competency Area’ and their component ‘Competency’. The vertical axis shows
the one or more ‘Level’ that has been defined. This vertical axis does not need to be
shown here as the Levels do not form any part of the Applicable Competency Set,
but it does make life simpler when the Competency Scope if defined as the same
table may be used. In this case, the ‘Applicable Competency View’ is based on the
example MBSE Competency Framework that is described in Appendix G.

«ontology element»
Evidence Type

«ontology element»
Lead

«ontology element»
Level

«ontology element»
Awareness

«ontology element»
Support

«ontology element»
Expert

«ontology element»
Indicator

«ontology element»
Competence

«ontology element»
Competency

«ontology element»
Competency Area

«ontology element»
Competency Scope

«ontology element»
Competency Profile

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Person

1

describes measured
abilities of

1

1
is assessed against

1

1

is held at

1

1

classifies

1..*

1..*

1

1..*

describes
desired

1

1

1..*

holds

1..*

1

requires

1

1

exhibits

1

1

defines admissable evidence for

1..*

1..*
1

1..*

describes measured

1

Figure 8.18 Definition of the Applicable Competency View

Expanded Process Modelling 321

View discussion
Possibly the first thing to notice about this view is that it is not visualised using SysML.
It is possible to show this View using for example a block definition diagram but the
simple table is more straightforward and intuitive to understand. As has been discussed
previously in this book, the notation used to visualise any View is not restricted to
SysML; however, the View must be consistent with the rest of the model. In this
example, it can be seen clearly that both axes of the table relate directly to elements in
the MBSE Ontology; hence, it is consistent with the rest of the model.

8.4.3.3 The Competency Scope View
View rationale
The Competency Scope View is concerned with identifying and defining a Com-
petency Scope for a specific Stakeholder Role. This is needed as the main input to
any competency assessment exercise and provides a definition of the required
Competencies and the Levels at which they must be held. This is covered in far
greater detail in Chapter 14.

Science Knowledge

A
na

to
m

y
St

ud
y

Technical Skill

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Pa
in

 In
du

ce
m

en
t

D
ea

th
 T

he
or

y

D
is

se
ct

io
n

R
es

tr
ai

nt
 T

ec
hn

iq
ue

s

D
ea

th
 P

ra
ct

ic
e

To
ol

 M
ai

nt
en

an
ce

Soft Skill

Te
m

pt
at

io
n

In
te

rr
og

at
io

n

Th
re

at
 M

an
ag

em
en

t

Figure 8.19 Example Applicable Competency View

322 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

View definition
The areas of the MBSE Ontology that are of specific interest for the ‘Competency
Scope View’ are shown in the diagram in Figure 8.20.

The diagram here shows that the areas of the Ontology that are of specific
interest are the ‘Competency Scope’ that describes the desired ‘Competence’ for a
specific ‘Stakeholder Role’. The ‘Competence’ is defined in terms of one or more
‘Competency’ along with the ‘Level’ at which it is held.

View relationships
It can be seen that one or more ‘Competency Profile View’ shows the output of an
assessment against a ‘Competency Scope View’. The ‘Competency Scope View’ is

«ontology element»
Evidence Type

«ontology element»
Lead

«ontology element»
Level

«ontology element»
Awareness

«ontology element»
Support

«ontology element»
Expert

«ontology element»
Indicator

«ontology element»
Competence

«ontology element»
Competency

«ontology element»
Competency Area

«ontology element»
Competency Scope

«ontology element»
Competency Profile

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Person

1

describes measured
abilities of

1

1

is assessed against

1

1

is held at

1

1

classifies

1..*

1..*

1

1..*

describes
desired

1

1

1..*

holds

1..*

1

requires

1

1

exhibits

1

1

defines admissable evidence for

1..*

1..*
1

1..*

describes measured

1

Figure 8.20 Definition of Competency Scope View

Expanded Process Modelling 323

also related to the ‘Applicable Competency View’ as it is generated against it –
the Competency Scope is based entirely on the applicable competency set.

The following Rules apply to the ‘Framework View’:

● The ‘Competency Scope View’ must be a copy of the ‘Applicable Competency
View’ that has the Levels and Evidence Types defined.

● The ‘Competency Profile View’ must have at least one ‘Competency Scope
View’ that is created as a result of a competency assessment exercise.

These relationships may be used as a basis for Process automation.

View visualisation
The ‘Competency Scope View’ is visualised using a simple table with shaded cells,
as shown in the diagram in Figure 8.21.

Level 4 -
expert

Level 1 -
awareness

Level 2 –
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering

Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure 8.21 Example Competency Scope View showing the ‘Requirements
Engineer’ Stakeholder Role

324 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The first thing that stands out about the diagram here is that it is not realised
using the SysML. As has been said several times in this book already, this is per-
fectly fine, provided that the view remains consistent with the Ontology, Frame-
work and other Views in the model.

The relationships between the visual elements and the MBSE Ontology are as
follows:

● The concept of the ‘Level’ is represented by a row on the table. Note that there
are four rows – one for each of the four Levels that were defined on the MBSE
Ontology.

● The concept of the ‘Competency Area’ is represented by the grouping of col-
umns, shown as the last horizontal text on the table (e.g. ‘Systems thinking’).
Each of these groupings refers to one of the Competency Areas that was
defined as part of the MBSE Ontology.

● Each individual ‘Competency’ is shown as a single column in the table, each of
which corresponds to a ‘Competency’ in the MBSE Competency Framework
and MBSE Ontology.

● Each of the cells is shaded to show at which Level each Competency must be
assessed to. It is also possible to show extra information in these cells, such as
‘Evidence Type’, as discussed in Chapter 12. Of course, any additional infor-
mation like this must be included on the Ontology that defines the view.

This is just one possible interpretation of how the View may be visualised.

View discussion
The ‘Competency Scope View’ allows the required Competencies for a specific
Stakeholder Role to be defined. In terms of exactly what information goes into the
View, this is up to the modeller. As has been discussed above, it is possible to keep
the scope as simple as Levels and Competencies, but it is also possible to add more
detail, for example

● It is possible to show the Competency Areas that each Competency belongs to.
Although in one sense this actually makes no difference to the Competency
Scope itself, it can make a difference to how easy the Competency Scope is
to read.

● Likewise, it may be desirable to show the Evidence Types that are acceptable for
each Competency at each Level (the cells), in which case the Ontology would
show the Evidence Types.

This is also an interesting view as it shows a non-SysML visualisation in the form
of a table. It does not matter what notation is used to realise each view, provided
that it is consistent with the model. The use of the ‘Ontology, Framework, Views’
approach allows the rigour of MBSE to be enforced regardless of the notation used.

In order to visualise any view, it is essential that the relevant elements from the
MBSE Ontology can be realised in a consistent way. Therefore, provided that you
can realise each element of the MBSE Ontology in at least one way, it is possible to
retain the consistency of the model.

Expanded Process Modelling 325

8.4.3.4 The Competency Profile View
View rationale
The Competency Scope View is concerned with identifying the Competencies and
their associated Levels for a specific Stakeholder Role, whereas the ‘Competency
Profile View’ is concerned with the actual competencies and the levels that have
been measured for a Person. A simple way to think about the two is that the
Competency Scope View is the main input to a competency assessment exercise,
whereas the Competency Profile View is the output of such an exercise.

View definition
The areas of the MBSE Ontology that are of specific interest for the ‘Competency
Profile View’ are shown in the diagram in Figure 8.22.

«ontology element»
Evidence Type

«ontology element»
Lead

«ontology element»
Level

«ontology element»
Awareness

«ontology element»
Support

«ontology element»
Expert

«ontology element»
Indicator

«ontology element»
Competence

«ontology element»
Competency

«ontology element»
Competency Area

«ontology element»
Competency Scope

«ontology element»
Competency Profile

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Person

1

describes measured
abilities of

1

1

is assessed against

1

1

is held at

1

1

classifies

1..*

1..*

1

1..*

describes
desired

1

1

1..*

holds

1..*

1

requires

1

1

exhibits

1

1

defines admissable evidence for

1..*

1..*
1

1..*

describes measured

1

Figure 8.22 Definition of Competency Profile View

326 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram here shows that the elements of the MBSE Ontology that are
important for this view are the ‘Competency Profile’ and its associated ‘Compe-
tence’. The ‘Competence’ as in the previous view has two main elements that
define it, the ‘Competency’ and its associated ‘Level’. Note how the ‘Competency
Profile View’ is associated with a ‘Person’ whereas the ‘Competency Scope View’
is associated with a ‘Stakeholder Role’.

View relationships
There is a relationship between the ‘Competency Scope View’ that describes
Competency Scopes and the ‘Competency Profile View’ that describes Compe-
tency Profiles. It can be seen from Figure 8.15 that one or more Competency Profile
shows the output of an assessment against a Competency Scope.

These two Views are very closely related together, which is only to be
expected as they both describe the concept of a ‘Competence’ but from two dif-
ferent points of view – one as desired ‘Competence’ for a ‘Stakeholder Role’ and
the other as measured ‘Competence’ of a ‘Person’.

The following Rules apply to ‘Competency Profile View’:

● Each ‘Competency Profile View’ must be directly related to a single ‘Com-
petency Scope View’.

● Each ‘Competency Profile View’ must be directly related to a single instance
of ‘Person’.

These rules may be used as a basis for automation.

View visualisation
The diagram in Figure 8.23 shows a specific visualisation of the ‘Competency
Profile View’, in this case using a non-SysML notation.

The first thing that stands out about the diagram here is that, as in the previous
view, it is not realised using the SysML.

The relationships between the visual elements and the MBSE model are as follows:

● The concept of the ‘Level’ is represented by a row on the table. Note that there
are four rows – one for each of the four Levels that were defined on the MBSE
Ontology.

● The concept of the ‘Competency Area’ is represented by the grouping of col-
umns, shown as the last horizontal text on the table (‘Systems thinking’, etc.).
Each of these groupings refers to one of the Competency Areas that was
defined as part of the MBSE Ontology.

● Each individual ‘Competency’ is shown as a single column in the table, each of
which corresponds to a ‘Competency’ in the MBSE Competency Framework
and Ontology.

● Each of the cells is shaded to show at which level each Competency was
assessed to as part of the assessment – the ‘Competency Scope View’ in fact.

● The actual levels that were achieved are shown as the thick black line that
shows the actual profile. All competency levels shown with a level rating in the
cell demonstrate the actual granulated score for the Competency.

This is just one possible interpretation of how the view may be visualised.

Expanded Process Modelling 327

View discussion
The Competency Profile View is interesting as it shows all of the information that
have been shown on the ‘Competency Scope View’, and it also shows extra infor-
mation concerning the result of the assessment. This may be thought of as overlaying
the results of the assessment over the original scope, which can be very useful for gap
analysis. For a full discussion on how to interpret and use this view, see Chapter 14.

Again, this view uses a non-SysML notation for its visualisation, so the same
discussion points as raised above will apply.

8.5 Expanded Process modelling – Life Cycle modelling

Processes have an inherent relationship with Life Cycles, but the nature of this
relationship and, indeed, the nature of Life Cycles are often misunderstood.

Level 4 -
expert

Level 1 -
awareness

Level 2 –
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Fully

Partially

Largely

Not
met

Partially

Partially

Fully

Fully

Fully

Fully

Fully

Largely

Fully

Fully Fully

Fully

Largely

LargelyLargely

Partially

Figure 8.23 Example ‘Competency Profile View’ showing the ‘Requirements
Engineer’ Stakeholder Role

328 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

There are many different types of Life Cycle that exist, including, but not lim-
ited to

● Project Life Cycles. Project Life Cycles are perhaps, along with Product Life
Cycles, one of the most obvious examples of applications of Life Cycles. We
tend to have rigid definitions of the terminal conditions of a Project, such as
start and end dates, time scales, budgets and resources, and so a Project Life
Cycle is one that many people will be able to identify with.

● Product Life Cycles. Again, another quite obvious one is to consider the Life
Cycle of a Product. It is relatively simple to visualise the conception, devel-
opment, production, use and support and disposal of a Product.

● Programme Life Cycles. Most Projects will exist in some sort of higher level
Programme. Each of the Programmes will also have its own Life Cycle and,
clearly, this will have some constraint on the Life Cycles of all Projects that are
contained within it.

● System procurement Life Cycles. Some Systems may have a procurement Life
Cycle that applies to them. From a business point of view, this may be a better
way to view a Product, or set of Products, than looking at the Product Life
Cycle alone.

● Technology Life Cycles. Any technology will have a Life Cycle. For example,
in the world of home computers, the accepted norm for removable storage was
magnetic tapes. This was then succeeded by magnetic discs, then optical discs,
then solid-state devices and then virtual storage. Each of these technologies has
its own Life Cycle.

● Equipment Life Cycles. Each and every piece of equipment will have its own
Life Cycle. This may start before the equipment is actually acquired and may
end when the equipment has been safely retired. Stages of the equipment life
cycle may describe its current condition, such as whether the equipment is in
use, working well, degrading and so on.

● Business Life Cycle. The business itself will have a Life Cycle. In some cases,
the main driver of the business may be to remain in business for several years
and then to sell it on. Stages of the Life Cycle may include expansion or
growth, steady states, controlled degradation and so on.

These different types of Life Cycle not only exist, but often interact in complex
ways. Also, each of these Life Cycles will control the way that Processes are exe-
cuted during each Stage in the Life Cycle.

8.5.1 The expanded MBSE Ontology
The MBSE Ontology already includes elements that represent Life Cycles and its
related concepts and terms. The subset of the MBSE Ontology that has been
identified for model-based Process engineering has its scope expanded and is
shown in Figure 8.24.

Expanded Process Modelling 329

The diagram here shows the MBSE Ontology expanded to include concepts
relating the Life Cycles. These Ontology Elements are defined as

● ‘Life Cycle’ – a set of one or more ‘Stage’ that can be used to describe the
evolution of ‘System’, ‘Project’, etc. over time.

● ‘Life Cycle Model’ – the execution of a set of one or more ‘Stage’ that shows
the behaviour of a ‘Life Cycle’.

● ‘Stage’ – a period within a ‘Life Cycle’ that relates to its realisation through one or
more ‘Process Execution Group’. The success of a ‘Stage’ is assessed by a ‘Gate’.

● ‘Gate’ – a mechanism for assessing the success or failure of the execution of a
‘Stage’.

● ‘Life Cycle Interface Point – the point in a ‘Life Cycle’ where one or more
‘Life Cycle Interaction’ will occur.

● ‘Life Cycle Interaction’ – the point during a ‘Life Cycle Model’ at which they
interact, which will be reflected in the way that one or more ‘Stage’ interact
with each other.

● ‘Process Execution Group’ – an ordered execution of one or more ‘Process’
that is performed as part of a ‘Stage’.

This section of the MBSE Ontology forms the basis of the content of all the Views
that are shown in the Framework in the following section.

«ontology element»
Life Cycle

«ontology element»
Life Cycle Interaction

«ontology element»
Life Cycle Interaction

Point

«ontology element»
Life Cycle Model

«ontology element»
Gate

«ontology element»
Stage

«ontology element»
Process Execution

Group

1

shows the order of execution of

1..*

1

describes interactions
between1

1..*

shows behaviour of

1

1..*

1

1

interfaces with

1..*

1..*

is executed during

1

1

interacts
with

1..*

1
assesses the execution of

1

Figure 8.24 Expanded MBSE Ontology focused on Life Cycle modelling

330 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

8.5.1.1 The Framework
The MBSE Process Life Cycle Framework comprises four main Views which are
shown in the diagram in Figure 8.25.

The diagram here shows that there are four main views:

● The ‘Life Cycle View’, which identifies one or more ‘Stage’ that exists in the
‘Life Cycle’.

● The ‘Life Cycle Model View’, which describes how each ‘Stage’ behaves in
relation to one or more other ‘Stage’.

● The ‘Life Cycle Interaction View’, which identifies one or more ‘Life Cycle
Interaction Point’ between one or more ‘Life Cycle’.

● The ‘Life Cycle Model Interaction View’, which shows the behaviour of each
‘Life Cycle Interaction Point’ in relation to one or more other ‘Life Cycle
Interaction Point’ as identified in the previous view.

Each of these Views will now be described and discussed in the subsequent
sections.

8.5.1.2 The Life Cycle View
View rationale
The aim of the Life Cycle View is to simply identify one or more Stage that may
exist within a specific Life Cycle.

It should be stressed that this is a structural View and does not contain any
behaviour – it simply identifies the Stages. This is very important as there is often a

VRV [Package] Viewpoint Relationship View [Viewpoint Relationship View - extended]

«viewpoint»
Interaction Behaviour

Viewpoint

«viewpoint»
Interaction

Identification Viewpoint

«viewpoint»
Life Cycle Viewpoint

«viewpoint»
Life Cycle Model

Viewpoint 1..*

describes execution of

1

1..*

describes execution of

1

1..*

identifies interaction points of

1..*

Figure 8.25 The Framework Views for Life Cycle modelling

Expanded Process Modelling 331

lot of confusion between the concepts of a Life Cycle and the concept of a Life
Cycle Model. For the purposes of this book, the difference is as follows:

● A Life Cycle is a structural construct that shows one or more Stage that makes
up a Life Cycle.

● A Life Cycle Model is a behaviour construct that shows how one or more Stage
behaves within the execution of a Life Cycle.

Indeed, as was shown in Chapter 3, several standards and source references use
these two terms interchangeably.

View definition
The elements of the MBSE Ontology that are concerned with Life Cycle modelling
are highlighted in the diagram in Figure 8.26.

The diagram here shows that the elements that are of interest for the ‘Life
Cycle View’ are the ‘Life Cycle’ itself and one or more ‘Stage’. This view is a
relatively simple view that shows the structure of a ‘Life Cycle’.

View relationship
The Life Cycle View is strongly related to two of the other views. The Life Cycle
View identifies the Stages that exist in the Life Cycle, whereas the Life Cycle Model

«ontology element»
Life Cycle

«ontology element»
Life Cycle Interaction

«ontology element»
Life Cycle Interaction

Point

«ontology element»
Life Cycle Model

«ontology element»
Gate

«ontology element»
Stage

«ontology element»
Process Execution

Group

1

shows the order of execution of

1..*

1

describes interactions
between1

1..*

shows behaviour of

1

1..*

1

1

interfaces with

1..*

1..*

is executed during

1

1

interacts
with

1..*

1
assesses the execution of

1

Figure 8.26 Definition of Life Cycle View

332 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

View shows the execution of these Stages. The Life Cycle View may be thought of
as the structural view of the Life Cycle, whereas the Life Cycle Model View may be
thought of as the behaviour; therefore, the two are very strongly linked.

The Interaction Identification View shows the points at which a number of Life
Cycles interact and, therefore, uses information from the Life Cycle View.

The following Rules apply to the Life Cycle View:

● The ‘Life Cycle View’ must consist of at least one ‘Stage’.
● Each ‘Life Cycle Model View’ must be based on a Life Cycle View that shows

the Stages.
● Each ‘Life Cycle Interaction Point’ must relate to a ‘Stage’ or ‘Gate’ from the

‘Life Cycle View’.

These relationships may be used as a basis for Process automation.

View visualisation
The Life Cycle View may be realised in SysML using a block definition diagram,
an example of which is shown in the diagram in Figure 8.27.

bdd [package] LCV - STUMPI [LCV - STUMPI]

«Life Cycle»
STUMPI Life Cycle

«Stage»
Conception

«Stage»
Development

«Stage»
Construction

«Stage»
Operations

«Stage»
Retirement

Figure 8.27 Example Life Cycle View for STUMPI

Expanded Process Modelling 333

The diagram here shows the ‘Life Cycle View’ for the STUMPI Process Model
that was introduced in Chapter 7. This view uses blocks to represent both the Life
Cycle and its associated one or more Stage. Here, a block has been used to expli-
citly show the concept of a ‘STUMPI Life Cycle’ and then its associated Stages are
shown as compositions.

View discussion
The Life Cycle View is an essential view for any real-life Projects. One of the
biggest problems concerning Life Cycles is the lack of appreciation of the different
types of Life Cycle that exist. For example, many people will just use the term life
cycle without providing any real context to it. The danger here is that everyone will
agree that they understand the term, but each person may very well have a different
idea about what it exactly means. The Project Life Cycle and Product Life Cycle
are very often confused but very often do not even reflect the same time frames, and
one may exist within the other. Consider the example of a passenger train – the
typical time to develop a train may be 2 years, whereas its in-service life may last
up to 30 years. This means that the Product Life Cycle may be spread over 32 years,
whereas there will be many, many Project Life Cycles that exist within it. There
will not only be the original development Project but also maintenance projects,
upgrades, etc.

Another important aspect of Life Cycles to be clear about is the difference
between the Life Cycle and the Life Cycle Model – one is structural and the other
behavioural, which will be discussed in more detail in the next section.

8.5.1.3 The Life Cycle Model View
View rationale
The aim of the Life Cycle Model View is to show the potential behaviour of the
execution of Stages that have been identified in the Life Cycle View. The Life Cycle
Model View is a behavioural view, whereas the Life Cycle View is structural.

The Life Cycle Model View may be used to specify required behaviour of a
Life Cycle, predicted anticipated behaviour or actual behaviour.

View definition
The elements of the MBSE Ontology that are concerned with Life Cycle modelling
are highlighted in the diagram in Figure 8.28.

The ‘Life Cycle Model View’ is concerned with examining the execution of
the ‘Stage’ and ‘Gate’ that make up the Life Cycle.

View relationships
The Life Cycle Model View is very strongly related to the Life Cycle View as it
shows one or more behaviours for each Life Cycle. Each Stage and Gate shown on
the Life Cycle Model View is actually an instance based on the elements in the Life
Cycle.

The Life Cycle Model View is also closely related to the Interaction Behaviour
View that effectively combines elements of one or more Life Cycle Model View.

334 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The following Rules apply to the Life Cycle Model View:

● Each ‘Life Cycle Model View’ must be based on a Life Cycle View that shows
the Stages.

● Each instance of a ‘Stage’ and ‘Gate’ in the ‘Life Cycle Model View’ must be
directly instantiated from the ‘Life Cycle View’.

● Each ‘Life Cycle Model View’ may be used as a basis for the ‘Project Schedule
View’ – see the following section on Project-related Process modelling.

These relationships may be used as a basis for Process automation.

View visualisation
The ‘Life Cycle Model View’ is realised using a SysML sequence diagram, as
shown in the diagram in Figure 8.29.

The diagram here shows the ‘Life Cycle Model View’ for the STUMPI Process
model that was introduced in Chapter 7. Each life line is an instance of a block that
represents a ‘Stage’ on its corresponding ‘Life Cycle View’ that is shown in Figure 8.27.
Each life line may also show an execution specification that may be used to relate timing
constraints or parallelism between various Stages. Notice also that a SysML gate is
shown here as an internal message to indicate where the ‘Concept Gate’ takes place.

Figure 8.28 Definition of Life Cycle Model View

Expanded Process Modelling 335

View discussion
The Life Cycle Model View is another essential View that must exist for each
relevant application, whether this is Project, Product, etc.

One important feature of this view is its flexibility. Bearing in mind that the
View is visualised using a sequence diagram, it follows that it is possible to show a
number of different Scenarios. This basically means that there are potentially many
Life Cycle Model Views for each Life Cycle View, each of which will show a
different Scenario. These Scenarios may be grouped into three broad categories:

● Intended behaviour. These Scenarios represent the ideal situation where all
Stages in the Life Cycle are executed according to some pre-determined plan.
When Life Cycles are discussed in many domains, it is typical to show these
desired life Cycle Models, such as the classic Waterfall, Iterative and Spiral.
An important point to note here is that these ideals are often referred to as life
cycles whereas, using the terminology adopted in this book in the MBSE
Ontology, these are actually examples of the Life Cycle Model.

● Predicted behaviour. These Scenarios are more related to how it is actually
anticipated that the Life Cycle will be executed, rather than the ideal norm.
These may be thought of as being analogous to project schedules in the project
management world.

● Actual behaviour. These Scenarios may be constructed based on what has actually
occurred during a Project and form an excellent basis for project monitoring.

Clearly, it is possible to have any number of Life Cycle Models for any single
Life Cycle which allows different approaches, such as Waterfall and Spiral to be
visualised by the different Life Cycle Model Views.

«Stage»
Conception

«Stage»
Development

«Stage»
Construction

«Stage»
Operations

«Stage»
Retirement

Figure 8.29 Example Life Cycle Model View for STUMPI

336 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

It should be apparent from the above discussion that there are some strong links
with the world of project management. This will be discussed in more detail later in
this chapter when the MBSE Process Ontology is expanded for project management.

The Life Cycle Model View may also be applied at different levels of
abstraction, rather than just looking at the execution of Stages. For example, the
Life Cycle Model View may be used to explore scenarios for the execution of
Process Execution Groups within a Life Cycle Stage. Examples of the use of the
Life Cycle Model Views used at lower levels will be provided later in this chapter.

8.5.1.4 The Interaction Identification View
View rationale
The main aim of the Interaction Identification View is to identify one or more Life
Cycle Interaction Point that may exist between multiple Life Cycles. In reality, Life
Cycles rarely exist in isolation but they interact with one another in a potentially
complex manner. The idea of this view, in conjunction with the Interaction Beha-
viour View, is to manage and control these complex relationships and interactions
between Life Cycles.

View definition
The elements of the MBSE Ontology that are concerned with life cycle modelling
are highlighted in the diagram in Figure 8.30.

«ontology element»
Life Cycle

«ontology element»
Life Cycle Interaction

«ontology element»
Life Cycle Interaction

Point

«ontology element»
Life Cycle Model

«ontology element»
Gate

«ontology element»
Stage

«ontology element»
Process Execution

Group

1

shows the order of execution of

1..*

1

describes interactions
between1

1..*1

1..*

1

1

interfaces with

1..*

1..*

is executed during

1

1

interacts
with

1..*

1
assesses the execution of

1

shows behaviour of

Figure 8.30 Definition of Interaction Identification View

Expanded Process Modelling 337

The diagram here shows that the main elements that are of interest here are
focused on the ‘Life Cycle Interaction Point’ that may exist on the relationships
between one or more ‘Life Cycle’. The aim here is simply to identify these points,
rather than examine the behaviour between them.

View relationships
The Interaction Identification View is closely related to both the Life Cycle View
and the Interaction Behaviour View. Each Life Cycle Interaction Point that is
identified relates together two elements from one or more Life Cycle View, spe-
cifically, one or more of Stage, Gate or Life Cycle.

The Interaction Identification View is a structural view that is purely con-
cerned with identification and not with behaviour. It is the Interaction Behaviour
View that shows its respective behaviours and, therefore, there are very close links
between them.

The following Rules apply to the ‘Interaction Identification View’:

● Each Life Cycle Interaction Point must relate to a Stage or Gate from the Life
Cycle View.

● Each Interaction Behaviour View must have an Interaction Identification View
associated with it.

These relationships may be used as a basis for Process automation.

View visualisation
The Interaction Identification View is visualised using a block definition diagram,
an example of which is shown in the diagram in Figure 8.31.

The diagram here shows an example of an ‘Interaction Identification View’
that shows relationships between three different Life Cycles. Each Life Cycle is
represented by a package, in this case there are three: ‘Development Life Cycle’,
‘Acquisition Life Cycle’ and ‘Deployment Life Cycle’. Each package that repre-
sents a Life Cycle contains one or more Stage using blocks. Each Life Cycle
Interaction Point is represented as a dependency that has been stereotyped as
«interaction point». Therefore, there is a Life Cycle Interaction Point between
‘Delivery’ and ‘Concept’ that is represented by the «interaction point» dependency
between them. Note that the full-term Life Cycle Interaction Point is not used here
purely for reasons of clarity and presentation.

View discussion
The relationships and subsequent interactions between different elements of dif-
ferent Life Cycles are areas that are very often overlooked, but one that require
some effort to understand, manage and control.

There are several main problems associated with these interactions:

● Many people do not know that there are many types of Life Cycle.
● Many people who do know this do not realise that they interact.
● Many people who understand these first two points do not appreciate the

complexity involved.

338 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Of course, in many cases, there may be no issues with interacting Life Cycles
particularly for short simple Projects. The problem occurs frequently, however,
when considering

● Programmes, where many Projects, and hence Life Cycles, will interact.
● Systems of Systems, where many Constituent Systems interact to provide

System of System Capabilities. In this case, there will be not only System Life
Cycles but also System of Systems Life Cycles.

● Systems that have a long shelf-life, such as the train example discussed pre-
viously, where the System Life Cycle may have multiple Project Life Cycles
associate with it.

Each Interaction Identification View will have a number of Interaction Behaviour
Views associated with it that define different executions of the Stages.

bdd [package] IIV - STUMPI [IIV - STUMPI]

«Life Cycle»
Deployment Life Cycle

«Life Cycle»
Acquisition Life Cycle

«Life Cycle»
Development Life Cycle

«Stage»
Conception

«Stage»
Development

«Stage»
Construction

«Stage»
Operations

«Stage»
Retirement

«Stage»
Idea

«Stage»
Tender

«Stage»
Delivery

«Stage»
Deploy

«Stage»
Disposal

«Stage»
Store

«Stage»
Transport

«Stage»
Operate

«Stage»
Close

«Stage»
Destroy

«interaction point»

«interaction point»

«interaction point»

«interaction point»

«interaction point»

«interaction point»

«interaction point»

Figure 8.31 Example Interaction Identification View for STUMPI

Expanded Process Modelling 339

8.5.1.5 The Interaction Behaviour View
View rationale
The main aim of the Interaction Behaviour View is to explore the different possible
behaviours of interacting Life Cycles, by considering a number of Scenarios. The
Interaction Behaviour View is a behavioural View, whereas the Interaction Iden-
tification View is a structural View.

The Interaction Behaviour View may be used to specify the required behaviour
of Life Cycle Interaction points whether these are predicted anticipated behaviour
or actual behaviour.

View definition
The elements of the MBSE Ontology that are concerned with Life Cycle interaction
behaviour are highlighted in the diagram in Figure 8.32.

The diagram here shows that the ‘Interaction Behaviour View’ is concerned
primarily with the ‘Life Cycle interaction’ and its associated ‘Life Cycle Interaction
Point’. Each ‘Life Cycle Interaction’ describes the behaviour between one or more
‘Life Cycle Interaction Point’.

«ontology element»
Life Cycle

«ontology element»
Life Cycle Interaction

«ontology element»
Life Cycle Interaction

Point

«ontology element»
Life Cycle Model

«ontology element»
Gate

«ontology element»
Stage

«ontology element»
Process Execution

Group

1

shows the order of execution of

1..*

1

describes interactions
between1

1..*

shows behaviour of

1

1..*

1

1

interfaces with

1..*

1..*

is executed during

1

1

interacts
with

1..*

1
assesses the execution of

1

Figure 8.32 Definition of Interaction Behaviour View

340 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

View relationships
The Interaction Behaviour View is very closely related to the Interaction Identifi-
cation View as it shows the behaviour of the interaction points. The Interaction
Behaviour View shows a behavioural View, whereas the Interaction Identification
View shows a structural View.

The following Rule applies to the Interaction Identification View:

● Each ‘Interaction Behaviour View’ must be an ‘Interaction Identification
View’ that shows the structure.

These relationships may be used as a basis for Process automation.

View visualisation
The Interaction Behaviour View is visualised using a number of sequence diagrams
that may be used in two different ways, examples of which are shown in the dia-
grams in Figures 8.33 and 8.34.

The diagram shown here explores the interactions between Life Cycle Inter-
action Points where the emphasis is on a Specific Life Cycle. The whole sequence
diagram represents the behaviour of a single Life Cycle with each Stage being
represented as a life line. The basis of internal Life Cycle behaviour is the same as
shown in a Life Cycle Model View (e.g. see Figure 8.29). Each interaction is
represented by a message that has been stereotyped as «interaction point» which
enters and exits the sequence diagram via a gate.

When using this type of visualisation, it should be noted that the other Life
Cycles that are interacted with are not shown, simply the Interaction Points and
gates. Of course, it is possible to augment the gates by indicating which Life Cycles
the gates are related to. This may be done using either notes or tag values associated

:Concept :Development :Construction :Support :Retirement

<<interaction>>

<<interaction>>

<<interaction>>

<<interaction>>

IBV [Package] STUMPI [typical Life Cycle interactions]

Figure 8.33 Example Interaction Behaviour View for STUMPI showing
interactions using Gates

Expanded Process Modelling 341

with the gates. If the relationships between the different Life Cycle Models are
particularly important, then the following alternate visualisation may be considered
(Figure 8.34).

The diagram shown here has a similar visualisation to that shown in Figure 8.33
but this time the Interaction Points to not enter and exit the diagram anonymously but
interact with specific Life Cycles. Each Life Cycle is shown as a package with each
Stage visualised as a life line. This time, however, the Interaction Points do not end
in a gate but go to other Stages (life lines) within other Life Cycles (packages).

View discussion
The Interaction Behaviour View shows the behaviour of interactions that were
identified on the Interaction Identification View.

Each Interaction Behaviour View in a similar fashion to the Life Cycle Model
View may show behaviour that is ideal, predicated or actual.

8.5.2 Summary
This section has introduced a number of different Views that may be used to explore
and understand Life Cycles and their associated interactions. These Views are

● The ‘Life Cycle View’, which identifies one or more ‘Stage’ that exists in the
‘Life Cycle’.

● The ‘Life Cycle Model View’, which describes how each ‘Stage’ behaves in
relation to one or more other ‘Stage’.

Deployment Life Cycle

:Concept

<<interaction>>

:Construct-
ion

:Support :Destroy:Close:Store:Disposal:Delivery :Deploy

<<interaction>>

<<interaction>>

<<interaction>>

<<interaction>>

<<interaction>>

Development Life Cycle Acquisition Life Cycle

IBV [Package] STUMPI [typical Life Cycle interactions]

Figure 8.34 Example Interaction Behaviour View for STUMPI showing
full interactions

342 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● The ‘Life Cycle Interaction View’, which identifies one or more ‘Life Cycle
Interaction Point’ between one or more ‘Life Cycle’.

● The ‘Life Cycle Model Interaction View’, which shows the behaviour of each
‘Life Cycle Interaction Point’ in relation to one or more other ‘Life Cycle
Interaction Point’ as identified in the previous view.

Each of these Views was described and examples provided, using SysML, of how
they may be visualised.

8.6 Expanded Process modelling – project management

This section looks at another way that the ‘‘seven views’’ approach can be expan-
ded and used and this time we consider its potential use in an Organisation for
managing Projects.

Any Project requires an element of planning and the generation of some sort
of schedule. A Project schedule is usually realised in some sort of Gantt chart or
Pert chart which are, themselves, a form of visual modelling. However, such
schedules are often wildly inaccurate when it comes to representing the actual
activities that are carried out by the workers involved with the Project and are
often regarded as a work of fiction by the people doing the work. Consider the
horrific examples concerning project overruns in the field of, for example, IT
systems. It is possible to pick up any newspaper in any given week of the year and
find examples of projects that have been absolute disasters. For detailed examples
of these, see [8].

Such cost and time overruns are quite common but, in many cases, this is
not necessarily a fault of the people carrying out the work but more a case of
the Project not meeting the initial expectations of the schedule. One indicator of
the expectations of the Project can be found in the schedule which, if very
unrealistic, will by its very nature result in time and hence cost overruns. There-
fore, where does the fault lie – with the people carrying out the work to the best of
their ability or in the unrealistic expectations of the Project Managers who set
unrealisable goals?

These inaccurate estimates of times, costs and resources are inexcusable, and
mostly avoidable, when a full knowledge of the Processes in an Organisation
is held.

8.6.1 The expanded MBSE Ontology
The MBSE Ontology includes the concept of a Project and Programme but
does not explicitly cover the concept of a schedule. The MBSE Ontology may be
easily and simply expanded to include these concepts as shown in the diagram in
Figure 8.35.

The diagram here shows the MBSE Ontology and how it may be expanded to
include concepts related to project management. Basic project management tells
us that the ‘Project Schedule’ manages the execution of a ‘Project’ and that the

Expanded Process Modelling 343

‘Project Schedule’ is divided up into one or more discrete ‘Task’ that represent
very high-level project activity. Each high-level ‘Task’ may then be further broken
down, for example

● Each ‘Task’ may be broken down into one or more ‘Subtask’ that shows a
more detailed view of what project activity is occurring.

● Each ‘Subtask’ may be broken down into one or more ‘Subsubtask’ that shows
a more detailed view of what project activity is occurring.

● Each ‘Subsubtask’ may be broken down into one or more ‘Subsubsubtask’
(no, really!) that shows a more detailed view of what project activity is
occurring.

This decomposition may be taken further, but for this example, we will stop at four
levels of decomposition below the ‘Project Schedule’ as this provides a convenient
mapping onto our established MBSE Ontology.

«ontology element»
Activity

«ontology element»
Process

«ontology element»
Process Execution

Group

«ontology element»
Life Cycle

«ontology element»
Gate

«ontology element»
Life Cycle Model

«ontology element»
Stage

«ontology element»
Project

«ontology element»
Programme

«block»
Project Schedule

«block»
Task

«block»
Subtask

«block»
Subsubtask

«block»
Subsubsubtask

«ontology element»
System

1..*

1

1..*

0..1

1

assesses the execution of

1

1..*

shows behaviour of

1

1..*

1

1

shows the order of execution of1..*

1

plans

1

1

produces

1..*

1..*

1

1..*

1

1..*
is executed during

1

1..*

manages execution of

1

1..*

1

1..*

1

1..*
is executed during

1

Figure 8.35 Expanded MBSE Ontology focused on project management

344 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Also, other information, such as key milestones, dates and resources, may
be indicated on the expanded MBSE Ontology and related to MBSE Ontology ele-
ments, such as each milestone may map onto an Artefact and so on. This is
left deliberately vague at this point as there are many different ideas and terminologies
in the world of project management, but the basic principle holds up here. Indeed, the
correct approach to defining these mappings would be to model the project manage-
ment Processes using the ‘‘seven views’’ and then map them onto the MBSE Ontology.
The basic mapping that we can derive here is summarised as follows:

● ‘Life Cycle Model’ in the MBSE Ontology maps onto the ‘Project Schedule’.
● ‘Stage’ in the MBSE Ontology maps onto the ‘Task’.
● ‘Process Execution Group’ in the MBSE Ontology maps onto the ‘Subtask’.
● ‘Process’ in the MBSE Ontology maps onto the ‘Subsubtask’.
● ‘Activity’ in the MBSE Ontology maps onto the ‘Subsubsubtask’.

Based on this expanded MBSE Ontology, the Framework may now be defined.

8.6.2 The Framework
The MBSE Process Project Framework comprises a single View that can be seen in
the diagram in Figure 8.36.

The diagram here shows that there are two Viewpoints identified in the Frame-
work, which are the ‘Project Schedule Viewpoint’ and the ‘Programme Structure
Viewpoint’. In reality, there will be more Viewpoints than this but this will depend
on the nature of the project management Processes. One Viewpoint that is

VRV [Package] VRV - Project Management [VRV - Project Management]

«viewpoint»
Project Viewpoint

«viewpoint»
Programme Structure

Viewpoint

«viewpoint»
Project Schedule

Viewpoint

Figure 8.36 The Framework View for project management-related Views

Expanded Process Modelling 345

ubiquitous to just about every Project is that of the Project Schedule, which is why
it is included here. Other potential Viewpoints may include resource identification
Viewpoints and resource allocation Viewpoints.

It should be noted here how closely these Viewpoints may be related to some
of the Process and Competency Viewpoints.

8.6.3 Views
8.6.3.1 The Project Schedule Viewpoint
Viewpoint rational
The basic aim of the ‘Project Schedule Viewpoint’ is to provide an overview of the
execution of the Project over time. This type of View may be used in a number of
ways:

● To show the ideal Project execution.
● To show the predicted Project execution.
● To show the actual Project execution.

The Project execution, in the form of the Project Schedule, is typically broken down
into a number of Tasks, Subtasks, etc., and it is also possible to show timings,
resources, milestones, etc.

Viewpoint definition
The elements of the MBSE Ontology that are concerned with Project scheduling are
highlighted in the diagram in Figure 8.37.

The diagram here shows that the ‘Project Schedule Viewpoint’ is concerned
with the ‘Project Schedule’ and its decompositions.

Viewpoint relationships
The ‘Project Schedule Viewpoint’ has relationships with many other Viewpoints,
depending on the level of detail that is required of the schedule. Even when simply
looking at the Project activity, there are clear links to the Life Cycle Viewpoints
and Process Viewpoints.

The following rules apply to the ‘Project Schedule Viewpoint’:

● The order of execution of each ‘Task’ in the ‘Project Schedule’ must map
directly onto a ‘Life Cycle Model View’ that shows the behaviour of the Life
Cycle in terms of the interactions between Stages.

● The order of execution of each ‘Subtask’ in each ‘Task’ must map directly onto
a ‘Life Cycle Model View’ that shows the behaviour of a Stage in terms of the
interactions between Process Execution Groups.

● The order of execution of each ‘Subsubtask’ in each ‘Subtask’ must map onto a
‘Life Cycle Model View’ that shows the behaviour of the Process Execution
Group.

● The order of execution of each ‘Subsubsubtask’ in each ‘Subsubtask’ maps
directly onto a ‘Process Behaviour View’ for a specific ‘Process’.

These relationships may be used as a basis for Process automation.

346 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

View visualisation
The rules in the previous section actually show how the entire Project can poten-
tially be mapped out by using Views that have already been defined as part of the
Life Cycle and Process Views. This would be a great idea from the point of view of
a SysML model, but not a good idea in terms of getting Project Managers to buy in
to the approach and follow the schedules. In almost every instance of project
management, Project Managers will produce and expect to see a Project Schedule
in the form of a Gantt chart. The diagram in Figure 8.38 shows how the Project
Schedule View may be visualised using a standard Gantt chart.

The diagram in Figure 8.38 shows a typical Gantt chart that represents the
‘Project Schedule View’.

«ontology element»
Activity

«ontology element»
Process

«ontology element»
Process Execution

Group

«ontology element»
Life Cycle

«ontology element»
Gate

«ontology element»
Life Cycle Model

«ontology element»
Stage

«ontology element»
Project

«ontology element»
Programme

«block»
Project Schedule

«block»
Task

«block»
Subtask

«block»
Subsubtask

«block»
Subsubsubtask

«ontology element»
System

1..*

1

1..*

0..1

1

assesses the execution of

1

1..*

shows behaviour of

1

1..*

1

1

shows the order of execution of1..*

1

plans

1

1

produces

1..*

1..*

1

1..*

1

1..*
is executed during

1

1..*

manages execution of

1

1..*

1

1..*

1

1..*
is executed during

1

Figure 8.37 Definition of Project Schedule View

Expanded Process Modelling 347

A typical Gantt chart will show more information as just the Project activity
breakdown (Task, Subtask, etc.), but these project management concepts can be
very easily mapped onto the MBSE Ontology, for example

● The concept of a ‘Responsibility’ shown on the Gantt chart could map directly
onto the concept of a ‘Stakeholder’ from the MBSE Ontology.

● The concept of a ‘Milestone’ shown on the Gantt chart could map directly onto
the concept of ‘Artefact’ from the MBSE Ontology.

In fact, any concept from the project management Processes can and should be
mapped onto the MBSE Ontology to make it an integral part of the overall MBSE
approach.

View discussion
There is no denying that a Gantt chart is seen as an essential part of any project
management activity but, in real life, these often bear no relation to what is actually
happening on the Project or what Processes are being followed.

The approach shown here of making the Project Schedule part of the overall
MBSE approach is both common sense and good practice. A good Project Schedule
must reflect the work activities that are carried out on the Project and the creation of
such a schedule should be a relatively simple piece of work. Bear in mind that we
potentially already have the following information, as discussed previously in this
chapter:

● The highest level breakdown of any project in the form of the Life Cycle View
and the Life Cycle Model View.

● The execution of many projects that make up a programme in the form of the
Interaction Identification View and Interaction Behaviour View.

● The definition and execution of every level under the Life Cycle Views in the
form of the Life Cycle Model Views.

● A complete set of responsibilities in the form of the Stakeholder View.
● All skills required for each responsibility in the form of the Competency

Views.

Figure 8.38 Example Project Schedule View

348 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

In fact, almost all the views discussed in this chapter may be used to contribute to a
Project Schedule and ensure that it is correct and accurate.

This use of Views for management activities also re-enforces the reuse of the
model. The more that we can use each View that we generate, the more value we
can get from each View.

8.6.3.2 The Programme Structure Viewpoint
Viewpoint rational
The basic aim of the ‘Programme Structure Viewpoint’ is to identify a number of
Programmes and their associated Projects. This Viewpoint may be used to identify
any dependencies between Programmes and/or Projects that may be useful when
planning, monitoring and executing Projects and Programmes.

Viewpoint definition
The elements of the MBSE Ontology that are concerned with Programmes are
highlighted in the diagram in Figure 8.39.

«ontology element»
Activity

«ontology element»
Process

«ontology element»
Process Execution

Group

«ontology element»
Life Cycle

«ontology element»
Gate

«ontology element»
Life Cycle Model

«ontology element»
Stage

«ontology element»
Project

«ontology element»
Programme

«block»
Project Schedule

«block»
Task

«block»
Subtask

«block»
Subsubtask

«block»
Subsubsubtask

«ontology element»
System

1..*

1

1..*

0..1

1

assesses the execution of

1

1..*

shows behaviour of

1

1..*

1

1

shows the order of execution of1..*

1

plans

1

1

produces

1..*

1..*

1

1..*

1

1..*
is executed during

1

1..*

manages execution of

1

1..*

1

1..*

1

1..*
is executed during

1

Figure 8.39 Definition of Programme Structure Viewpoint

Expanded Process Modelling 349

The diagram here shows that the ‘Programme Structure Viewpoint’ is con-
cerned with one or more ‘Programme’ and one or more ‘Project’. This Viewpoint
also emphasises relationships between Projects and between Programmes.

Viewpoint relationships
The ‘Programme Structure Viewpoint’ has relationships with many other View-
points, including the Project Schedule Viewpoint, Life Cycle Viewpoints and
Process Viewpoints.

The following Rules apply to the ‘Programme Structure View’:

● Each Programme will have an associated Life Cycle View that identifies the
Stages for the Programme.

● Each Programme will have an associated Life Cycle Model View that
describes the execution of the Stages in the Programme.

● Each Project will have an associated Life Cycle View that identifies the Stages
for the Project.

● Each Project will have an associated Life Cycle Model View that describes the
execution of the Stages in the Project.

● Each Project will have an associated Project Schedule View. These relation-
ships may be used as a basis for Process automation.

View visualisation
The Programme Structure View may be realised using the block definition diagram.
In this case, the visualisation is quite straightforward and blocks are used to
represent both Programmes and Projects.

The diagram in Figure 8.40 shows a block definition diagram used to visualise
a ‘Programme Structure View’. Each Project and Programme is visualised by a
standard block that has a stereotype applied to indicate whether it represents a
Programme or Project. Each Programme actually owns a number of Projects, so
note the explicit use of a composition relationship here. Several relationships
between the Projects are shown here using dependencies. Notice how additional
properties have been shown here to indicate the ‘start date’ and ‘end date’ of the
Projects.

This View may also include multiple Programmes, rather than just the single
Programme shown here and, of course, relationships between Programmes may
also be shown using dependencies.

View discussion
The Programme Structure View is quite a simple View but, nevertheless, is a very
important one. Relationships between Projects and Programmes are often over-
looked and are incredibly important in real life. Some of these dependencies will be
explored on the Life Cycle Views that are associated with the Programme Structure
View, which explicitly show exactly where the Life Cycles interact in terms of the
Stages, Process Execution Groups and the Processes.

350 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

8.7 Summary

This chapter has taken the basic ‘‘seven views’’ approach to Process modelling that
was described in Chapter 7 and has shown how it can be expanded to cover many
different and diverse application areas. The areas covered here are

● Modelling standards, in this case ISO 15288.
● Showing compliance between Process models, in this case ISO 15288,

STUMPI and ACRE.
● Competency modelling, which enforces the relationship between people and

Process in MBSE.
● Life Cycle modelling, which allows different types of Life Cycle to be mod-

elled along with the interactions between them.
● Project management, in particular the project schedule, which uses aspects of

the model from the previous points to define a Project Schedule and a Pro-
gramme Structure View.

Figure 8.40 Example Programme Structure View

Expanded Process Modelling 351

There are two key points to take away from this chapter:

● That the ‘‘seven views’’ approach is very flexible and can be applied in a
variety of different situations and is not even limited to the examples provided
here.

● That the Process is such an important part of MBSE, as each example provided
here is derived from a basic Process model, yet provided a lot of value and
contributed to the overall MBSE approach.

The Process modelling and its expansions will be used throughout the entirety of
this book.

References

[1] ISO. ‘ISO/IEC 15288:2008 Systems and Software Engineering – System Life
Cycle Processes’. 2nd edition. Geneva, Switzerland: ISO Publishing; 2008.

[2] De Marco T. ‘Controlling Software Projects: Management, Measurement &
Estimation’. NJ, USA: Yourdon Press; 1982.

[3] ISO. ‘ISO/IEC 15504 Information Technology – Process Assessment,
Parts 1–9’. Geneva, Switzerland: ISO Publishing; 2006–2011.

[4] ISO. ‘ISO 9001:2008 Quality Management Systems – Requirements’. Geneva,
Switzerland: ISO Publishing; 2008.

[5] ISO. ‘ISO/IEC 12207 Systems and Software Engineering – Software Life
Cycle Processes’. Geneva, Switzerland: ISO Publishing; 2008.

[6] CMMI. CMMI for Development, Version 1.3. CMMI-DEV (Version 1.3,
November 2010). PA, USA: Carnegie Mellon University Software Engineering
Institute; 2010. http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm
(retrieved 16 February 2011).

[7] INCOSE. ‘INCOSE Competencies Framework’. INCOSE, 2007. http://www.
incoseonline.org.uk/Groups/SE_Competencies/Main.aspx?CatID=Groups.

[8] Flowers S. ‘Software Failure: Management Failure’. Wiley Series in Software
Engineering Practice. Chichester, UK: Wiley; 1996.

352 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Chapter 9

Requirements Modelling with MBSE

9.1 Introduction

This chapter introduces a model-based approach to requirements engineering. This
approach is known as ACRE – Approach to Context-based Requirements Engi-
neering [1]. The approach uses the ‘Ontology, Framework and Views’ techniques
that are used throughout this book.

9.1.1 Background
The basic need for model-based requirements engineering is captured in Figure 9.1,
which describes the Needs in the form of Use Cases in the ACRE Framework Context.

The diagram here shows that the basic Need for the ACRE Context is to define
an approach for requirements engineering that supports the capture of several dif-
ferent types of Need (‘Support capture of needs’). The different types of Need that
are expressed here are as follows:

● ‘Support capture of requirements’, which allows for traditional Requirements
modelling.

● ‘Support capture of concerns’, which allows for modelling Needs that are
related to Architectures and Architecture Frameworks. Incidentally, as this
diagram is showing the Needs for the ACRE Architecture Framework, the Use
Cases are representing Concerns in Context.

● ‘Support capture of capabilities’, which allows for modelling the Capabilities
of, amongst other things, a System, Organisation or Project.

● ‘Support capture of goals’, which allows for modelling the Goals of, amongst
other things, a System, Organisation or Project.

There are three main constraints in this Use Case, which are

● The approach that is defined must be model based (‘Must be model-based’),
clearly because this is part of the larger MBSE effort described in this book.

The approach must comply with best practice, such as standards, guidelines, other
processes, etc. (‘Must comply with standards’).

● The style adopted for all different types of Needs modelling must be consistent,
regardless of whether Goals, Capabilities, Requirements or Concerns are being
modelled (‘Ensure consistent style’).

The main Use Case also has two main inclusions, which are as follows:

● ‘Identify source of needs’ that describes how the Needs must be traceable back
to a valid Source Element.

● ‘Consider needs in context’ that lies at the heart of the overall ACRE approach
and itself includes ‘Identify contexts’ and ‘Define validation approach’. This
allows Contexts to be identified, defined and then validated.

The diagram also shows various Stakeholder Roles and which Use Cases they have
an interest in.

9.2 Approach

9.2.1 The MBSE Ontology (revisited)
Figure 9.2 shows the MBSE Ontology with an emphasis on the Need-related ele-
ments using a SysML block definition diagram.

«stakeholder role»
MBSE Champion

«stakeholder role»
Requirement Engineer

«stakeholder role»
Tester

«stakeholder role»
Standard

«stakeholder role»
Requirement Manager

«stakeholder role»
Customer

«concern»
Support capture of

needs«concern»
Support capture of

requirements

«concern»
Support capture of

capabilities

«concern»

Support capture of goals

«concern»

Must be model-based

«concern»

Comply with standards

«concern»
Identify source of needs

«concern»
Ensure consistent style

«concern»
Define validation

approach

«concern»
Consider needs in

context

«concern»

Identify contexts

ACRE Framework Context

«concern»
Support capture of

concerns

«constrain»

«constrain» «constrain»

«include»

«include» «include»

«constrain»

Figure 9.1 ACRE Framework Context

354 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram here shows that there is an abstract concept of a ‘Need’ that has
four types: ‘Capability’, ‘Requirement’, ‘Goal’ and ‘Concern’. One or more
‘Requirement’ is needed to deliver each ‘Capability’, a number of which, in turn,
meet one or more ‘Goal’. A ‘Need Description’ describes each ‘Need’ and one
or more ‘Need Description’ is elicited from one or more ‘Source Element’. One or
more ‘Rule’ constrains one or more ‘Need Description’.

One or more ‘Use Case’ describes the context of each ‘Need’ via the ‘Context’
and one or more ‘Scenario’ validates one or more ‘Use Case’.

Each of these elements will now be described in more detail.

9.2.1.1 The ‘Need’ concept
The prime concept in any requirements engineering approach is that of the Need.
The Need is an abstract concept that describes a Requirement, Capability, Goal or
Concern of a System or Project. Every System will have a set of Needs, whether they
are formally defined or just exist tacitly inside someone’s head. The artefacts that we
see when we capture, analyse and document Needs are not the Needs themselves but
are representations of each Need. Of course, a Need may be represented in any
number of different ways, and it is these different interpretations that form the basis
of the Views that will be used in the ACRE Framework.

«ontology element»
Rule

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
System Context

«ontology element»
Concern

«ontology element»
Need

«ontology element»
Source Element

«ontology element»
Need Description

«ontology element»
Scenario

«ontology element»
Capability

«ontology element»
Goal

«ontology element»
Requirement

«ontology element»
Stakeholder Context

«ontology element»
Project Context

«ontology element»
Organisational Context

«ontology element»
Semi-formal Scenario

«ontology element»
Formal Scenario

«ontology element»
Process Context

{incomplete}

1

is related to

0..*1

is related to

0..*

1..* meets

1..*

1..*
traces to

1..*

1

describes
1

1..*

validates

1..*

1..*
describes the context of

1..*1..*

is elicited from

1..*

1..*

constrains

1..*

1..*

is needed to deliver 1

Figure 9.2 Subset of the MBSE Ontology focused on Requirements modelling

Requirements Modelling with MBSE 355

A Need is an abstract and non-tangible concept. Needs exist as ideas or
thoughts and it is essential, therefore, that we formalise them in some ways so that
we can capture and reason about them. A well-defined Need should be identifiable,
clear, non-solution-specific, owned, have an origin, be able to be verified, be able to
be validated and must be prioritised. There are many different types of Need that
may exist which are often classified into a number of groups using a Needs tax-
onomy, which is simply a classification hierarchy. There is no definitive view on
exactly what these types of Needs are and it may vary depending on the project, the
industry or the company. For the purposes of this book, the Needs taxonomy that
will be adopted is shown in the diagram in Figure 9.3, which expands on Figure 9.2.

The diagram here shows that there are four types of ‘Need’, which are as follows:

● ‘Goal’. A special type of ‘Need’ whose Context will typically represent one or
more Organisational Unit (as an Organisational Context). Each ‘Goal’ will be
met by one or more ‘Capability’. Examples of this type of Need will be dis-
cussed in more detail in Chapter 10 and Part 4 of the book.

«ontology element»
Need

«ontology element»
Concern

«ontology element»
Capability

«ontology element»
Goal

«ontology element»
Requirement

«ontology element»
Business Requirement

«ontology element»
Functional Requirement

«ontology element»
Non-functional
Requirement

1..* constrains

0..*

1..*

meets 1..*

1..*drives

1..*

1..*

is needed to deliver

1

Figure 9.3 Subset of the MBSE Ontology focused on Requirements modelling
showing types of Need

356 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● ‘Capability’. A special type of ‘Need’ whose Context will typically represent one
or more Project (as a Project Context) or one or more Organisational Unit (as an
Organisational Context). A ‘Capability’ will meet one or more ‘Goal’ and will
represent the ability of an Organisation or Organisational Unit. Examples of this
type of Need will be discussed in more detail in Chapter 10 and Part 4 of the book.

● ‘Requirement’. A property of a system that is either needed or wanted by a
Stakeholder Role. Also, one or more ‘Requirement’ is needed to deliver each
‘Capability’. Examples of this type of Need will be discussed in more detail in
Chapter 9 and Part 4 of the book.

● ‘Concern’. A special type of ‘Need’ whose Context will represent an Archi-
tecture, an Architectural Framework or a Viewpoint. Examples of this type of
Need will be discussed in more detail in Chapter 11 and Part 4 of the book.

The concept of the Requirement may also be further classified as follows:

● ‘Business Requirement’. A Business Requirement is used to state the Needs of
a business. This will include business drivers that impact the entire Organisa-
tion and all the Projects within it. Business Requirements should drive every
Project in the Organisation and, as such, every Project must contribute either
directly or indirectly to meeting the Business Requirements.

● ‘Functional Requirement’. Functional Requirements, in their essence, yield an
observable result to someone, or something, that is using the System. By their
very definition, Functional Requirements affect the performance of an action and
result in some sort of function being performed. Functional Requirements are
usually what are referred to when people misuse the term user requirements.

● ‘Non-functional Requirement’. A ‘Non-functional Requirement’ will con-
strain, or limit in some way, the way that a Functional Requirement may be
realised. It should be noted that the term ‘‘constraint’’ is often used rather than
‘Non-functional Requirement’.

Again, it should be stressed that the terms used here are the ones used in this book
and that your own terminology may well differ in this area.

9.2.1.2 The ‘Need Description’ concept
The Need Description is an essential element of any requirements engineering
approach, but it is one that is very often misunderstood. The Need Description is
exactly what it says – it is a description of a Need. The Need Description is not the
Need itself but is a way to describe the abstract concept of the Need. This is necessary
because, as described in the previous section, there are a number of features that
make up a good Need and it is the Need Description that captures these.

Again, it must be stressed that the Need Description is not the Need but a
representation of it. Of course, each Need must have a Need Description, but the
fact that each Need has an associated description does not mean that the Need itself
is understood – in fact far from it. The Need Description provides a high-level
description of each Need, but this does not mean that the Need has been given
meaning. A Need has not been given a meaning until it has been put into a Context.

Requirements Modelling with MBSE 357

The Need Description has many uses, which are to describe the Need, to provide a
basis for traceability, to provide a basis for measurement and to provide a basis for
contractual agreements.

All Need Descriptions describe Needs and must be abstracted from source
information, which is discussed in the next section.

9.2.1.3 The ‘Source Element’ concept
Each Need must originate from somewhere and this is where the Source Element
comes into play. A Source Element represents the source of a Need. In terms of
what a Source Element actually is, the list of examples is almost endless as a Source
Element can be just about anything, such as requirement lists, conversations,
emails, workshop outputs, Business Requirements, standards, existing systems,
specifications or designs, information sources and higher level Needs.

The key point here is that Needs can be abstracted from almost anything but,
regardless of what they are, it is essential that there is traceability established
between these Source Elements and the Need Descriptions.

In order for a Source Element to be usable, it must be a configurable item. This
means that it must be identifiable in terms of its version number and findable in
terms of its location.

9.2.1.4 The ‘Rule’ concept
When describing any Need, there is a lot of room for ambiguity and misinterpreta-
tion. In order to minimise these problems, it is quite common to see a number of
Rules defined that are applied to describing Needs.

These Rules may apply to the Need itself or, more usually, to the attributes
of a Need. If a Need is represented by a SysML block, then its attributes may be
represented using properties. Examples of Rules include

● The way that the wording in a Need Description must be applied. One of the
most common examples of wording rules concerns the use of words such as
‘shall’, ‘may’, ‘should’ and ‘can’ [2].

● The complexity of the text that forms the Need Description. There are many
best practice complexity measures that can be used to assess the complexity of
a sentence or paragraph of text. One of the most widely used is the Flesch
Reading Ease Score [3] that indicates how easy text is to read.

● The value of an attribute of a Need Description is constrained. For example,
this may take the form of an enumerated list where an attribute of ‘Priority’
may only take on one of four values, ‘Essential’, ‘Desirable’, ‘Bells and
whistles’ or ‘Unknown’. The value that an attribute may take on may also be
constrained by defining a special type for the value; for example, the value of
an ‘Owner’ attribute may be constrained to be defined as a reference to one of a
number of Stakeholder Roles.

The previous three examples of Rules show how various attributes of Need
Descriptions may be constrained by Rules, but these Rules may also apply to the set
of Need Descriptions. For example, the total number of Needs may be measured.

358 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The examples of Rules that are shown here were chosen to make a specific
point: the Rules themselves can take on many different forms and can be applied to
either the attributes of the Need Descriptions or the Need Descriptions themselves.
These Rules can be realised in many ways, ranging from simple text-based con-
straints to SysML parametric constraint blocks, through formal methods. It is also
possible to use Rules to constrain the wordings, or text descriptions that lie behind a
use case.

It is also possible for Rules to apply to any of the other Ontology Elements. For
the sake of simplicity, the Rules shown here only relate to Need Descriptions, but
this could easily be expended by adding in more associations to other Ontology
Elements.

9.2.1.5 The ‘Scenario’ concept
The original Needs must be given meaning by putting each into Context using Use
Cases. It is essential that we can demonstrate that we have met the original Need,
but this must be achieved by demonstrating that we can satisfy the relevant Use
Cases. The way that Use Cases are validated is by considering various Scenarios for
each Use Case.

The diagram in Figure 9.4 shows that there are two types of ‘Scenario’ –
‘Semi-formal Scenario’ and ‘Formal Scenario’.

«ontology element»
Use Case

«ontology element»
Scenario

«ontology element»
Formal Scenario

«ontology element»
Semi-formal Scenario

1..*

validates
1..*

1

interacts with

0..*

Figure 9.4 Subset of the MBSE Ontology focused on Requirements modelling
showing types of Scenario

Requirements Modelling with MBSE 359

A Scenario is defined in this book as an exploration of a ‘what if’ for a Use
Case. Each Use Case will give rise to a number of different situations that may arise
when it is being satisfied.

The Semi-formal Scenarios will be realised by SysML sequence diagrams that
show interactions between elements in the System. These interactions will usually
exist at two levels, although there may be more:

● Stakeholder-level Scenarios, which treat the System as a black box and analyse
the interactions between the Stakeholder Roles and the System.

● System-level Scenarios, which look at the interactions between System Ele-
ments within the System.

These Scenarios allow a Use Case to be analysed by considering different what ifs
and representing them with the sequence diagram.

The Formal Scenarios will be realised by SysML parametric constraint blocks
and their use on parametric diagrams. This allows a more mathematical-based
approach to be taken for understanding the Use Cases. The constraint properties are
connected together into different networks that allow what if analysis and are
particularly powerful when considering trade-offs.

All of these Scenarios may be used for a number of purposes:

● Understanding, to allow each Use Case to be analysed.
● Ensuring that each Use Case is represented at an appropriate level of abstrac-

ted, so not too high level, nor too detailed.
● Validation, to allow each Use Case to be satisfied in a demonstrable way.
● To provide a tangible link between the Needs Model and the rest of the Sys-

tems Model.

Scenarios provide a very powerful mechanism that is essential for any Needs exercise.

9.2.1.6 The ‘Context’ concept
The idea of the Context is fundamental to the approach taken in this book and hence
it is very important that the concept is well understood. In its simplest form, a
Context may be thought of as a point of view. It is essential, however, that it is well
understood from what point of view each Context is taken. It is possible to view the
Needs of a System from any number of different points of view, so it is essential
that the origins of these points of view are well defined. The diagram in Figure 9.5
shows several common Contexts that are possible.

Figure 9.5 shows that there are several types of ‘Context’ which are the ‘Sys-
tem Context’, ‘Project Context’, ‘Stakeholder Context’ and ‘Process Context’. The
diagram also shows that the full set of Contexts shown here is incomplete [indicated
by SysML (incomplete) constraint]; so, there are many other types of Context that
are not shown here, for example ‘Viewpoint Context’ and ‘Architectural Frame-
work Context’.

Rather than discussing all these in great detail, only the ‘Stakeholder Context’
and the ‘System Context’ will be discussed in the following sections, but it should be
stated that the points raised here apply to all the other Contexts shown in the diagram.

360 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

9.2.1.7 Stakeholder Context
The first type of Context that will be considered is the Stakeholder Context. The
Stakeholder Context is defined by looking at a set of Needs from the point of
view of different Stakeholder Roles. Key to getting this right is being able to
identify what the various Stakeholder Roles are. A Stakeholder Role is defined as
the role of any Person, Organisation or thing that has an interest in or is impacted
by a System.

Once the Stakeholder Roles have been identified, then it is possible to create a
set of Contexts. When considering Contexts, the following basic facts should be
considered:

● The Stakeholder Roles identified here form the basis for defining a number of
Contexts.

● Each one of these Stakeholder Roles will have their own point of view or
Context.

● Each Context will be used to express the Needs of a System from the point of
view of a single Stakeholder Role, in the form of Use Cases.

● Each Context will potentially conflict with other Contexts, as they represent
different points of view.

● All Contexts must be consistent with one another to form a model.

The identification of Stakeholder Roles is only one way to help to define a number
of Contexts and it is common that several types of Context are developed.

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
Process Context

«ontology element»
Project Context

«ontology element»
Stakeholder Context

«ontology element»
System Context

«ontology element»
Need

1

interacts
with

0..*

1..*

describes the context of

1..*

{incomplete}

Figure 9.5 Subset of the MBSE Ontology focused on Requirements modelling
showing types of ‘Context’

Requirements Modelling with MBSE 361

9.2.1.8 System Contexts
The second type of Context that will be considered is a set of Contexts based on a
System or, more specifically, the level of hierarchy of a System. This type of
Context is particularly relevant where a System is being developed that can be
broken down into many subsystems, assemblies and components. This is very often
the case where manufactured Systems are concerned, such as in the automotive and
rail industries.

When considering such a System, it is quite common to have a number of
different types of Need defined that exist at the various levels in the hierarchy.

By considering the different levels of hierarchy, it is possible to identify
Contexts at each level. In other words, each level of the hierarchy has its own point
of view.

Once the System hierarchy levels have been identified, then it is possible to
create a set of Contexts. When considering System-driven Contexts, the following
basic facts should be considered:

● The System hierarchy levels identified here form the basis for defining a
number of Contexts.

● Each one of these System hierarchy levels will have their own point of view or
Context.

● Each Context will be used to express the Needs of a System from the point of
view of a single System hierarchy level, in the form of Use Cases.

● Each Context will potentially conflict with other Contexts, as they represent
different points of view.

● All Contexts must be consistent with one another to form a model. By looking
at the various Contexts together and applying the modelling techniques dis-
cussed in Section 2.2, it is possible to identify conflicts, overlaps, similarities
and so on.

The identification of System hierarchy levels is one way to help to define a number
of Contexts that form the heart of the Needs model.

9.2.1.9 The ‘Use Case’ concept
The concept of a Use Case is one that is very often misunderstood. Many people
assume that a Use Case is the same as a Need but this is not the case. The defi-
nition of a Use Case that will be used in this book is that a Use Case is a Need that
has been given meaning by putting it into Context. Any single Need may be
interpreted in different ways depending on the point of view, or Context, that it is
viewed from. The previous section described how a number of Contexts may be
identified for any System, and it is the Use Case that looks at each Need in these
different Contexts.

In order to illustrate the concept of the Use Case, let us consider two examples.
For the first example, consider a passenger airline system. In this example, imagine
that there is a Need, and hence a Need Description, that is defined as ‘Save money’.
This seems quite straightforward and easy to understand as almost everybody can
understand the idea of saving money. However, depending on the role that we are

362 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

taking (which Stakeholder Role we are), the Need will take on different meanings
(different Use Cases).

● From the passenger’s point of view, this Need may be interpreted as saving
money on the fare paid to make a journey. Therefore, the Need is ‘Save
money’, the Context is from the point of view of the ‘User’ Stakeholder Role
and the Use Case may be ‘save money on cost of fare’.

● From the airline owner’s point of view, this Need may be interpreted as saving
money on the cost of providing a flight, in terms of fuel costs, staff costs, food
costs and so on. Therefore, the Need is ‘Save money’, the Context is from the
point of view of the ‘Sponsor’ Stakeholder Role and the Use Case may be ‘save
money on the cost of providing a flight’.

This simple example just goes to show how the Context considered can completely
alter the meaning of the original Need. It should also be noted that in the example
here the two Use Cases will potentially conflict, as the passenger does not want to
pay much money, but the owner does not want to spend any money either. By
considering the various Use Cases, it is possible to identify any areas of potential
conflict, overlaps, gaps in understanding and so on.

For the second example, let us consider a car System. Imagine that there is a
Need, and hence a Need Description, to ‘conserve fuel’. Again, this may seem quite
straightforward, but depending on the Context, this time based on the level of
hierarchy, it will take on different meanings.

● From the System’s point of view, this Need may be interpreted as conserving
fuel to save on running costs of the car. Therefore, the Need is ‘Conserve fuel’,
the Context is from the point of view of the ‘System’ level and the Use Case
may be ‘conserve fuel to minimise the running costs of the car’.

● From the fuel injection unit’s point of view, this Need may be interpreted as
conserving fuel to optimise the engine performance, which was derived from
the engine’s needs. Therefore, the Need is ‘Conserve fuel’, the Context is from
the point of view of the ‘Assembly’ and the Use Case may be to ‘conserve fuel to
optimise engine performance’.

In the example here, the Use Cases do not conflict, but they do have quite different,
yet complementary, meanings.

When it comes to demonstrating that the original Needs can be met, known as
validation, then it is the Use Cases that must be validated, which, in turn, will
validate the original Needs.

9.2.2 The Framework
The concepts introduced in the MBSE Ontology must be realised in some way. The
ACRE Framework identifies and defines a number of Viewpoints that are used to
describe the structure and content of the Views. It is these Views that combine to
form the model.

The ACRE Framework defines a number of Viewpoints that are shown in the
diagram in Figure 9.6.

Requirements Modelling with MBSE 363

The diagram here shows that there are six main ACRE Viewpoints that are
needed to define the Views, which are as follows:

● ‘Source Element Viewpoint’. This Viewpoint contains all the Source Elements
that are required in order to get the Needs right.

● ‘Requirement Description Viewpoint’. This Viewpoint contains structured
Need Descriptions. These Need Descriptions are considered individually and
will usually have a number of attributes, or features, associated with each one.

● ‘Definition Rule Set Viewpoint’. This Viewpoint contains any Rules that may
have to be applied to each Need Description. For example, these may be
complexity Rules in the form of equations or more general text-based Rules.

● ‘Requirement Context Viewpoint’. This Viewpoint takes the Needs and gives
them meaning by looking at them from a specific point of view by putting them
into Context.

● ‘Context Definition Viewpoint’. This Viewpoint identifies the points of view
that are explored in the Requirement Context Viewpoint.

● ‘Validation Viewpoint’. These Viewpoints provide the basis for demonstrating
that the Needs can be satisfied by defining a number of Scenarios. These Views
can describe Semi-formal Scenarios or Formal Scenarios.

● ‘Traceability Viewpoint’. Alongside these core Viewpoints, there is an addi-
tional set of support Viewpoints known as the Traceability Views. These
Viewpoints allow traceability between different elements of the model to be
explicitly shown. These traceability links may exist between Views or between
View Elements.

«viewpoint»
Requirement Context

Viewpoint

«viewpoint»
Requirement Description

Viewpoint

«viewpoint»
Definition Rule Set

Viewpoint

«viewpoint»
Context Definition

Viewpoint

«viewpoint»
Source Element Viewpoint

«viewpoint»
Validation Viewpoint

1..*

defines needs in context from

1..*1

defines context for

1

1..*

identifies sources of needs on

1..*

1..*

validates use case on

1

1..*

defines constraints on descriptions of needs on

1..*

Figure 9.6 The Framework Views for Requirements modelling

364 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

It should be stressed that not all Viewpoints are always necessary on a given Project
as this will depend upon the level of rigour of the Project, the scale of the Project
and the tools available. This is discussed in more detail in Part 5 of the book.

9.2.3 Viewpoints
This section looks at each of the Viewpoints that were introduced in the previous
section. These Viewpoints are not presented in any particular order, as it is the
process that is being followed that will define this. Examples of such processes can
be found in Appendix E.

9.2.3.1 The Source Element Viewpoint
Viewpoint Rationale
The Source Element Viewpoint contains all relevant source information that is
required to get the Needs right. It is essential that the origin of each Need is known
and this is what this Viewpoint allows us to define. This Viewpoint is used pri-
marily as a mechanism to establish traceability and provide links between the
Needs and any other aspect of the System.

As to what these Source Elements can be, then the list is almost limitless. A Source
Element can range from a single utterance to a full system specification or design.
Examples of some typical Source Elements include conversations, emails, informal
documents, formal requirements documents, systems specifications, designs, processes,
existing systems, brainstorming sessions, structured workshops and standards.

The list presented here simply shows some typical Source Elements and is not
intended to be exhaustive. Do not feel constrained in any way by this list but use it
as a starting point to consider where each Source Element may come from.

Viewpoint definition
The Source Element Viewpoint focuses on the subset of the original MBSE
Ontology that is shown in the diagram in Figure 9.7.

The Source Element Viewpoint focuses on the ‘Source Element’ from the
MBSE Ontology, as shown in the diagram here. This View is perhaps the simplest
of all the Viewpoints in the Framework, as reflected in its simple structure con-
sisting as it does of one or more ‘Source Element’. Due to the varied nature of the
structure and format of the Source Elements, and given the fact that this Viewpoint
is really just a collection of such elements that can be linked back to, the structure
of this Viewpoint is very simple indeed.

It should be borne in mind that the structure of the Source Element itself may
be highly complex, such as the case when the Source Element is a system speci-
fication. However, this Viewpoint is used primarily as a basis for traceability and as
such the information contained in its associated Views may be thought of as a list-
like collection of elements.

Viewpoint relationships
The Source Element Viewpoint is related to one other Viewpoint in the Framework
and, hence, there will be consistency checks that must be applied to ensure that
these relationships are valid.

Requirements Modelling with MBSE 365

«ontology element»
Rule

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
System Context

«ontology element»
Concern

«ontology element»
Need

«ontology element»
Source Element

«ontology element»
Need Description

«ontology element»
Scenario

«ontology element»
Capability

«ontology element»
Goal

«ontology element»
Requirement

«ontology element»
Stakeholder Context

«ontology element»
Project Context

«ontology element»
Organisational Context

«ontology element»
Semi-formal Scenario

«ontology element»
Formal Scenario

«ontology element»
Process Context

{incomplete}

1

is related to

0..*1

is related to

0..*

1..* meets

1..*

1..*
traces to

1..*

1

describes

1

1..*

validates

1..*

1..*
describes the context of

1..*1..*

is elicited from

1..*

1..*

constrains

1..*

1..*

is needed to deliver 1

Figure 9.7 Definition of Source Element Viewpoint

«ontology element»
Source Element

«viewpoint»
Requirement

Description Viewpoint

«ontology element»
Need Description

«viewpoint»
Source Element

Viewpoint

1..*

identifies sources of needs on

1..*

1..*

traces to

1..*

1

is related to

0..*

1..*

1

1..*

1

Figure 9.8 Relationships between Source Element Viewpoint and other Viewpoints

366 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 9.8 shows that the ‘Source Element Viewpoint’ is
related to the ‘Requirement Description Viewpoint’ via its elements. The Need
Descriptions in the Requirement Description Viewpoints are related back to the
Source Elements. Each Need Description must be related to at least one Source
Element and vice versa. The following Rules must be enforced:

● Rule – Each Source Element in the Source Element View must be traceable to
one or more Need Description in the Requirement Description View.

● Rule – Each Need Description in the Requirement Description View must be
traceable to one or more Source Element in the Source Element View.

In order to maximise the benefits of a true MBSE approach, these Rules should be
automated rather than being manually applied to the model.

View Visualisation
This view may be realised in SysML using a block definition diagram, with each
Source Element being represented as a single block, as shown in the diagram in
Figure 9.9.

Figure 9.9 shows a collection of blocks that are used in a very simple fashion.
Each block is used only as a reference point to specific external Source Element.
The example here shows a number of different types of Source Element that have
number of properties defined, which are

● ‘type’, which describes the basic type of the Source Reference. The various
types that are allowed may be defined as a separate part of the MBSE Ontology,
as shown in Figure 9.10.

SEV [Package] Invasion Earth [Source Elements]

«source element»
Overlord Directive

date = 1947-01-01
location = file://mars_central/overlord/issued docs
status = ISSUED
type = Project Document
version = 66

«source element»
The Art of Galactic Domination

location = file://mars_central/standards/approved
status = APPROVED
type = Standard
version = 2.1

«source element»
Mars Attacks

date = 1962
status = ISSUED
type = Publication

«source element»
Mars Attacks!

date = 1996
status = ISSUED
type = Film

«source element»
Invasion from Outer

Space

date = 2010
status = ISSUED
type = Game

{AND}

1

is inspired by1

1

is based on

1

1

is inspired by

1

Figure 9.9 Example Source Element View

Requirements Modelling with MBSE 367

● ‘status’, which describes the current state of Source Element in terms of con-
figuration control. For example, the ‘status’ may take on a number of values,
such as ‘APPROVED’, ‘DRAFT’, ‘ISSUED’ and ‘ARCHIVED’.

● ‘date’, which may be a full calendar date or year.
● ‘version’, which defines the current version of the Source Element according to

the version control system.
● ‘location’, which shows where the Source Element may be found.

It can easily be argued that the use of a SysML diagram here is ‘‘overkill’’ and that
the Source Elements could simply be listed, but there is a good reason why this has
been done. One of the benefits of a model-based approach is that traceability is
inherent in the model. This traceability can only exist for elements that are either
part of the model or explicitly linked to the model, and this diagram serves this
single, but important purpose – to provide an explicit link between external Source
Elements and the model itself.

View discussion
The Source Element View is both the simplest view in terms of its structure and the
loosest in terms of what it may look like. This View is present to provide solid
traceability back to the rest of the system model.

One way to add more value to this View is to make use of stereotypes and
tagged values in order to define some basic types of Source Element. An example
of some of the types of Source Elements that may be considered is shown in the
diagram in Figure 9.10.

The example here shows how the Source Element may have a number of
specialisations defined that help to define typical types of Source Element. Each of
these may have a number of tagged values defined that show how to locate the
Source Element. For example, Publications may have tagged values defined that
show the name, author, publisher, date, etc. for each type.

This is particularly useful for validation Source Elements and it is also possible
to define a Rule that states that each Source Element must have a stereotype based
on the Source Element classification hierarchy shown here.

9.2.3.2 Requirement Description Viewpoint
Viewpoint rationale
This Viewpoint contains structured descriptions of each Need in the form of Need
Descriptions. These Need Descriptions are considered individually and will usually
have a number of attributes, or features, associated with each one.

The main purpose of this Viewpoint is to consider each individual Need
Description according to a predefined set of attributes. These attributes will vary
depending on the process that is being followed, the industry that the work is being
carried out in, any standards or best practice models that may be used and any other
number of factors — see [2] for an example of this.

This Viewpoint is primarily used for managing the Need Descriptions of a
System and is often the basis of implementation for many of the commercial
requirements management tools that are on the market today.

368 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Each Need Description provides a non-contextual description of a Need. When
a Need is put into Context, it is known as a Use Case and, hence, there is a very
strong relationship between the Need Descriptions and the Use Cases from the
Requirement Context Views.

Viewpoint definition
The Requirement Description Viewpoint focuses on the subset of the MBSE
Ontology that is shown in the diagram in Figure 9.11.

The Requirement Description Viewpoint focuses on the ‘Need Description’
from the MBSE Ontology, as shown here. This Viewpoint is one of the sim-
plest (bearing in mind that simple does not imply easy) of all the Viewpoints in
the Framework, along with the Source Element Viewpoint, as reflected in its
simple structure in that the ‘Requirement Description Viewpoint’ is made up of
one or more ‘Need Description’. It is important to remember that the ‘Need
Description’ shown here is not the Need itself but an abstraction of that Need
that describes it using a number of features or attributes. The Need Description
will be realised in SysML using a requirement block that has a default set of
properties already defined but that, in reality, will usually have a number
of other properties defined. An example of this is shown in the diagram in
Figure 9.12.

ODV [Package] Requirements Ontology [Requirements Ontology - Types of Source Element]

«ontology element»
Source Element

«ontology element»
Standard

«ontology element»
Model

«ontology element»
Document

«ontology element»
Web Site

«ontology element»
Publication

Figure 9.10 Example Source Element View showing types of Source Element

Requirements Modelling with MBSE 369

The diagram in Figure 9.12 shows a set of properties that are defined for
the concept of a Need Description. The properties that are defined as part of the
SysML are

● ‘id#’. The unique identifier for the Need Description. Need Descriptions on
any real Project will evolve during the Life Cycle of the Project and hence the
names and Need Descriptions may change beyond all recognition. In order to
ensure that each Need Description can always be located, regardless of how it
has evolved, each Need Description has a unique identifier. This can be used to
locate the Need Description and also is used as a basic mechanism for trace-
ability in the system. The id# will be used primarily by automated services,
such as software management tools, as it will be non-memorable to most
people who read it.

● ‘Name’. The name is a simple label that should have some intuitive meaning
that can be used to identify the Need Description by human eyes. In some
ways, this serves the same role as the id#, but from a human point of view. It
should be remembered, however, that the Name may evolve as the Project
progresses, whereas the id# may not.

«ontology element»
Rule

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
System Context

«ontology element»
Concern

«ontology element»
Need

«ontology element»
Source Element

«ontology element»
Need Description

«ontology element»
Scenario

«ontology element»
Capability

«ontology element»
Goal

«ontology element»
Requirement

«ontology element»
Stakeholder Context

«ontology element»
Project Context

«ontology element»
Organisational Context

«ontology element»
Semi-formal Scenario

«ontology element»
Formal Scenario

«ontology element»
Process Context

{incomplete}

1

is related to

0..*1

is related to

0..*

1..* meets

1..*

1..*
traces to

1..*

1

describes

1

1..*

validates

1..*

1..*
describes the context of

1..*1..*

is elicited from

1..*

1..*

constrains

1..*

1..*

is needed to deliver 1

Figure 9.11 Definition of Requirement Description Viewpoint

370 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● ‘Description’. The description is a piece of text that describes the Need
Description. This should be kept as simple and unambiguous as possible but, in
reality, this is often ignored and long, verbose descriptions are often defined.
This text is often supported by the definition of a number of Rules.

This is a very brief list that is based on the SysML modelling standard and should
be seen as an absolute minimum set of attributes, defined as properties. In any real-
life System, several other attributes should also be considered, such as

● ‘Origin’. Any Need Description must have an origin – it must have originated
from somewhere. This information is recorded as part of the Need Description.
This source will be taken directly from the Source Element View. For example,
this may be a conversation with a Stakeholder Role, level of hierarchy on the
System or a Source Element.

● ‘Priority’. Each Need Description will often have a level of priority associated
with it. For example, it may be decided that a Need may be essential in that it is
always required, desirable in that it would be strongly recommended that it is
met or bells and whistles in that it is a nice idea, time permitting.

«ontology element»
Need Description

properties
Absolute reference
Description
id#
Name
Origin
Ownership
Priority
Text
Validation
Verification

«ontology element»
Need

«ontology element»
Rule

1

is related to0..*

1

describes

1

1..* constrains

1..*

Figure 9.12 Definition of a Need Description

Requirements Modelling with MBSE 371

● ‘Verification criteria’. It is essential that each Need can be proven to work –
verification, which is recorded in the Need Description. The verification aspect is
often omitted, whereas the validation criterion is usually deemed essential.

● ‘Validation criteria’. It is essential that for each Need, it can be proven that it
does what it is supposed to do – validation, which is recorded in the Need
Description. The verification aspect is often omitted, whereas the validation
criterion is usually deemed essential. The validation criterion is related directly
to the Validation Views.

● ‘Ownership’. Each Need must be owned and hence has a Stakeholder Role who
is responsible for delivering the Need, which is recorded in the Need
Description. This attribute should reference one of the Stakeholder Roles
identified in the System directly. Note that this attribute differs from the
‘Origin’ attribute despite the fact that they are often both referring to Stake-
holder Roles. The ‘Origin’ is related to the origin of the Need, whereas the
‘Ownership’ relates to who is responsible for delivering the Need.

There are many other attributes that may be considered for a Need Description as
the list shown here is only intended to show a generic best practice list that may
need to be tailored for specific applications.

Viewpoint relationships
The Requirement Description Viewpoint is related to other Viewpoints in the
Framework and hence there will be consistency checks that must be applied to
ensure that these relationships are valid.

«ontology element»
Source Element

«viewpoint»
Requirement

Description Viewpoint

«ontology element»
Need Description

«viewpoint»
Definition Rule Set

Viewpoint

«ontology element»
Rule

«ontology element»
Context

«viewpoint»
Stakeholder Context
Definition Viewpoint

«viewpoint»
System Context

Definition Viewpoint

«ontology element»
Stakeholder Role

«ontology element»
System Element

«viewpoint»
Requirement Context

Viewpoint

«ontology element»
Use Case

«ontology element»
Boundary

«viewpoint»
Context Definition

Viewpoint

«viewpoint»
Source Element

Viewpoint

1..*

defines constraints on descriptions of needs on

1..*

1..*

1

1..*

identifies sources of needs on

1..*

1

defines point
of view of

1

1..*

is within

1

1

1

1..*

is outside

1

1..*

1
is related to

0..*

1..*
1

{incomplete}

1..*

yields an observable
result to

1..*

1

interacts with

0..*

1..*

traces to

1..*

1..*1

1

defines context for

1

1

is related to

0..*

1..*

1

1..*

gives contextual
description of

1

1

interacts
with

1..*

1..*

1

1..*

constrains

1..*

1 1..*

1

1..*

defines needs in context from

1..*

Figure 9.13 Relationships between the Requirement Description Viewpoint
and other Viewpoints

372 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 9.13 shows that the Requirement Description Viewpoint
is related to the following other Viewpoints from the Framework:

● Source Element Viewpoint. Each Need Description must be traceable back to a
Source Element. This is essential for traceability and for enforcing validation
of each Need.

● Definition Rule Set Viewpoint. The attributes that make up the Need
Description may be checked by applying a number of Rules. For example,
complexity Rules may be enforced on the ‘Description’ attribute to ensure that
the text is legible.

● Requirement Context Viewpoint. Each Need Description will be related to a
number of Use Cases. Each Use Case takes one or more Need and gives them
meaning by putting it into Context.

These relationships may be enforced by applying the following Rules:

● Rule – Rules, when they exist, must apply to a Need Description.
● Rule – Each Need Description must relate back to a Source Element.
● Rule – Each Need Description must be related to at least one Use Case.
● Rule – The Need Description Views must relate to a Requirement Context

View.
● Rule – Each Need Description must have a full set of attributes defined.

Rules are also needed for each of the additional attributes, such as

● Rule – The ‘Origin’ attribute of any Need Description must refer to a Source
Element.

● Rule – The ‘Validation criteria’ attribute must reference Validation Views.

In order to maximise the benefits of a true MBSE approach, these Rules should be
automated rather than being manually applied to the model.

Viewpoint Visualisation
This Viewpoint may be realised in SysML using a requirement diagram where
each Need Description is shown in the diagram in Figure 9.14 using the SysML
requirement block, indicated by the «requirement» stereotype.

The diagram here shows a SysML representation of a single Need Description.
Notice that the property values have been defined here to show the ‘id#’, the ‘txt’
and the name of the Requirement. In this example, only a basic set of properties has
been shown.

View discussion
It should be noticed here that the Need Descriptions in this View have a flat
structure, whether they are visualised using lists or SysML requirement blocks.
This is quite deliberate. There is a temptation among requirements engineers
to group Needs based on their functionality or type and to create a Needs
taxonomy (classification hierarchy). This goes fundamentally against the

Requirements Modelling with MBSE 373

RDV [Package] Flying Saucer [Basic Need Descriptions - System]

«need description»
Provide flying saucer

id = "REQ001"
text = "The project shall provide a
flying saucer for the subjugation of
other planets."

«need description»
Have weapons

id = "REQ002"
text = "The flying saucer shall have
at least three offensive weapons."

«need description»
Link weapons

id = "REQ003"
text = "Weapons between multiple
flying saucers must be able to be
linked together to provide superior
fire power."
type = "REQUIREMENT"

«need description»
Allow navigation

id = "REQ005"
text = "The flying saucer shall have a
navigation system."

«need description»
Have defences

id = "REQ004"
text = "The flying saucer shall have
appropriate defences."

«need description»
Have a cloaking device

id = "REQ004-01"
text = "The flying saucer shall have a
cloaking device to avoid detection
by enemy defence systems."

«need description»
Self-destruct mechanism

id = "REQ004-02"
text = "Provide a local and remote
self-destruct mechanism, just in
case."

«need description»
Enable abduction

id = "REQ006"
text = "The flying saucer shall allow
the identification of specific puny
humans and enable them to be
abducted into the flying saucer
holding cells."

«need description»
Hold one platoon

id = "REQ007"
text = "The flying saucer shall be
able to transport a minimum of one
full Platoon (9 Packs) of troops."

«need description»
Communicate with

Mothership

id = "REQ008"
text = "The flying saucer shall be able
to receive commands from the
Mothership and be able to report
back within its range."

«need description»
Travel

id = "REQ009"
text = "The flying saucer must be
able to land on other planets and
also to dock on a Carrier Ship."

Figure 9.14 Example Requirement Description

374 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

context-based approach. One of the key points of the context-based approach
is that needs should be grouped together based on Context and not functionality
or type.

Many historical approaches to requirements engineering and, indeed, many
requirements documents have been obsessed with putting Needs into strict classi-
fications. At a high level, many documents will often split up Functional
Requirements and Non-functional Requirements. This is fine if the Requirements
are being described but holds no meaning in the real world. In the reality, and by
the very nature of a Non-functional Requirement, they constrain Functional
Requirements. It is essential, therefore, that these constraining relationships are
identified. These constraining relationships can only be defined when looked at in
Context. The same holds true for inclusions, extensions and generalisations – it is
the Context that gives them meaning.

The same idea holds for when people want to group Needs because they appear
to have similar functionality. This is fundamentally wrong because the functionality
of a given Need may change depending on the Context.

Needs must be grouped according to their Context, which forms the basis of
the whole approach advocated in this book. If Needs are going to be classified
based only on type or functionality, then it would be as well to group them alpha-
betically. This View may also be used to identify and define relationships between
Requirement Descriptions and, hence, requirements. For example, it may be
desirable to show derived Requirement Descriptions using a «derive» dependency
in SysML. The use of such relationship will be dependent on the process and
approach being followed. Chapter 5 contains a full discussion on the different types
of relationships that may be used between requirements.

9.2.3.3 Definition Rule Set Viewpoint
Viewpoint rationale
This Viewpoint contains Rules that may have to be applied to each Need
Description. For example, these may be complexity Rules in the form of equations
of more general text-based Rules.

When defining individual Need Descriptions, it is often desirable to put con-
straints on either the values of their properties or on measurable aspects of the
values. These constraints are enforced by applying one or more Rule to the Need
Description values. These Rules must be defined somewhere and the relevant
attributes of the Need Descriptions must be identified. The purpose of this View-
point is to capture this information.

Viewpoint definition
The Definition Rule Set Viewpoint focuses on the subset of the MBSE Ontology
that is shown in the diagram in Figure 9.15.

This Viewpoint is concerned with the ‘Rule’, one or more of which constrains
one or more ‘Need Description’. Notice that the Rules are related to the Need
Descriptions, rather than the Needs themselves, as the Need Description is one of
the ways that the abstract Need is manifested in the model.

Requirements Modelling with MBSE 375

The ‘Definition Rule Set View’ is made up of one or more ‘Rule’. Each ‘Rule’
is, in turn, made up of a ‘Rule Definition’, an optional ‘Parameter Set’ and ‘ID’ (not
shown in the diagram):

● The ‘Rule Definition’ defines the Rule itself in some form. These Rules may
take a number of different forms, for example equations, heuristics, enumer-
ated lists, tables, graphs and so on. A number of examples of these are shown
in the discussion below.

● The optional ‘Parameter Set’ defines the elements that will be used by the Rule
itself, in other words the parameters of each Rule. This allows the rules to
be applied in a uniform and consistent manner. In instances where the Rule
Definition is, for example, a mathematical equation, then the Parameter Set
must be defined. In other cases, such as the use of words to be used, the
parameter Set may not exist.

These Rules will be used as the basis for automation as part of the overall MBSE
approach.

«ontology element»
Rule

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
System Context

«ontology element»
Concern

«ontology element»
Need

«ontology element»
Source Element

«ontology element»
Need Description

«ontology element»
Scenario

«ontology element»
Capability

«ontology element»
Goal

«ontology element»
Requirement

«ontology element»
Stakeholder Context

«ontology element»
Project Context

«ontology element»
Organisational Context

«ontology element»
Semi-formal Scenario

«ontology element»
Formal Scenario

«ontology element»
Process Context

{incomplete}

1

is related to

0..*1

is related to

0..*

1..* meets

1..*

1..*
traces to

1..*

1

describes

1

1..*

validates

1..*

1..*
describes the context of

1..*1..*

is elicited from

1..*

1..*

constrains

1..*

1..*

is needed to deliver 1

Figure 9.15 Definition of Definition Rule Set Viewpoint

376 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Viewpoint relationships
The Definition Rule Set Viewpoint is related to other Viewpoints in the Framework
and hence there will be consistency checks that must be applied to ensure that these
relationships are valid.

It can be seen in Figure 9.16 that one or more ‘Rule’ from the ‘Definition Rule
Set Viewpoint’ constrains one or more ‘Need Description’ from the ‘Requirement
Description Viewpoint’.

These relationships result in the following process Rules:

● Rule. Each Rule must apply to at least one Need Description attribute or the
Need Description itself.

● Rule. Each Need Description may be constrained by zero or more Rules.

In order to maximise the benefits of a true MBSE approach, these rules should be
automated rather than being manually applied to the model.

Constraint Validation Viewpoint
This Viewpoint may be visualised in SysML using a block definition diagram to
specify a number of Rules using either regular blocks or special constraint blocks.
These blocks may be used in a number of different ways, depending on the type of
constraint that needs to be applied, for example:

● The Rule may be realised using formal techniques, such as mathematics, in
which case the SysML notation that is applied will be the constraint block.

«ontology element»
Source Element

«viewpoint»
Requirement

Description Viewpoint

«ontology element»
Need Description

«viewpoint»
Definition Rule Set

Viewpoint

«ontology element»
Rule

«viewpoint»
Source Element

Viewpoint

1..*

defines constraints on descriptions of needs on

1..*

1..*

1

1..*

identifies sources of needs on

1..*

1
is related to

0..*

1..*

traces to

1..*

1

is related to

0..*

1..*

1

1..*

1

1..*

constrains

1..*

Figure 9.16 Relationships between the Definition Rule Set Viewpoint
and the other Viewpoints

Requirements Modelling with MBSE 377

● The Rule may be quite abstract and as such not require the full constraint block
notation, in which case a regular block may be applied.

An example of using formal mathematics for defining a Rule using a constraint
block is shown in the diagram in Figure 9.17.

The diagram here shows how a Rule may be defined using a SysML parametric
constraint block. The Rule that is being defined forms part of a standard set of rules
for complexity measurement of sentences.

The Rule here is made up of three main elements:

● The Rule name. This is shown in the top box in the diagram and has the word
«constraint» above it to indicate that this is a SysML constraint block. The
name for the Rule in this case is defined as ‘Average Sentence Length’ which
is a standard measurement for text.

● The Rule definition. This is shown in the middle box and has the word ‘con-
straints’ above it to indicate that this is part of the standard SysML constraint
block. The rule itself is shown in curly brackets and, in this instance, is defined
in terms of a mathematical equation. The various parameters that are used as
part of the equation are defined in the next box.

● The parameter definitions. This is shown in the lowest of the three boxes and
has the word ‘parameters’ above it to indicate that this is part of the standard
SysML constraint block. In this instance, there are three parameters: ‘ASL’
which is the ‘Average Sentence Length’ and is a ‘Real’ number, ‘SN’ which is
the ‘Syllable Number’ and is an ‘Integer’ and ‘W’ which is the ‘number of
words’ and is also an integer.

Clearly, these Rules must be verified, which can be done in any way seen fit, such
as using a mathematical proof, a software package and so on.

The same Rule, however, may also be defined in a more abstract and less
formal way, as shown in the diagram in Figure 9.18.

bdd [package] DRSV [DRSV]

«constraint»
Average Sentence Length

constraints
{ASL = W/SN}

parameters
SN : Real
ASL : Real
W : Real

Figure 9.17 Example Definition Rule Set View showing a single Rule

378 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The Definition Rule Set View in Figure 9.18 is realised as a block definition
diagram with each Rule represented using a stereotyped block. The «Rule» ste-
reotype has the tag ‘‘Rule Text’’ defined with it, allowing the text to be displayed in
a separate, named compartment of the block. The information shown in Figure 9.2
is a minimum: a name or identifier for a Rule, along with descriptive text. Addi-
tional tags, for example, could be added to capture the justification and source of
each Rule.

It is often the case that the Rules themselves are made up of a number of other
Rules. This is the case in the example shown in Figure 9.18, and a complete set
of Rules for performing the text description complexity measure is shown in
Figure 9.19.

The diagram here shows the complete set of Rules for calculating the com-
plexity of text descriptions. These Rules are based on the so-called Flesch–Kincaid
grade level test and the Flesch reading ease test [3,4].

Where a number of Rules are defined that are dependent on one another, for
example in the order that they must be calculated, it is also important to show a
network of these Rules and their inter-dependencies. This can be achieved in
SysML by using the parametric diagram, an example of which can be seen in
Figure 9.20.

DRSV [Package] Rules [Generic Rules]

«rule»
R01

notes
The words QUICK or QUICKLY must
NOT be used.

«rule»
R02

notes
The words REASONABLE or
REASONABLY must NOT be used.

«rule»
R03

notes
The word MINIMUM must NOT be
used.

«rule»
R04

notes
The word MAXIMUM must NOT be
used.

«rule»
R05

notes
Each Need must have a unique
identifier.

«rule»
R06

notes
The complexity of a Need must be
between 9 and 10 (inclusive) as
measured by the Flesch-Kinkaid
Grade Level score.

Figure 9.18 Definition Rule Set View using abstract techniques

Requirements Modelling with MBSE 379

bdd [package] DRSV [DRSV]

«constraint»
Average Sentence Length

constraints
{ASL = W/SN}

parameters
 SN : Real
 ASL : Real
 W : Real

«constraint»
Average Number of Syllables

Per Word

constraints
{ASW = SL/W}

parameters
 ASW : Real
 SL : Real
 W : Real

«constraint»
Requirement Complexity Rule

constraints

parameters
 FKG : Real
 FRE : Real
 RC_OK : Boolean

«constraint»
Flesch Reading Ease

constraints
{FRE = 206.835 - (1.015 x ASL) - (84.6 x ASW)}

parameters
 ASL : Real
 ASW : Real
 FRE : Real

«constraint»
Flesch Kinkaid Grade Level

constraints
{FKG = (0.39 x ASL) + (11.8 x ASW) - 15.59}

parameters
 ASL : Real
 ASW : Real
 FKG : Real

{IF (FRE > 60 AND FRE < 71)AND (FKG > 7.0 AND FKG < 8.1)THEN(RC_OK = TRUE ELSE RC_OK = FALSE}

Figure 9.19 Example Definition Rule Set View showing complete Rule set

Figure 9.20 Example Rule Set Definition View showing constraint usage

380 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Figure 9.20 shows how the Rules that have been defined can be strung together in
a network to provide the ultimate end result that is required for the complexity mea-
sure. There are four main Rules here that are used to calculate the complexity using
mathematical equations (‘Average Sentence Length’, ‘Flesch Reading Ease Test’,
‘Average Number of Syllables Per Word’ and ‘Flesch–Kincaid Grade Level Test’)
and then a single rule in the form of a heuristic (‘Requirement Complexity Rule’) that
is used to make the decision of whether or not the attribute satisfies the ultimate Rule.

View discussion
The Definition Rule Set View is quite an odd View in the way that it is frequently
used. In many cases, this View is simply never considered, and the individual Need
Descriptions can be written in an ad hoc fashion providing that they are in the
correct place in the requirement document.

Another way that this view is often badly used is when its importance is
overemphasised. It must be made clear that this View is very important, particularly
when the Project is concerned with a mission-critical or safety-critical system.
However, in many cases, all that is presented for a complete set of Needs is the
Requirement Description View (or equivalent) and, provided that the Rules in the
Definition Rule Set View have been applied, then this is deemed as acceptable.
Again, it should be stressed that the main emphasis should be on the Context of the
needs and, hence, the set of all the Views.

9.2.3.4 Requirement Context Viewpoint
Viewpoint rationale
This Viewpoint takes the Needs and gives them meaning by looking at them from a
specific point of view. This is known as putting the Needs into Context and forms
the basis of the approach presented in this chapter. The Needs have only been
described so far by defining a number of Need Descriptions in the Requirement
Description View. This is all well and good and an essential part of any require-
ments exercise, but this is by no means complete. The problem arises that these
Need Descriptions may be interpreted in different ways depending on the viewpoint
of the reader of the Need Description. It is essential then that each Need is looked
at from different points of view, or in different Contexts. It will also be found that
different Contexts are concerned with different sets of Needs, all of which will be
related together in some way. When a Need is put into Context, it is known as a Use
Case, and by considering these Use Cases and the relationships between them and
other Use Cases or Stakeholder Roles, it is possible to generate a complete point of
view, or Context.

Viewpoint definition
The Requirement Context Viewpoint focuses on the subset of the MBSE Ontology
that is shown in the diagram in Figure 9.21.

The diagram here shows that the Requirement Context Viewpoint is primarily
concerned with one or more ‘Context’ of the System that is concerned with using
one or more ‘Use Case’ to describe the context of a ‘Need’.

A number of associated Requirement Context Views will exist, the number
of which will be determined by the information contained in the Context Defi-
nition Views.

Requirements Modelling with MBSE 381

Viewpoint relationships
The Requirement Context Viewpoint is related to other Viewpoints in the Frame-
work and, hence, there will be consistency checks that must be applied to ensure
that these relationships are valid.

It can be seen from the diagram in Figure 9.22 that the one or more
‘Requirement Description Viewpoint’ describes the Needs in each ‘Requirement
Context Viewpoint’. This reflects the very strong relationship between each ‘Need
Description’ and one or more associated ‘Use Case’. One or more ‘Validation
Viewpoint’ validates each ‘Use Case’. This is a very important relationship as
every Need in the System must be demonstrated to be achievable and that it has
been satisfied, which is the purpose of the Validation Viewpoints. Notice, however,
that it is the Use Cases that are the subject of the validation, rather than the Need
Descriptions. This is because a single Need Description may be interpreted in a
number of different ways depending on the Context of the Need.

A ‘Context Definition Viewpoint’ defines the context for one or more
‘Requirement Context Viewpoint’ which may result in quite a number of diagrams
that represent the Requirement Context Views.

«ontology element»
Rule

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
System Context

«ontology element»
Concern

«ontology element»
Need

«ontology element»
Source Element

«ontology element»
Need Description

«ontology element»
Scenario

«ontology element»
Capability

«ontology element»
Goal

«ontology element»
Requirement

«ontology element»
Stakeholder Context

«ontology element»
Project Context

«ontology element»
Organisational Context

«ontology element»
Semi-formal Scenario

«ontology element»
Formal Scenario

«ontology element»
Process Context

{incomplete}

1

is related to

0..*1

is related to

0..*

1..* meets

1..*

1..*
traces to

1..*

1

describes

1

1..*

validates

1..*

1..*
describes the context of

1..*1..*

is elicited from

1..*

1..*

constrains

1..*

1..*

is needed to deliver 1

Figure 9.21 Definition of Requirement Context Viewpoint

382 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

It should be clear from this diagram that the Requirement Context Viewpoint
forms the heart of the whole Framework possessing, as they do, direct relationships
to almost all other Viewpoints in the Framework. The following Rules should be
applied:

● Rule – Each Requirement Context View must have a related element on a
Context Definition View that defines the Context.

● Rule – Each Use Case must be related to at least one Need Description.
● Rule – Each and every Need Description must have at least one Use Case.
● Rule – Each Stakeholder Role on the Requirement Context View must have an

associated element form a Context Definition View, such as a Stakeholder
Role or System Element.

● Rule – Each Context Definition View must be related to at least on Require-
ment Context View.

● Rule – Each Use Case must be related to either another Use Case or a Stake-
holder Role.

● Rule – Each Use Case must have at least one Validation View associated with it.

In order to maximise the benefits of a true MBSE approach, these Rules should be
automated rather than being manually applied to the model.

Viewpoint visualisation
This Viewpoint will be visualised in SysML using the use case diagram, which has
been a cornerstone of requirements engineering for many years.

«viewpoint»
Requirement

Description Viewpoint

«ontology element»
Need Description

«ontology element»
Context

«viewpoint»
Stakeholder Context
Definition Viewpoint

«viewpoint»
System Context

Definition Viewpoint

«ontology element»
Stakeholder Role

«ontology element»
System Element

«viewpoint»
Requirement Context

Viewpoint

«ontology element»
Use Case

«ontology element»
Boundary

«ontology element»
Scenario

«viewpoint»
Context Definition

Viewpoint

«viewpoint»
Validation Viewpoint

1

defines point
of view of

1

1..*

1

1..*

is within

1

1

1

1..*

is outside

1

1..*

1..*
1

1..*

validates use case on

1

{incomplete}

1..*

yields an observable
result to

1..*

1..*

validates

1..*

1

interacts with

0..*

1..*1

1

defines context for

1

1

is related to

0..*

1..*

1

1..*

gives contextual
description of

1

1

interacts
with

1..*

1 1..*

1

1..*

defines needs in context from

1..*

Figure 9.22 Relationships between the Requirement Context Viewpoint and
the other Viewpoints

Requirements Modelling with MBSE 383

The diagram in Figure 9.23 shows a SysML visualisation of the Requirement
Context View using a use case diagram. In this diagram, the Use Cases from the
MBSE Ontology are shown as SysML use cases. This is slightly confusing as the
term ‘‘use case’’ is used twice here, once to refer to the concept of a Use Case (a
Need in Context) and once to refer to the SysML use case element (the ellipse in
the diagram).

View discussion
This View focuses on the Contexts of the Needs that are described in the
Requirement Description View and, as such, it forms the heart of the whole
approach advocated in this book.

The Requirement Context View really does enforce the need for applying
an effective modelling notation to requirements engineering as it demonstrates the
sheer number and also the complexity of the relationships between the various
Views in the Framework and the elements within each View.

9.2.3.5 Context Definition Viewpoint
Viewpoint rationale
This Viewpoint identifies the points of view that are explored in the Requirement
Context Viewpoint. These points of view, or Contexts, may take many forms
including Stakeholder Roles and levels of hierarchy in a System.

RCV [Package] Flying Saucer Context [High-level]

Flying Saucer Context

«goal»

Provide flying saucer

«capability»

Travel
«capability»

Provide
communications

«capability»
Provide weapon

capability

«capability»
Provide defensive

capability

«capability»
Provide transport

capability «capability»

Provide self-destruct

«capability»
Provide self-destruct by

remote trigger

«capability»
Provide self-destruct by

local trigger

«capability»
Provide transport

capability for prisoners

«capability»
Provide transport

capability for troops

«stakeholder role»
Puny Earthling

«stakeholder role»
Army

«stakeholder role»
Overlord

«include»

«include»

«extend»

«extend»

«include»

«include»

«include»

Figure 9.23 Example Requirement Context View

384 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Viewpoint definition
The Source Element Viewpoint focuses on the subset of the MBSE Ontology that is
shown in the diagram in Figure 9.24.

The area of the MBSE Ontology that is focused on for this Viewpoint is the
various types of ‘Context’.

There are potentially several types of ‘Context Definition Viewpoint’ depen-
dent on the Contexts that are considered. For example, Figure 9.4 shows a number
of Contexts, each of which will have its own Context Definition View. Two
examples of this are as follows:

● The ‘Stakeholder Context Definition Viewpoint’ that is made up of one or
more ‘Stakeholder Role’. This View identifies a number of Stakeholder Roles
in a classification hierarchy that are used as a basis for defining Contexts.

● The ‘System Context Definition Viewpoint’ that is made up of one or more
‘System Element’, each of which relates to one or more other ‘System Ele-
ment’. This View identifies a number of System Elements, usually in a struc-
tural hierarchy, that are used as a basis for defining Contexts.

«ontology element»
Rule

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
System Context

«ontology element»
Concern

«ontology element»
Need

«ontology element»
Source Element

«ontology element»
Need Description

«ontology element»
Scenario

«ontology element»
Capability

«ontology element»
Goal

«ontology element»
Requirement

«ontology element»
Stakeholder Context

«ontology element»
Project Context

«ontology element»
Organisational Context

«ontology element»
Semi-formal Scenario

«ontology element»
Formal Scenario

«ontology element»
Process Context

{incomplete}

1

is related to

0..*1

is related to

0..*

1..* meets

1..*

1..*
traces to

1..*

1

describes

1

1..*

validates

1..*

1..*
describes the context of

1..*1..*

is elicited from

1..*

1..*

constrains

1..*

1..*

is needed to deliver 1

Figure 9.24 Definition of Context Definition Viewpoint

Requirements Modelling with MBSE 385

It should be remembered that there may very well be more different types of
Viewpoint identified here, which will depend on the application of the modelling
and the Project. The two shown here are two of the most common types.

Viewpoint relationships
The Context Definition Viewpoint is related to other Viewpoints in the Framework
and hence there will be consistency checks that must be applied to ensure that these
relationships are valid.

The main relationship shown in Figure 9.25 is between this Viewpoint and one
or more ‘Requirement Context Viewpoint’ as the main purpose of this Viewpoint is
to define the Contexts. As a consequence of this, there will be several diagrams that

«ontology element»
Context

«viewpoint»
Stakeholder Context
Definition Viewpoint

«viewpoint»
System Context

Definition Viewpoint

«ontology element»
Stakeholder Role

«ontology element»
System Element

«viewpoint»
Requirement Context

Viewpoint

«ontology element»
Use Case

«ontology element»
Boundary

«viewpoint»
Context Definition

Viewpoint

1

defines point
of view of

1

1..*

is within

1

1

1

1..*

is outside

1

1..*

1..*

1

{incomplete}

1..*

yields an observable
result to

1..*

1

interacts with

0..*

1..*1

1

defines context for

1

1

interacts
with

1..*

1 1..*

1

Figure 9.25 Relationships between the Context Definition Viewpoint
and the other Viewpoints

386 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

realise the Requirement Context Viewpoint for each Context Definition Viewpoint.
There will also be other relationships that are not shown in this diagram from the
‘Stakeholder Context Definition Viewpoint’. Elements from the Context Definition
Viewpoint, such as Stakeholder Roles or System Elements, may be used and
referenced in other Viewpoints, including the Requirement Context Viewpoint,
where these elements may appear as actors.

The following Rules may be applied to these Viewpoints:

● Rule – Each element in each Context Definition View may define an individual
Requirement Context View.

● Rule – Each element on a Stakeholder Context Definition View, such as a
Stakeholder Role or System Element, may appear as a Stakeholder Role on a
Requirement Context View.

In order to maximise the benefits of a true MBSE approach, these Rules should be
automated rather than being manually applied to the model.

View visualisation
The Context Definition View is visualised in SysML using block definition dia-
grams to show the Stakeholder Roles, System hierarchy or whatever the source of
the Contexts is.

The diagram in Figure 9.26 shows the SysML visualisation of both
the Stakeholder Context Definition View and the System Context Definition
View.

This diagram here shows how the Stakeholder Context Definition View may be
realised using a block definition diagram. The Stakeholder Roles on this View are
usually shown as taxonomy, or classification hierarchy, using the generalisation
(has types) relationship. This allows a number of categories of Stakeholder Roles to
be defined.

Each one of these Stakeholder Roles will potentially have its own Context and,
hence, require the creation of a Context Definition View.

The diagram in Figure 9.27 shows how the System Context Definition View
may be realised using a block definition diagram. The various System Elements are
shown as blocks and are expressed in the form of a structural hierarchy using the
SysML composition relationship.

Each one of these System Elements will potentially have its own Context and,
hence, will require the creation of an associated Context Definition View.

View discussion
The Context Definition Views are crucial to the whole context-based approach as
they are the Views that allow us to identify the various Contexts that are relevant
for the System or Project at hand. The Views can look deceptively simple as they
can be very difficult to get right. Indeed, once these Views have been created and
then the Requirement Context Views have been created, the Stakeholder Roles will
often be refined, resulting in another iteration of modelling for the Context Defi-
nition Views.

Requirements Modelling with MBSE 387

9.2.3.6 Validation Viewpoint
Viewpoint rationale
These Viewpoints provide the basis for demonstrating that the Needs can be
satisfied. These Viewpoints can be realised using Semi-formal Scenarios at various
levels of abstraction or Formal Scenarios.

Viewpoint definition
The Validation Viewpoint focuses on the subset of the MBSE Ontology that is
shown in the diagram in Figure 9.28.

This Viewpoint focuses on the Scenarios that are used to validate the Use
Cases and, hence, the original Needs. Two main types of Scenario, shown in
Figure 9.4, are considered:

● Semi-formal Scenarios. These Scenarios explore various what-if situations by
considering the relationships between entities in the System; for example, by

CDV [Package] Stakeholder Context Definition [Stakeholder Context Definition]

«block»
Puny Earthling

«ontology element»
Stakeholder Role

«stakeholder role»
Supplier

«stakeholder role»
External

«stakeholder role»
Customer

«block»
Civilian

«block»
Vehicle

«block»
Military

«block»
Overlord

«block»
Army

«block»
Breeding Stock

«block»
Leader

«block»
Trooper

«block»
Warrior

«block»
Scientist

Figure 9.26 Example Stakeholder Context Definition View

388 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

looking at how the various Stakeholder Roles interact with the System in order
to satisfy a particular Use Case. These Scenarios will be visualised using,
primarily, SysML sequence diagrams.

● Formal Scenarios. These Scenarios explore various what-if situations by con-
sidering how the values of various properties vary and, hence, impact the
System. These Scenarios will be visualised using SysML constraint blocks and
their associated diagrams.

There are three possible types of ‘Validation Viewpoint’, which are the ‘Stake-
holder Scenario Viewpoint’, the ‘System Scenario Viewpoint’ and two types of
‘Constraint Validation viewpoint’.

Viewpoint relationships
The Validation Viewpoint is related to other Viewpoints in the Framework and
hence there will be consistency checks that must be applied to ensure that these
relationships are valid.

It can be seen from the diagram in Figure 9.29 that one or more ‘Validation
Viewpoint’ validates each ‘Use Case’. The validation of all the original Needs is
achieved through validating each Use Case.

The following Rules may be applied:

● Each Use Case must have one or more Validation View associated with it.
● Each Constraint Validation View must use properties that exist on the System

Context Definition View.

CDV [Package] System Context Definition [Flying Saucer Structure]

«system»
Ship Types::Flying

Saucer

«system element»
Ship Structure::Hull

«system element»
Power Subsystem::Power Subsystem

+ getAvailablePower(Power): Power

«system element»
Ship Structure::
Environmental

Subsystem

«system element»
Ship Structure::Engine

Subsystem

«system element»
Ship Structure::Landing

Subsystem

«system element»
Ship Structure::

Materials-Handling
Subsystem

«system element»
Ship Structure::Comms

Subsystem

«system element»
Navigation Subsystem::
Navigation Subsystem

«system element»
Defence Subsystem::
Defence Subsystem

«system element»
Weapon Subsystem::
Weapon Subsystem

1

works in
conjunction
with

11

1

1

1 2

1 1

1

1

can slave weapons with

1..*

1

1gets location
information from

1

1

Figure 9.27 Example System Context Definition View

Requirements Modelling with MBSE 389

In order to maximise the benefits of a true MBSE approach, these Rules should be
automated rather than being manually applied to the model.

View visualisation
The first of the Validation Views that will be considered is the ‘Stakeholder Sce-
nario View’.

This View is concerned with looking at Scenarios using the sequence diagram.
The sequence diagram looks at the interactions between sets of life lines which, in
this View, will be the System itself and a number of actors representing Stake-
holder Roles.

In order to generate a Scenario, the first step is to select a specific Use Case,
visualised by a use case, from a Context. Next, the Context itself, or the System, is
visualised using a single life line. The Stakeholder Roles that relate to the selected
Use Case are then identified by seeing which actors relate to the use case, either
directly or indirectly. An example of this is shown in the diagram in Figure 9.30.

Figure 9.30 shows a Scenario that has been described for the use case ‘Provide
ground attack capability’, an inclusion of ‘Provide weapon capability’ from the

«ontology element»
Rule

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
System Context

«ontology element»
Concern

«ontology element»
Need

«ontology element»
Source Element

«ontology element»
Need Description

«ontology element»
Scenario

«ontology element»
Capability

«ontology element»
Goal

«ontology element»
Requirement

«ontology element»
Stakeholder Context

«ontology element»
Project Context

«ontology element»
Organisational Context

«ontology element»
Semi-formal Scenario

«ontology element»
Formal Scenario

«ontology element»
Process Context

{incomplete}

1

is related to

0..*1

is related to

0..*

1..* meets

1..*

1..*
traces to

1..*

1

describes

1

1..*

validates

1..*

1..*
describes the context of

1..*1..*

is elicited from

1..*

1..*

constrains

1..*

1..*

is needed to deliver 1

Figure 9.28 Definition of Validation Viewpoint

390 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

System Context. In this case, the scenario shown is one where the Overlord pro-
vides an instruction to the Spaceship to attack the Puny Earthlings. This attack is
successful and the Overlord then orders the Spaceship to wipe out some more.

View visualisation
This View also looks at Scenarios and also visualises them using the sequence
diagram. In this case, however, the life lines are realised by System Elements and
the interactions between them are analysed for a specific use case.

These System-level Scenarios must be consistent with the higher level Stake-
holder Role-level Scenarios should they exist. One way to think about these two
types of Scenario and the differences between them is to think of the Stakeholder
Role-level Scenarios as black box Scenarios where the System is treated as a single
entity with no details on what goes on inside. The System-level Scenarios, how-
ever, may be thought of as white box Scenarios where the inner workings of the
System are considered by looking at the System Elements and the interactions
between them.

«ontology element»
Use Case

«ontology element»
Scenario

«viewpoint»
Validation Viewpoint

1..*

1

1..*

validates

1..*

1

interacts with

0..*

Figure 9.29 Relationship between Validation Viewpoint and the other Viewpoints

Requirements Modelling with MBSE 391

An example of a System Scenario View is shown in the diagram in Figure 9.31.
The diagram here shows the same Scenario that was considered for the ‘Stake-
holder Scenario View’ in Figure 9.30, but this time using a ‘System Scenario
View’. It can be seen that, in essence, the two diagrams show exactly the same
information, but from two different points of view. While the Stakeholder Scenario
View focused on the interactions between the Stakeholder Roles and the System,
the System Scenario View focuses on the interactions between System Elements
within the System.

View visualisation
The Constraint Validation point View actually has two Views associated with it, the
Constraint Definition View and the Constraint Usage View. The Constraint Valida-
tion Views allow Formal Scenarios to be considered. While the previous Semi-formal
Scenarios looked at interactions between various elements, the Formal Scenarios
allow different properties of the System to be measured and reasoned about.

The approach taken is the same as previously, in that a single Use Case,
visualised by a use case from a Context is chosen, but this time a series of para-
metrics from the model will be looked at reasoned about. This reasoning will take
the form of applying equations, logic, heuristics, look-up table and any number of
other mathematical-type techniques. These techniques are defined using constraint
blocks, as shown in the diagram in Figure 9.32.

VV [Package] Attack [Attack - Success - Stakeholder]

:Overlord :Puny Earthling

:Flying Saucer

Wipe them out(more)

Wipe them out(all of them)

Attack()

Report(success)

Figure 9.30 Example of Stakeholder Scenario View

392 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram here shows an example of a set of constraint blocks that have
been defined. These parametric constraints form a library of calculations that can
be applied to the System but, as yet, how they are applied to the System has
not been defined. This usage of the constraint blocks is shown in the following
view, the ‘Constraint Usage View’.

Visualising the ‘Constraint Usage View’
The Constraint Usage View shows how the parametric constraints defined in the
Constraint Definition View are applied to the model itself. This view is visualised
using the SysML parametric diagram.

The diagram in Figure 9.33 shows how the constraint blocks that have been
defined previously may be applied to the System Elements. The constraint

VV [Package] Attack [Attack - Failed - System]

:Weapon Subsystem:Atomic Pile:Materials-Handling
Subsystem

Report(failure)

Target survived()

Target coordinates()

Victim acquired()

Wipe them out(all of them)

Self-destruct(remote)

Attack()

Repel()

Die fool()

Figure 9.31 Example of System Scenario View

Requirements Modelling with MBSE 393

class Definition of Constraints

«constraint»
Travel Time

constraints
{Time - Distance/Velocity}

parameters
 Distance : m
 Time : s
 Velocity : m/sec

«constraint»
Atmos Available per Crew

constraints
{Atmos available = (Ship volume + Reserve volume) / Number of troops}

parameters
 Atmos available : cubic metres
 Number of troops : Integer
 Reserve volume : cubic metres
 Ship volume : cubic metres

«constraint»
Atmos Required per Crew

constraints
{Atmos required = Rate * Time}

parameters
 Atmos required : cubic metres
 Rate : m^3/sec
 Time : s

«constraint»
Environment Decision

constraints
{IF Atmos available >= Atmos required THEN Decision = TRUE ELSE Decision = FALSE}

parameters
 Atmos available : cubic metres
 Atmos required : cubic metres
 Decision : Boolean

Figure 9.32 Example Constraint Definition View

From Flying Saucer

From Martian

From Flying Saucer

: Atmos Available per Crew

Ship volume : cubic metres

Number of troops : Integer

Atmos available : cubic
metres

Reserve volume : cubic metres

: Environment Decision

Decision : Boolean

Atmos available : cubic metres

Atmos required : cubic metres

: Atmos Required per Crew

Rate : m^3/sec

Atmos required : cubic metres

Time : s

: Travel Time

Distance : m Time : s

Velocity : m/sec

Possible range

Velocity

Crew carried

Air supply

Reserve supply

Breathing rate

Okay to launch

Figure 9.33 Example Constraint Usage View

394 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

properties representing the usage of each constraint block are connected together in
the form of a network, and then the parameters that are required for each constraint
property are taken either from other constraint properties or directly from prop-
erties on the model.

View discussion
The various Validation Views are an essential part of the Framework. Needs are not
Needs if they cannot be satisfied. In order to satisfy a Need, it is necessary to
understand its Context by considering its Use Cases. These Use Cases may then be
validated by the Scenarios. The original Needs, therefore, are validated via their
Use Cases.

The Validation Views have many uses. The obvious use is that they allow us to
demonstrate how we can satisfy each Need. As a result of this, it is possible to use
these Validation Views as a basis for acceptance tests. Acceptance tests are the only
means by which the end customer can assess whether or not the Project has been
successful and are based solely on the original Needs.

These Validation Views are also used to ensure that the Use Cases are actually
correct. Not only do they allow us to satisfy the Needs, but they also force us to
understand the Use Cases and, hence, understand the source Needs better. This
understanding allows conflicts to be identified, gaps to be spotted, overlaps and
identical needs to be highlighted and other analysis techniques to be applied – see
Chapter 5 for a discussion on such analysis techniques.

Another use for these Validation Views is to allow us to reason about the
Needs at a business level. Business analysts often use terms like measures of
effectiveness (MOEs) and measures of performance (MOPs). The clue to the rela-
tionship between these measures and the Scenarios is the word measure. When
using constraint blocks and parametric diagrams, this is exactly what we are doing.
As a result of this, the formal Validation Views can be used to provide both MOEs
and MOPs. In the same way that the Semi-formal Scenarios can be applied at either
the Stakeholder Role level or System level, the same is true for the formal valida-
tion. By applying Formal Scenarios at the Stakeholder Role level, we can provide
MOEs, and by applying them at the System-level, we can provide MOP.

Applying the same thought processes, it is also possible to perform trade stu-
dies on the Needs set. This takes a very similar form, where different Formal
Scenarios are considered and the results then analysed.

9.2.3.7 The traceability Viewpoints
Viewpoint rationale
The Viewpoints that have been looked at so far form the heart of the context-based
approach; however, a key part of any requirements engineering endeavour is to
provide traceability both to and from the original Needs. This is essential for both
quality and validation reasons and provides a level of rigour and, hence, confidence
to any Needs set.

Establishing traceability can be a long, tedious and error-prone activity, espe-
cially when Needs must be traced by hand. There are many types of relationships
that may exist between Needs and defining what these are and where they exist is
no simple task. One of the big benefits of adopting a model-based approach is that

Requirements Modelling with MBSE 395

all of this traceability is inherent in the model and, therefore, may be easily auto-
mated, given a Tool of sufficient capability.

There are two levels of traceability relationships that exist in the model:
implicit and explicit relationships. The implicit relationships are the ones that are
inherent in the modelling language itself. One of the advantages of using a standard
model notation, such as the SysML, is that there is an underlying meta-model
beneath the notation that specifies exactly how each of the modelling elements
relates to one another. For example, an operation on a block will be related to an
activity on a state, hence traceability will exist. The explicit relationships are those
that are not inherent in the modelling notation but that are dependent on the
application of the modelling. These relationships can be identified directly from
the MBSE Ontology and its associated Frameworks. For example, one or more
Validation View validates one or more Use Case.

Viewpoint definition
In the area of requirements engineering, these traceability relationships can take
on many different forms. For example, just consider the Source Element and the
number of different things that can be a Source Element. These range from con-
versations, to higher level Needs, to specifications to entire Systems. It is often
necessary, therefore, to define exactly where the traceability relationships exist.
Indeed, it is possible to trace between almost any System Element and any element
in the Framework. It is also often desirable to trace between the Views themselves.
This is shown in the diagram in Figure 9.34.

«ontology element»
Traceability Relationship

«ontology element»
Traceability Element

«ontology element»
Viewpoint

values
 ID : Text
 Description : Text
 Name : Text

«ontology element»
Viewpoint Element

1

is traceable to

1..*

Figure 9.34 Definition of the Traceability Viewpoint

396 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram here shows that the ‘Traceability Viewpoint’ is made up of one or
more ‘Traceable Element’ of which there are two types:

● The ‘View Element’ that represents any element that exists within the MBSE
Ontology.

● The ‘View’ that represents any View from the Framework.

Each ‘Traceable Element’ is traceable to one or more other ‘Traceable Element’ via
a ‘Traceability Relationship’. It should also be noted that the concept of a ‘Trace-
able Element’ is defined as a Cross-cutting Element, as described in Chapter 2.

Viewpoint relationships
The very nature of this Viewpoint is to relate other Views and View Elements
together; therefore, it can potentially relate to all of the core Views in the
Framework.

View visualisation
This View can be visualised using a number of different techniques, such as

● Tables – simple tables to show relationships between elements.
● Spread sheets – similar to the previous point, but using a spread sheet.
● In a database, using a requirements management tool, many requirements

management tools allow traceability to be established using the underlying
database and then visualised in different ways.

● SysML diagrams – any relationships may be defined in the model. This may be
achieved using, for example, block definition diagrams to show relationships
between System Elements and requirement diagrams to show relationships
between Needs and Use cases.

As has been mentioned several times already, when a true model is produced, then
the traceability is inherent and, therefore, many of these views may be automated.

The diagram in Figure 9.35 shows an example of how traceability may be set
up in the model. In this case, the traceability between Use Cases (shown as use
cases) and Needs (shown as requirements) is shown using the refine dependency.

The diagram in Figure 9.36 shows another approach to showing traceability.
In this case, the traceability is shown in a number of ways:

● The validation of Use case (shown as use cases) is shown by using the «vali-
date» stereotype of a dependency that has been specially defined. In this case,
test Cases are shown that apply to each use case.

● The traceability between Use Cases (shown as use cases) and needs (shown as
requirements) is shown using the refine dependency in the same way that it has
been shown in Figure 9.35.

● The traceability between Source Elements (represented by blocks) and Needs
(represented by requirements) is shown using the refine dependency.

● The traceability between System Elements (shown here by the ‘Weapon Sub-
system’ package) and the Use Cases (shown by use cases) that they relate to is
shown using the trace dependency.

Requirements Modelling with MBSE 397

● The traceability between System Elements (shown here by the ‘Weapon Sub-
system’ package) and Needs (shown as requirements) is shown using the
satisfy dependency.

The traceability shown here is not carved in stone and may be tailored depending
on the specific approach adopted by the Organisation. The point here is to show that

TV [Package] Use Cases to Needs [Refinement of Needs by Use Cases]

«need description»
Link weapons Allow weapons to be

linked

«need description»
Travel

«need description»
Allow navigation

«need description»
Communicate with

Mothership

«need description»
Hold one platoon

«capability»

Provide transport
capability for troops

«capability»

Provide transport
capability

Allow two-way
communications

«capability»

Provide
communications

Allow navigation

Take off

Land

«capability»

Travel

Allow abduction

Provide cloaking

«capability»

Provide defensive
capability

«goal»

Provide flying saucer

«capability»

Provide self-destruct

«capability»

Provide weapon
capability

«need description»
Have defences

«need description»
Enable abduction

«need description»
Have a cloaking device

«need description»
Have weapons

«need description»
Provide flying saucer

«need description»
Self-destruct mechanism

«capability»

Provide transport
capability for prisoners

Provide shielding

«capability»

Provide self-destruct by
remote trigger

«capability»

Provide self-destruct by
local trigger

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

Figure 9.35 Traceability View showing refinement of Needs by Use Cases

398 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

all of the traceability paths may be set up in the model and, once this has been done,
all traceability artefacts (such as tables and matrices) may then be potentially
generated by a Tool.

9.3 The Requirements modelling Framework

It is now possible to define the full ACRE Framework, based on all of the View-
points defined in this chapter.

The diagram in Figure 9.37 shows the full ACRE Framework with all the
Viewpoints shown and the relationships between them.

TV [Package] Single Requirement Traceability [Have Weapons]

«need description»
Have weapons

«capability»

Provide weapon
capability

«source element»
Mars Attacks!

«source element»
Invasion from Outer

Space

Weapon Subsystem

+ Fire Control
+ Laser Canon
+ Weapon Subsystem

«testCase»
[Interaction] Attack
[Attack - Success -

Stakeholder]

«testCase»
[Interaction] Attack

[Attack - Failed -
Stakeholder]

«trace»

«refine»

«validate»

«trace» «trace»

«validate»

«satisfy»

Figure 9.36 Traceability View showing traceability for a single Requirement
Description

Requirements Modelling with MBSE 399

9.4 Using the Requirements modelling Framework

The ACRE Framework was deliberately created so that its use was flexible, which
was one of the original Use Cases from the Context. This section shows an example
of how the ACRE Framework may be used by presenting a simple, high-level
Process that allows the Views to be created.

The description of this Process is shown, of course, using the ‘‘seven views’’
approach [5].

9.4.1 The ACRE Process – Process Content View
This section presents the rather simple Process Content View for the ACRE Process,
as shown in the diagram in Figure 9.38.

«ontology element»
Source Element

«viewpoint»
Requirement

Description Viewpoint

«ontology element»
Need Description

«viewpoint»
Definition Rule Set

Viewpoint

«ontology element»
Rule

«ontology element»
Context

«viewpoint»
Stakeholder Context
Definition Viewpoint

«viewpoint»
System Context

Definition Viewpoint

«ontology element»
Stakeholder Role

«ontology element»
System Element

«viewpoint»
Requirement Context

Viewpoint

«ontology element»
Use Case

«ontology element»
Boundary

«ontology element»
Scenario

«viewpoint»
Traceability Viewpoint

«ontology element»
Traceability Element«ontology element»

Traceability
Relationship

«viewpoint»
Context Definition

Viewpoint

«viewpoint»
Source Element

Viewpoint

«viewpoint»
Validation Viewpoint

1..*

1

1

interacts
with

0..*1

1

1..*

1

1..*

yields an observable
result to

1..*

1

1..*

1..*

identifies sources of needs on

1..*

1

is related to

0..*

1..*

validates use case on

1

1..*
1

1..*

defines constraints on descriptions of needs on

1..*

1..*

1

1..*1

1..*

constrains

1..*

1

defines point
of view of

1 1..*

1

{incomplete}

1..*

gives contextual
description of

1

1..*

traces to

1..*

1..*

is within

1

1

is traceable to

1..*

1..*

defines needs in context from

1..*

1

interacts
with

1..*

1..*

is outside

1

1..*

1

1

is related to

0..*

1

defines context for

1

1..*

1..*

validates

1..*

Figure 9.37 Complete Framework for Requirements modelling

400 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 9.38 shows the Process Content View for the ACRE
Process. Note that there is only a single Process here, named the ‘ACRE Process’.

The properties on the block represent the Process Artefacts, as usual, and it can
be seen that these are all typed to either elements from the MBSE Ontology (such as
‘Need’) that make up Views or the actual Views from the ACRE Framework.

The operations on the block represent the Process Activities, which may be
described briefly as

● ‘assemble source information’, where the Source Element Views are created.
● ‘elicit requirements’, where the Needs are elicited from the Source Elements in

the form of the Requirement Description View.
● ‘identify context definitions’, where the Context Definition Views are identi-

fied from Needs.
● ‘analyse requirements’, where the Requirement Context Views are created, based

on the Context Definition Views and based on the Requirement Description View.
● ‘define acceptance criteria’, where the Validation Views are created based on

the Use Cases that were identified as part of the Requirement Context Views.
● ‘establish traceability’, where the Traceability Views are created.
● ‘review’, where all the ACRE Views are reviewed.

This simple Process is defined fully with all the remaining Views in Appendix F.

PCV [Package] PCV - ACRE [PCV - ACRE]

«process»
ACRE Process

«artefact»
Context definition view: Context Definition Viewpoint
Definition ruleset view: Definition Rule Set Viewpoint
Need: Need
Requirement description view: Requirement Description Viewpoint
Requirements context view: Requirement Context Viewpoint
Source element: Source Element
Source element view: Source Element Viewpoint
Traceability view: Traceability Viewpoint
Validation view: Validation Viewpoint

«activity»
analyse needs()
assemble source information()
define acceptance criteria()
elicit needs()
establish traceability()
identify context definitions()
review()

Figure 9.38 Example Process Content View for the ACRE Process

Requirements Modelling with MBSE 401

9.5 Summary

This chapter has introduced the ACRE Framework that comprises a number of
Views. The Views are based on realisations of the MBSE Ontology that has formed
the core of everything in this book.

A simple Process for using ACRE has then been very briefly introduced. The
next logical step is to look at how the Framework may be used to implement the
approach on real projects, which is discussed in Chapter 15.

References

[1] Holt J. ‘A Pragmatic Guide to Business Process Modelling’. 2nd edition.
Swindon, UK: BCS; 2009.

[2] IEEE. ‘IEEE Standards Style Manual’. IEEE; 2005. http://www.science.uva.
nl/research/csa/Presentations/2005Style.pdf.

[3] Flesch R. ‘A new readability yardstick’. Journal of Applied Psychology.
1994;32:221–33.

[4] Kincaid J.P., Fishburne R.P. Jr, Rogers R.L. and Chissom B.S. Derivation of
New Readability Formulas (Automated Readability Index, Fog Count and
Flesch Reading Ease Formula) for Navy Enlisted Personnel). Research
Branch Report 8-75, Millington, TN: Naval Technical Training, U.S. Naval
Air Station, Memphis, TN; 1975.

[5] Holt J., Perry S. and Brownsword M. ‘Model-based Requirements Engineer-
ing’. Stevenage, UK: IET Press; 2011.

402 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Chapter 10

Expanded Requirements Modelling – Systems
of Systems

10.1 Introduction

The current chapter looks at expanding the approach to context-based requirements
engineering (ACRE) introduced in Chapter 9 so that it can be applied to Systems of
Systems.

The adoption of the naming notation defined in Chapter 2 applies throughout
the whole book to every term – except one! This term is System of Systems, and
the confusion comes into play with the plural of term. Therefore, when referring the
standard term from the model-based systems engineering (MBSE) Ontology, the
usual term System of Systems will be used. However, when this term is used in
the plural, the term Systems of Systems will be used (note the plural of the first
word).

10.1.1 Background
The basic Needs for expanding the ACRE Process for Systems of Systems are
shown in the Context in Figure 10.1.

The diagram in Figure 10.1 shows that the main Use Case is to ‘Provide SoS
requirements approach’ that must be applicable to different types of Systems of
Systems (the constraint ‘Apply to different types of SoS’) and also across the whole
Life Cycle (the constraint ‘Apply across life cycle’).

There is one main Use Case that helps to realise this, which is to ‘Provide SoS
requirement engineering processes’. This may at first appear a little odd as there
is only single include relationship shown here, but this leaves room for future
expansion, for example to define Processes for Requirements management. This
has three main inclusions, which are

● ‘Understand context’, which applies to both the System of Systems level
(‘Understand SoS context’) and the Constituent System level (‘Understand CS
context’).

● ‘Understand relations between CS and SoS’, which provides the understanding
of the interfaces and interactions between the Constituent Systems and their
System of Systems.

● ‘Define verification and validation criteria’, which ensures that the System of
Systems both works and satisfies its original Needs.

All of this is constrained by the need to meet current best practice (‘Comply with
best practice’).

This chapter is concerned with applying the ACRE approach to Systems of
Systems; therefore, it is appropriate to re-visit the subset of the MBSE Ontology
that is concerned with Systems and Systems of Systems, which is shown in
Figure 10.2.

The diagram in Figure 10.2 shows the MBSE Ontology with a focus on System
of Systems-related elements. These concepts are defined as follows:

● ‘System’ – Set of interacting elements organised to satisfy one or more ‘Sys-
tem Context’. Where the ‘System’ is a ‘System of Systems’, its elements will
be one or more ‘Constituent System’, and where the ‘System’ is a ‘Constituent
System’, its elements are one or more ‘System Element’. A ‘System’ can
interact with one or more other ‘System’.

● ‘Constituent System’ – A special type of ‘System’ whose elements are one or
more ‘System Element’.

● ‘System of Systems’ – A special type of ‘System’ whose elements are one or
more ‘Constituent System’ and which delivers unique functionality not deli-
verable by any single ‘Constituent System’.

● ‘System of Interest’ – A special type of ‘System’ that describes the system
being developed, enhanced, maintained or investigated.

Architecture Framework Context - SoSACRE

«concern»
Provide SoS

requirements
engineering processes

«concern»

Understand context

«concern»
Understand SoS

context

«concern»
Understand CS

context

«concern»
Understand

relations between CS
and SoS

«concern»
Define verification

and validation
criteria

«concern»
Comply with best

practice

«concern»
Provide SoS
requirements

approach

«concern»
Apply to different

types of SoS

«concern»
Apply across life

cycle

«stakeholder role»
Requirement Engineer

«stakeholder role»
Standard«include»

«include»

«include»

«include»

«constrain»

«constrain» «constrain»

Figure 10.1 Expanded Requirements modelling – Systems of Systems Context

404 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● ‘Enabling System’ – A special type of ‘System’ that interacts with the ‘System
of Interest’ yet sits outside its boundary.

● ‘System Element’ – A basic part of a ‘Constituent System’.
● ‘Product’ – Something that realises a ‘System’. Typical products may include,

but are not limited to, software, hardware, processes, data, humans and
facilities.

● ‘Service’ – An intangible ‘Product’ that realises a ‘System’. A ‘Service’ is
itself realised by one or more ‘Process’.

● ‘Virtual’ – A special type of ‘System of Systems’ that lacks central manage-
ment and resources, and no consensus of purpose.

● ‘Collaborative’ – A special type of ‘System of Systems’ that lacks central
management and resources but has consensus of purpose.

● ‘Acknowledged’ – A special type of ‘System of Systems’ that has designated
management and resources, and a consensus of purpose. Each ‘Constituent
System’ retains its own management and operation.

● ‘Directed’ – A special type of ‘System of Systems’ that has designated man-
agement and resources, and a consensus of purpose. Each ‘Constituent System’
retains its own operation but not management.

Some of these terms will be discussed in more detail in the following sections.

«ontology element»
System

«ontology element»
Constituent System

«ontology element»
Product

«ontology element»
System Context

«ontology element»
System of Systems

«ontology element»
Acknowledged System

«ontology element»
Collaborative System

«ontology element»
Directed System

«ontology element»
Virtual System

«ontology element»
Service

«ontology element»
System Element

1..*

1

represents the need for

1

1

interacts with

1..*

1..*

1

interacts
with

1..*

1

is realised as

1..*

Figure 10.2 Subset of the MBSE Ontology focused on System of Systems

Expanded Requirements Modelling – Systems of Systems 405

10.1.2 Defining a System of Systems
The previous section defined a System of Systems as a special type of System
whose elements are Constituent Systems and which delivers unique functionality
not deliverable by any single Context. Therefore, another way to decide whether a
System is a System of Systems or not is to ask whether it has its own Context or is
merely a sum of the Contexts of its Constituent Systems. Any true System of
Systems will have its own Context, thereby satisfying the part of the definition that
it must deliver unique functionality that will not occur on its Constituent Systems’
Contexts.

It is possible to identify and define the Context of a System of Systems, and of
its Constituent Systems, using the ACRE approach that was described in Chapter 9.
Indeed, this chapter will demonstrate that these Contexts can be analysed for con-
sistency by adding a few additional views to the ACRE approach that will allow it
to be extended for Systems of Systems.

10.1.3 Types of Systems of Systems
Most definitions concerning Systems of Systems will inevitably end up discussing
various types of Systems of Systems. These are well described and often refer-
enced; indeed, these four basic types of System of Systems have made it into the
MBSE Ontology to show how important they are. A typical System of Systems,
according to [1], may be classified as one of the following four types:

● ‘Virtual’ – A Virtual System of Systems will comprise an often-disparate set
of Constituent Systems. There is no central management and no overarching
agreed-upon purpose. This will result in there being no consistent configura-
tion or maintenance of the System of Systems as a whole, although the indi-
vidual Constituent Systems will typically be well configured and managed.

● ‘Collaborative’ – In a Collaborative System of Systems, the Constituent Sys-
tems interact with one another to deliver Capability. There will be a number of
key Stakeholder Roles involved who will collaborate and agree a general
consensus of what the System of Systems Needs should be that form the basis
of the Capability. The Constituent Systems in a Collaborative System of Sys-
tems will typically be owned by different Stakeholder Roles.

● Acknowledged – Acknowledged Systems of Systems have a defined and
acknowledge purpose and some kind of centralised management for the Sys-
tem of Systems as whole. Each Constituent System retains its independence
and will have well-defined relationships and interactions with other Con-
stituent Systems.

● Directed – Directed Systems of Systems have well-defined, specific purposes
and are centrally managed throughout their Life Cycle. The Constituent Sys-
tems operate independently but share a common purpose.

These classifications of Systems of Systems are very useful for helping us think
about the characteristics of Systems of Systems, but caution must be exercised.
There is a temptation to think of these four broad categories as being distinct

406 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

groups, but this is simply not the case. Trying to classify a System of Systems into
one of these categories can often be an exercise in futility as it is rare that real life is
that clear cut.

For example, consider the Internet, and ask yourself which category this fits
into? Is it Virtual or Collaborative?

It is essential not to fall into the trap of trying to classify a System of Systems
exactly and specifically into one of these groups.

Another way to consider Systems of Systems is to consider the main char-
acteristics of a System of Systems. There is much discussion on what the key
characteristics of a System of System should be, such as [2,3]. For the purposes of
this book, the following characteristics will be considered:

● Independence – One problem with Constituent Systems is that they may
already exist, have a purpose of their own and be managed by their own
authority. This can give rise to conflicts when a Need for the System of Sys-
tems in which the Constituent System is taking part conflicts with its own
Needs. This is also compounded as it should be borne in mind that a Con-
stituent System can belong to more than one System of Systems, which could
lead to conflicting Needs for the Constituent System in relation to different
Systems of Systems. Independence means operational as well as managerial
independence of the Constituent Systems. For the purposes of this book,
managerial independence means that the Constituent Systems can operate
independently, whereas operational independence means that the Constituent
Systems do operate independently. This implies that new capabilities,
requirements and changes must be dealt with at two levels, the System of
Systems level and the Constituent Systems level.

● Emergence – The concept of emergent behaviour forms part of the definition of
a System of Systems and, therefore, applies only at the System of Systems level.
This emergent behaviour arises as a result of the interaction between a number of
Constituent Systems and which cannot be achieved by, or attributed to, any of the
individual Constituent Systems. In practical terms, this means that this emergent
behaviour should be captured on the Context for the System of Systems.

● Evolution – Whereas emergent behaviour only applies at the System of Sys-
tems level, the concept of system evolution applies both at the System of
Systems level and at the Constituent Systems level. A System of Systems and
its Constituent Systems may have long Life Cycles, with each Constituent
System often in a different Stage of its individual Life Cycle. Evolution is a
natural phenomenon that will apply at all levels of the System of Systems.

For the purposes of this book, we shall be exploring the impact of Systems of
Systems on the approach described in the previous chapter. Any System of Systems
requirements engineering processes must support a continuous development Life
Cycle model, where new Needs (Capabilities, Goals, Requirements and Concerns)
and changes to existing Needs are to be handled by the Process at either the System
of Systems-level or the CS-level throughout the Life Cycle of the System or System
of Systems.

Expanded Requirements Modelling – Systems of Systems 407

10.2 Approach

10.2.1 The MBSE Ontology (revisited)
This section presents the extensions to the basic ACRE Framework that allows it to
be used for Systems of Systems, hereafter known as SoSACRE.

The diagram in Figure 10.3 takes the original ACRE Ontology that was
introduced in Chapter 9 and extends it to cover the additional concepts needed
when dealing with Systems of Systems.

The key change is the differentiation between types of ‘System’. Two types of
‘System’ have been introduced, the ‘Constituent System’ and the ‘System of Sys-
tems’, that itself is made up of one or more ‘Constituent System’.

Although two types of ‘System’ have been introduced, this does not directly
impact the creation of a ‘System Context’, which still represents the need for a
‘System’.

When engineering a System of Systems, then one such System Context that must
be produced is that for the System of Systems. Such a System of Systems-level
Context is a set of Views that shows the Needs that do not exist in any single System
but exist for the System of Systems. When dealing with System of Systems Needs,
they often represent the Goals of the System of Systems often stated as Capabilities.

In addition to the System of Systems Context, Contexts are also produced
for each individual Constituent System. In a System of Systems, some of the Needs

«ontology element»
Need

«ontology element»
Use Case

«ontology element»
Context

«ontology element»
Scenario

«ontology element»
System Context

«ontology element»
System

«ontology element»
Constituent System

«ontology element»
System of Systems

1

represents the need for

1

1..*

describes the context of

1..* 1..*

validates

1..*

1..*

{incomplete}

Figure 10.3 Subset of the MBSE Ontology focused on Requirements modelling
showing System of Systems

408 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

in the Contexts of the Constituent Systems will trace back to and be derived from
the overarching System of Systems Needs, but not all. Only those Needs of the
Constituent System that are needed to support the System of Systems in which it
partakes will be traced. In this way, the Constituent Systems will have their own
Needs that are not relevant to their participation in the System of Systems.

For example, consider a System of Systems, ‘Invasion’, that is made up of two
Constituent Systems ‘Spaceship System’ and ‘Army’. A Context Definition View
could be drawn for this as shown in Figure 10.4.

Given the Context Definition View in Figure 10.4, three Requirement Context
Views would then be expected: one for ‘Invasion’ and one for each of the two
Constituent Systems, ‘Spaceship System’ and ‘Army’. The Requirement Context
View for the ‘Invasion’ System of Systems from the point of view of the ‘Overlord’
Stakeholder Role is given in the diagram in Figure 10.5.

The use cases shown on the diagram in Figure 10.5 represent those Needs, in
Context, for the System of Systems as a whole. It should be noted here that as this
Context sits at the System of Systems level, the Needs represented by the use cases
are Goals and Capabilities, rather than Requirements. Indeed, there is a single Goal
of ‘Rule Galaxy’, whereas the other use cases represent Capabilities that meet this
Goal.

While there are no Needs for any of the individual Constituent Systems, one
of the use cases, ‘Subjugate races’, indicates that it may need participation from
‘Flying Saucer’ and ‘Army’; therefore, both Constituent Systems will be involved
with the System of Systems.

There are many kinds of ‘Spaceship System’ involved in the invasion. One
kind is the ‘Flying Saucer’. The Requirement Context View for ‘Flying Saucer’ is
shown in Figure 10.6.

CDV [Package] Context Definition [System of Systems Structure]

«sos»
Invasion

«constituent system»
Space Ship

«constituent system»
Army

1

1..*

transports

1

1..*

Figure 10.4 Example Context Definition View for a System of Systems

Expanded Requirements Modelling – Systems of Systems 409

RCV [Package] Contexts [Overlord Context]

Invasion SoS - Overlord Context

Subjugate races

Rule galaxy

Populate other systems

Enslave aliens Experiment on aliens

Inspire fear

Destroy opposition

Destroy aliens

Destroy planets

«stakeholder role»
Breeding Stock

«stakeholder role»
Puny Earthling

«stakeholder role»
Army

«stakeholder role»
Citizen

«stakeholder role»
Spaceship System

«constrain» «extend»

«include»

«include»

«include»

«include»

Figure 10.5 Example Requirement Context View for System of Systems
‘Invasion’ from the point of view of the ‘Overlord’ Stakeholder Role

RCV [Package] FlyingSaucer Context [High-level]

FlyingSaucer Context

«goal»

Provide flying saucer

«capability»

Travel
«capability»

Provide
communications

«capability»
Provide weapon

capability

«capability»
Provide defensive

capability

«capability»
Provide transport

capability «capability»

Provide self-destruct

«capability»
Provide self-destruct by

remote trigger

«capability»
Provide self-destruct by

local trigger

«capability»
Provide transport

capability for prisoners

«capability»
Provide transport

capability for troops

«stakeholder role»
Puny Earthling

«stakeholder role»
Army

«stakeholder role»
Overlord

«include»

«include»

«extend»

«extend»

«include»

«include»

«include»

Figure 10.6 Example Requirement Context View for Constituent System
‘Flying Saucer’

410 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The use cases shown on the diagram in Figure 10.6 represent the Needs, in
Context, for the Constituent System ‘Flying Saucer’. Most of the use cases, those
not directly related to the ‘Overlord’ actor, represent the use cases that are relevant
to ‘Flying Saucer’ as a System in its own right and not as a Constituent System of
the System of Systems. The use cases ‘Provide communications’ and ‘Provide self-
destruct by remote trigger’ represent a Use Case for supporting the System of
Systems. The fact that these use cases are relevant to the System of Systems can be
seen by their link to the ‘Overlord’ actor. The implication here is that these use
cases are somehow related to use cases ‘Subjugate races’ and ‘Inspire fear’ from
the ‘Overlord’ Context in Figure 10.5.

A similar diagram would be created for ‘Army’, as shown in Figure 10.7.

RCV [Package] Army Context [High-level]

Army Context

«capability»
Travel to target

location

«capability»
Subjugate Earthlings

«requirement»
Communicate

«requirement»
Identify targets

«requirement»
Engage with target

«requirement»
Kill

«requirement»
Kill self

«requirement»
Capture

«requirement»
Experiment

«stakeholder role»
Flying Saucer

«stakeholder role»
Puny Earthling

«stakeholder role»
Overlord

«include»

«extend»

«extend»

«include»

«extend»

«extend»

«extend»

«include»

Figure 10.7 Example Requirement Context View for Constituent System ‘Army’

Expanded Requirements Modelling – Systems of Systems 411

Again, most of the use cases in Figure 10.7 represent those Use Cases that are
relevant to ‘Army’ as a System in its own right and not to it as a Constituent System
of the System of Systems. The use cases ‘Communicate’ and ‘Kill self’ will
somehow relate to the ‘Subjugate races’ and ‘Inspire fear’ use cases from the
‘Overlord’ Context shown in Figure 10.5.

It is important to be able to capture the links between use cases in the Context
of Constituent Systems that relate back to use cases for the System of Systems.
In SysML, use of the trace dependency can be used to capture such links
(Table 10.1).

In summary, the key change to the MBSE Ontology to incorporate the
additional concepts needed when dealing with System of Systems is the differ-
entiation between types of System, the System of Systems that is made up of one or
more Constituent System.

Although no new type of View is needed to capture the System of Systems
Context differently from its Constituent System Contexts, there are additional
Views needed when modelling the Needs for a System of Systems. These new
Views are discussed in the next section.

10.2.2 The Framework
10.2.2.1 Changes to the Framework
When applying MBSE to Requirements modelling, Chapter 9 introduced the ACRE
Framework that proposed the use of six Views to fully represent a set of Needs.

When considering Systems of Systems, these six Views, together with the
Traceability View, are sufficient for modelling the Needs for the Constituent Sys-
tems that make up a System of Systems. As discussed in Section 10.2.1, they are
also sufficient for modelling most aspects of the Needs for a System of Systems.
However, two additional Views are needed and, therefore, two additional View-
points need to be defined. These extensions to the ACRE Framework are shown in
Figure 10.8.

The two additional Viewpoints in the extended ACRE Framework are the
‘Context Interaction Viewpoint’ and the ‘Validation Interaction Viewpoint’.

These two additional Viewpoints are described in the following sections.

Table 10.1 Traceability from Constituent System to System of Systems Use Cases

System of System
use case

Constituent System use case Constituent System
use case

‘Overlord’ Context
use cases

‘Flying Saucer’ Context use cases ‘Army’ Context use cases

‘Subjugate races’ ‘Provide communications’ ‘Communicate’
‘Inspire fear’ ‘Provide self-destruct by remote

trigger’
‘Kill self’

412 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

10.2.3 The Viewpoints
10.2.3.1 The Context Interaction Viewpoint
Viewpoint rationale
The Context Interaction Viewpoint is intended to provide an overview of the
relationships between the Contexts of the various Constituent Systems that make up
a System of Systems.

Each Constituent System Context is related to any other Constituent System
Context by considering the System of Systems Context and identifying the key
relationships, as described in the previous section.

Viewpoint definition
The subset of the MBSE Ontology that focuses on the Context Interaction View-
point is shown in the diagram in Figure 10.9.

The diagram here shows the subset of the MBSE Ontology that focuses on the
Context Interaction Viewpoint. Notice here how, just as with the Requirement
Context Viewpoint from the ACRE Framework, the Context Interaction View is
primarily concerned with showing Needs in Context as Use Cases. Rather than
showing a single Context, as is the case with each Requirement Context View, the
Context Interaction View combines the Requirement Context Views of each Con-
stituent System into what is, essentially, an expanded Requirement Context View
for the entire System of Systems.

Viewpoint relationships
The relationships between the Context Interaction View and the other Views are
shown in Figure 10.10.

«viewpoint»
Requirement Context

Viewpoint

«viewpoint»
Stakeholder Context
Definition Viewpoint

«viewpoint»
System Context Definition

Viewpoint

«viewpoint»
Requirement Description

Viewpoint

«viewpoint»
Definition Rule Set

Viewpoint

«viewpoint»
Context Interaction

Viewpoint

«viewpoint»
Validation Interaction

Viewpoint

«viewpoint»
Context Definition

Viewpoint

«viewpoint»
Source Element Viewpoint

«viewpoint»
Validation Viewpoint

{incomplete}

1..*
defines constraints on descriptions of needs on

1..*

1

expands

1

1..*

defines needs in context from

1..*

1..*

identifies sources of needs on

1..*

1..*

combines

1..*

1..*

validates use case on

1

1

defines context for

1

1..*

satisfies

1

Figure 10.8 The Framework Views for Requirements Modelling
for Systems of Systems

Expanded Requirements Modelling – Systems of Systems 413

«ontology element»
Need

«ontology element»
Use Case

«ontology element»
Context

«ontology element»
Scenario

«ontology element»
System Context

«ontology element»
System

«ontology element»
Constituent System

«ontology element»
System of Systems

1

represents the need for

1

1..*

describes the context of

1..* 1..*

validates

1..*

1..*

{incomplete}

Figure 10.9 Definition of Context Interaction Viewpoint

«viewpoint»
Requirement Context

Viewpoint

«viewpoint»
Context Interaction

Viewpoint

«viewpoint»
Validation Interaction

Viewpoint

1

expands

1

1..*

combines

1..*

1..*

satisfies

1

Figure 10.10 Relationships between Context Interaction Viewpoint and other
Viewpoints

414 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 10.10 shows the relationships between the Context
Interaction Viewpoint and the other Viewpoints. It can be seen that this Viewpoint
has two relationships with the ‘Requirement Context Viewpoint’; in that it expands
the ‘Requirement Context Viewpoint’ by considering it from the System of Sys-
tems level of abstraction and in relation to other ‘Requirement Context Viewpoints’
for various Constituent Systems.

However, although the Context Interaction Viewpoint can be thought of as an
expanded Requirement Context Viewpoint for the entire System of Systems, it is
showing the Contexts from the perspective of the Constituent Systems and so, as
discussed in Section 10.2.1, will show the various use cases of the System of
Systems from the point of view of the Constituent Systems, rather than from that of
the System of Systems. It will typically also show use cases of the Constituent
Systems that are not involved in the System of Systems. Although these can be
omitted, it is often useful to leave them in as this can allow common functionality to
be identified by comparing use cases across the Contexts shown.

The following consistency checks apply to the Context Interaction Viewpoint:

● When modelling Needs for a System of Systems, a Context Interaction View
must be created.

● The Context Interaction View must include the Requirement Context Views
for all of the Constituent Systems of the System of Systems.

● Each use case on a Context Interaction View that is involved in the System of
Systems (linked to the System of Systems Stakeholder Role) must have at least
one Validation Interaction View associated with it.

In order to maximise the benefits of a true MBSE approach, these Rules should be
automated rather being manually applied to the model.

View visualisation
The Context Interaction View is visualised in SysML using a use case diagram,
an example of which is shown in Figure 10.11.

uc Context Interactions

FlyingSuacer Context Army Context

«stakeholder role»
Flying Saucer

«requirement»
Capture

«requirement»
Communicate

«requirement»
Engage with

target

«requirement»
Experiment

«requirement»
Identify targets

«requirement»
Kill

«requirement»
Kill self

«capability»
Subjugate
Earthlings

«capability»
Travel to target

location

«stakeholder role»
Puny Earthling

«stakeholder role»
Overlord

«capability»
Provide

self-destruct by
remote trigger

«capability»
Provide

communications

«capability»
Provide

self-destruct

«capability»
Provide defensive

capability

«capability»
Provide weapon

capability

«capability»
Provide

self-destruct by
local trigger

«goal»
Provide flying

saucer

«capability»
Provide transport

capability

«capability»
Travel

«capability»
Provide transport

capability for
prisoners

«capability»
Provide transport

capability for troops

«stakeholder role»
Puny Earthling

«stakeholder role»
Army

«extend»

«include»

«extend»

«extend»

«include»

«include»

«extend»

«extend»

«include»

«include»

«extend»
«include»

«include»

«include»

«extend»

Figure 10.11 Example Context Interaction View for a System of Systems
and its Constituent Systems

Expanded Requirements Modelling – Systems of Systems 415

The Context Interaction View in Figure 10.11 is based on the Requirement
Context Views for the Constituent Systems ‘Flying Saucer’ and ‘Army’ that were
discussed previously and which are shown in Figures 10.5 and 10.6. It was created
by simply taking those two Requirement Context Views and combining them on a
single diagram.

View discussion
The Context Interaction View shows the relationships between the Requirement
Context Views of all the Constituent Systems of the System of Systems. Unsurpris-
ingly, the main link between the contexts will be through the Stakeholder Role
representing the System of Systems, as can be seen in Figure 10.11 via the ‘Overlord’
actor. This will be the case on any Context Interaction View; all the Constituent
System Contexts will be related through System of Systems Stakeholder Role, which,
in this case, is the ‘Overlord’ actor.

However, bear in mind that the individual Requirement Context Views will
often have been created in isolation (if, indeed, at all) by different organisations,
and therefore, the Context Interaction View may well be the first time that the
Contexts of the two Constituent Systems have been considered together. This can
be very useful for identifying other areas of linkage between Constituent
Systems.

For example, in Figure 10.11, it can be seen that both ‘Flying Saucer’ and
‘Army’ interact with ‘Puny Earthling’, which is not a Constituent System of the
System of Systems. ‘Flying Saucer’ and ‘Army’ may not even be aware of this
shared connection. Knowing this, one could then investigate whether, for example,
‘Puny Earthling’ provides functionality that could or should be part of the System
of Systems. It is also very useful when conducting impact analysis.

Also, the use case ‘Travel to target location’ does not form part of the overall
System of Systems; therefore, any changes to it are unrelated to the fact that it is a
Constituent System.

10.2.3.2 The Validation Interaction View
Viewpoint rationale
The Validation Interaction Viewpoint is intended to provide a combined view
of the Scenarios for Use Cases that are involved in the System of Systems.
Therefore, this Viewpoint combines information from the Validation Viewpoints
for various Constituent Systems.

Viewpoint definition
The subset of the MBSE Ontology that focuses on the Validation Interaction
Viewpoint is shown in Figure 10.12.

The diagram in Figure 10.12 shows the subset of the MBSE Ontology that
focuses on the elements required for the Validation Interaction Viewpoint.

The Validation Interaction Viewpoint shows a Scenario for a number of related
Use Cases by combining the Validation Views of those Use Cases. A number of
Validation Interaction Views would be created in order to show that the Context
Interaction View can be satisfied.

416 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Viewpoint relationships
The following diagram shows the relationships between the Validation Interaction
Viewpoint and other Viewpoints that make up the Framework (Figure 10.13).

«ontology element»
Need

«ontology element»
Use Case

«ontology element»
Context

«ontology element»
Scenario

«ontology element»
System Context

«ontology element»
System

«ontology element»
Constituent System

«ontology element»
System of Systems

1

represents the need for

1

1..*

describes the context of

1..* 1..*

validates

1..*

1..*

{incomplete}

Figure 10.12 Definition of Validation Interaction Viewpoint

«viewpoint»
Valida�on Interac�on

Viewpoint

«viewpoint»
Context Interac�on

Viewpoint

«viewpoint»
Valida�on Viewpoint

1..*

sa�sfies

1

1

combines

1..*

Figure 10.13 Relationships between the Validation Interaction View and the other
Views

Expanded Requirements Modelling – Systems of Systems 417

The diagram here shows that the Validation Interaction Viewpoint is related to
two other Viewpoints:

● The Validation Viewpoint, a set of which are combined into a Validation
Interaction Viewpoint.

● The Context Interaction Viewpoint, that the Validation Interaction Viewpoint
validates.

Not all of the use cases that appear on a Context Interaction View will have asso-
ciated Validation Interaction Views, only those use cases that are involved in the
System of Systems. These use cases can be identified from the Context Interaction
View as those that are linked to the Stakeholder Role represent the System of
Systems – the Overlord. Thus, for example, from Figure 10.11, the use cases
‘Provide communications’ and (‘Provide self-destruct’) ‘Provide self-destruct by
remote trigger’ from the Context of ‘Flying Saucer’ and ‘Communicate’ and ‘Kill
self’ from the context of ‘Army’ can be seen to be those for which Validation
Interaction Views will be needed.

The following Rules apply to the Validation Interaction View:

● Each use case on a Context Interaction View that is involved in the System of
Systems (linked to the System of Systems Stakeholder Role) must have at least
one Validation Interaction View associated with it.

● Validation Views can only be combined into a Validation Interaction View if
they validate use cases that trace to the same System of Systems-level use case.

● Validation Views can only be combined into a Validation Interaction View if
they represent the same (or aspects of the same) Scenario.

Where a single use case at the Constituent System level traces to a single use case
at the System of Systems level, the Validation Interaction Views for the use case
will be the same as its Validation Views. This is the case for the use case ‘Com-
municate’ from the ‘Army’ Context. However, where use cases in more than one
Constituent System can be traced back to a single use case in the System of Sys-
tems, or where multiple use cases in single Constituent System can be so traced, the
appropriate Validation Views are combined. This is the case for the use cases
‘Provide self-destruct by remote trigger’ in ‘Flying Saucer’ and ‘Kill self’ in
‘Army’. Both of these use cases have potential impacts on other use cases, and,
therefore, changes to them may result in changes to other use cases.

View visualisation
Two related Validation Views for these use cases are shown in Figures 10.14 and
10.15. These both treat the two Constituent Systems ‘Flying Saucer’ and ‘Army’ as
black boxes, but there is no reason why this should be the case. It is done here
simply for clarity. One or both could be Scenarios that treat their Systems as white
boxes, showing their internal System Elements.

The diagram in Figure 10.14 shows an existing Validation View for the use
case ‘Kill self’ from the Context from the ‘Army’ System. This is the Scenario
where the Army is instructed to engage with the enemy [‘Wipe them out (all of
them)’], which is subsequently acted upon shown by the ‘Attack’ message.
Unfortunately, the Puny Earthlings prove too much for the Army (‘Repel’) resulting

418 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

in the Army having to report back to the Overlord with the bad news (‘Report
(failure)’). The response from the Overlord is both swift and merciless (‘Die fool’)
resulting in a brief moment of reflection on behalf of the Army (‘Re-assess self-
value’) before being eradicated by their own self-destructive mechanism.

The diagram in Figure 10.15 shows an existing Validation View for the ‘Pro-
vide self-destruct by remote trigger’ from the Context from the ‘Flying Saucer’.
This is the Scenario where the Army is instructed to engage with the enemy [‘Wipe
them out (all of them)’], which is subsequently acted upon shown by the ‘Attack’
message. Unfortunately, the Puny Earthlings prove too much for the Army
(‘Repel’), once more resulting in the Army having to report back to the Overlord
with the bad news (‘Report(failure)’). The response from the Overlord is equally
swift and merciless (‘Die fool’) leaving no time for brief moments of reflection
before being eradicated by their own self-destruct mechanism.

These two Validation Views can be combined to provide a single Validation
Interaction View as shown in Figure 10.16. The Validation Views can be combined
in this way only if they represent the same (or aspects of the same) Scenario.

The diagram in Figure 10.16 shows the Validation Interaction View for the
combined use cases of ‘Provide self-destruct by remote trigger’ from the Context of
the ‘Flying Saucer’ and the ‘Kill self’ use case from the Context from the ‘Army’
System. Just as with the Requirement Context Views for Constituent Systems often

VV [Package] Attack [Attack - Failed- Stakeholder]

:Overlord :Puny Earthling

:Flying Saucer

Wipe them out(all of them)

Die fool()

Repel()

Attack()

Self-destruct(remote)

Report(failure)

Figure 10.14 Example Validation View for Use Case ‘Kill self’’ for Constituent
System ‘Army’

Expanded Requirements Modelling – Systems of Systems 419

being created in isolation, the same is true for the various Validation Views.
Combining these together into Validation Interaction Views may be the first time
that the Scenarios have been looked at together at the level of the Constituent
Systems and may reveal inconsistencies to the Requirements Engineer.

View discussion
The resulting Validation Interaction Views should also be compared to the corre-
sponding Validation Views for the use case at the System of Systems level. For
example, the Validation Interaction View above should be compared to the Vali-
dation View (for the same scenario) for use case ‘Inspire fear’ from the Overlord
Context. Such a comparison may again reveal inconsistencies between the Sce-
narios modelled at the System of Systems level and the corresponding combined
Scenarios at the Constituent System level (Figure 10.17).

VV [Package] Attack [Attack - Failed - System]

:Weapon Subsystem:Atomic Pile:Materials-Handling
Subsystem

Report(failure)

Target survived()

Target coordinates()

Victim acquired()

Wipe them out(all of them)

Self-destruct(remote)

Attack()

Repel()

Die fool()

Figure 10.15 Example Validation View for the ‘Provide self-destruct by remote
trigger’ Use Case

420 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

«viewpoint»
Requirement Context

Viewpoint

«viewpoint»
Stakeholder Context
Definition Viewpoint

«viewpoint»
System Context Definition

Viewpoint

«viewpoint»
Requirement Description

Viewpoint

«viewpoint»
Definition Rule Set

Viewpoint

«viewpoint»
Context Interaction

Viewpoint

«viewpoint»
Validation Interaction

Viewpoint

«viewpoint»
Context Definition

Viewpoint

«viewpoint»
Source Element Viewpoint

«viewpoint»
Validation Viewpoint

{incomplete}

1..*
defines constraints on descriptions of needs on

1..*

1

expands

1

1..*

defines needs in context from

1..*

1

combines 1..*

1..*

identifies sources of needs on

1..*

1..*

combines

1..*

1..*

validates use case on

1

1

defines context for

1

1..*

satisfies

1

Figure 10.17 The complete Framework for Requirements modelling
for Systems of Systems

VIV [interaction] Invasion & Attack [Invasion & Attack - Failed - SoS]

:Overlord

Par wipe them out (all of them)

wipe them out (all of them)

Attack

Report (failure)
Report (failure)

Par Die fool Self-destruct (remote)

Die fool

Re-assess self value

Attack

Repel
Repel

:Flying saucer :Puny Earthling :Army

Figure 10.16 Example Validation Interaction View

Expanded Requirements Modelling – Systems of Systems 421

In order to create the additional Views required for SoSACRE, a set of
example Processes has been defined using the seven views approach. The complete
set of Processes is shown in Appendix E, but the diagram in Figure 10.18 provides
the Process library, in the form of a Process Content View for the SoSACRE
Processes.

PCV [Package] PCV - SoSACRE [PCV - SoSACRE]

«process»
SoSACRE Process

«process»
SoS Requirements Definition Process

«artefact»
Context definition view: Context Definition Viewpoint
Context interaction view: Context Interaction Viewpoint
Requirement context view: Requirement Context Viewpoint
Source element: Source Element
Source element view: Source Element Viewpoint
Validation interaction view: Validation Interaction Viewpoint

«activity»
identify interactions between SoS and constituent systems()
identify SoS constituent system contexts()
identify SoS stakeholder contexts()
identify source elements()
invoke SoS Context Process for constituent system()
invoke SoS Context Process for SoS()
invoke SoS Requirements Elicitation Process()
review()
select constituent system()

«process»
V&V Definition Process

«artefact»
Context definition view: Context Definition Viewpoint
Requirement context view: Requirement Context Viewpoint
Test coverage view: Test Coverage Viewpoint
Validation view: Validation Viewpoint

«activity»
define formal scenarios()
define level of rigour()
define semi-formal scenarios()
review()
review coverage()
select context()
select use case()
trace to model()

«process»
SoS Context Process

«artefact»
Context definition view: Context Definition Viewpoint
Requirement context view: Requirement Context Viewpoint
Requirement description view: Requirement Description Viewpoint
Source element view: Source Element Viewpoint
Validation view: Validation Viewpoint

«activity»
analyse context()
define context()
define validation()
resolve problems()
review context()
review validation()
select context()

«process»
SoS Requirements Elicitation Process

«artefact»
Requirement description view: Requirement Description Viewpoint
Source element view: Source Element Viewpoint

«activity»
elicit needs()
identify needs()
review()

Figure 10.18 SoSACRE – Process Content View

422 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 10.18 shows that there are four types of ‘SoSACRE
Process’ that are described as follows:

● ‘SoS Requirements Development Process’, which is the overarching Process
that interacts with the other Processes. The main aim of this Process is to
identify the Stakeholder Roles and Constituents Systems and then invoke the
Context Process for both the System of Systems and its associated Constituent
Systems. The Process then identifies the interactions between the System of
Systems and its Constituent Systems.

● ‘SoS Context Process’, which defines the Context for either the System of
Systems or a Constituent System, depending on which point it is invoked from
the SoS Requirements Development Process.

● ‘V&V Definition Process’, which defines a number of Scenarios, both Formal
Scenarios and Semi-formal Scenarios, which are then used to demonstrate that
the original Use Cases can be validated.

● ‘SoS Requirements Elicitation Process’, which identifies the basic Needs for
the System of Systems.

The Processes themselves may be executed in a variety of sequences to represent
different Scenarios, some examples of which are shown in the Process Instance
Views.

10.3 Summary

In summary, the two additional Views and, therefore, Viewpoints are needed to
model System of Systems requirements, the ‘Context Interaction View’ and the
‘Validation Interaction View’. The Context Interaction View is intended to provide
an overview of the relationships between the Contexts of the various Constituent
Systems that make up a System of Systems. The Validation Interaction View is
intended to provide a combined View of the Scenarios for use cases that are
involved in the System of Systems.

References

[1] Dahmann J.S. and Rebovich G. Jr. ‘Systems engineering for capabilities’.
CrossTalk – The Journal for Defense Software Engineering. 2008;11
(November):4–9.

[2] Maier M.W. ‘Architecting principles for systems-of-systems’. Systems Engi-
neering. 1998;1(4):267–84.

[3] De Laurentis D.A. and Callaway R.K. ‘A system-of-systems perspective for
future public policy decisions’. Review of Policy Research. 2004; 21(6
(November)): 829–37.

Expanded Requirements Modelling – Systems of Systems 423

This page intentionally left blank

Chapter 11

Architectures and Architectural Frameworks
with MBSE

11.1 Introduction

This chapter considers two essential enabling concepts for model-based systems
engineering: the Architecture and the Architectural Framework (AF). After con-
sidering the basic Context for Architectures and AFs, the chapter describes a
model-based approach to the definition of an AF. This defines a framework for the
definition of an AF, FAF (Framework for AF). The definition of FAF follows the
basic Ontology, Framework and Views approach that is used throughout the book.
A set of Processes are also introduced that can be used, along with FAF, to define
an AF. These Processes are briefly described in this chapter and the full definition
is available from the authors.

11.1.1 Background
Architectures and AFs are now considered to be fundamental to model-based
systems engineering. The basic Needs behind these two areas are given in the
following Context.

The diagram in Figure 11.1 shows the overall Context that describes the Use
Cases for Architectures and AFs.

The main Use Case is concerned with defining an approach to modelling
Architectures and AFs (‘Define approach to modelling architectures & AFs’). This
has two main inclusions:

● Any approach must support the definition of Architectures (‘Support definition
of architectures’). Such support must allow Architectures to be defined that
model both the structural aspects (‘ . . . for structure’) and the behavioural
aspects (‘ . . . for behaviour’) of the System being represented by the Archi-
tecture. When defining an Architecture, it is essential that an established
architectural design process is followed (‘Follow architectural design process’)
and that any Architecture conforms to a defined AF (‘Conform to AF’). Too
often Architectures are produced seemingly simply for the sake of producing
an Architecture. For this reason, it is essential that the Needs of the Customer
are understood (‘Understand needs for architecture’), so that the Architecture is
produced for a defined purpose and so that it can be validated.

● Any approach must support the definition of AFs (‘Support definition of AFs’).
Any AFs should be defined in terms of a number of Viewpoints (‘Support
definition of viewpoints’) and should have Rules defined to ensure consistency
(‘Support definition of consistency rules’). Just as with an Architecture, it is
essential that the reasons why the AF is being created are understood
(‘Understand needs for AF’). Similarly, the Needs for each Viewpoint defined
as part of an AF must also be understood (‘Understand needs for viewpoints’).

Whatever the approach to modelling Architectures and AFs, it should be a model-
based one (‘Adopt a model-based approach’), using all the techniques described in
this book.

The Context presented in Figure 11.1 covers Architectures and AFs in general
and is the guiding Context for this chapter. However, when it comes to the defi-
nition of an approach to the creation of AFs, then we can define a more focused
Context. This has been done and is shown in Figure 11.2.

Figure 11.2 shows the Context for the definition of an approach for the defi-
nition of AFs. The main Use Case that must be fulfilled is to ‘Define an AF for
creating AFs’, constrained by ‘Comply with best practice’ such as AF Standards
(e.g. ISO42010). In order to ‘Define an AF for creating AFs’, it is necessary to

● ‘Allow needs that the AF is to address to be captured’ – When defining an AF,
it is important that the Needs that the AF is to address can be captured, in order
to ensure that the AF is fit for purpose.

RCV [Package] FAF [FAF]

Architectures and architectural frameworks context

«requirement»

Support definition of
architectures

«requirement»
...for structure

«requirement»
...for behaviour

«requirement»
Follow architectural

design process

«requirement»
Understand needs

for architecture

«requirement»
Conform to architectural

framework

«requirement»

Define approach to modelling
architectures & architectural

frameworks

«requirement»
Adopt a model-based

approach
«stakeholder role»

Standard

«stakeholder role»
Customer

«requirement»
Support definition of

architectural frameworks

«requirement»
Support definition of

consistency rules

«requirement»
Support definition of

viewpoints

«requirement»
Understand needs

for viewpoints

«requirement»
Understand needs for
architectural framework

«stakeholder role»
Domain Expert

«stakeholder role»
Systems Modeller

«include»

«constrain»

«include»

«constrain»

«constrain»

«constrain»

«include»

«include»

«constrain»

«constrain»

Figure 11.1 Architectures and Architectural Frameworks Context

426 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● ‘Support definition of ontology for AF domain’ – When defining an AF, it is
essential that the concepts, and the relationships between them, are defined for
the domain in which the AF is to be used. This is the Ontology that forms the
foundational basis of the definition of the AF’s Viewpoints. Such an Ontology
ensures the consistency of the AF. The AF must support such a definition of an
Ontology.

● ‘Support identification of required viewpoints’ – The Viewpoints that make up
the AF need to be identified. As well as supporting such an identification, the
AF must also ‘Support identification of relationships between viewpoints’ and
‘Support identification of grouping of viewpoints into perspectives’.

● ‘Support definition of viewpoint needs’ – In order to define the Viewpoints that
make up an AF, it is essential that the Needs of each Viewpoint be clearly
understood in order to ensure each Viewpoint is fit for purpose and that the
Viewpoints defined meet the overall Needs for the AF.

● ‘Support definition of viewpoint content’ – An AF is essentially a number of
Viewpoints that conform to an Ontology. Therefore, when defining an AF, it is
essential that each Viewpoint can be defined in a consistent fashion that
ensures its conformance to the Ontology.

AF Framework Context

«stakeholder role»
Domain Expert

«stakeholder role»
Systems Modeller

«concern»
Allow needs that the AF is to

address to be captured

«concern»
Comply with best

practice

«concern»
Define an architectural
framework for creating

architectural frameworks

«stakeholder role»
Sponsor

«stakeholder role»
Standard

«concern»
Support definition of

architectural framework rules

«concern»
Support definition of

ontology for AF domain

«concern»
Support definition of
viewpoint content

«concern»
Support definition of

viewpoint needs

«concern»
Support identification of

grouping of viewpoints into
perspectives

«concern»
Support identification of relationships

between viewpoints

«concern»
Support identification of

required viewpoints

«include»

«include»

«constrain»

«include»
«include»

«include»

«include»

«include»

«include»

Figure 11.2 Context for the Definition of an AF Framework

Architectures and Architectural Frameworks with MBSE 427

● ‘Support definition of AF rules’ – Often, when defining an AF, it is often
necessary to constrain aspects of the AF through the definition of a number of
constraining Rules. It is therefore essential that a Framework for the definition
of an AF supports the definition of such Rules.

The key Stakeholder Roles involved are

● ‘Sponsor’ – the role involved in sponsoring the creation of the AF.
● ‘Systems Modeller’ – the role involved in the modelling and definition of an AF.
● ‘Standard’ – the role of any appropriate Standard for AFs. An example of a

Standard that could fill this role would be ISO42010.
● ‘Domain Expert’ – the role of an expert in the domain for which the AF is to be

used.

This Context is the basis of the approach described in the following section and of
the processes described in Section 11.4.

11.2 Approach

The FAF is a simple AF that is intended to be used as an aid to the production of an
AF. It is a meta-AF – an AF Framework. This is a bit of a mouthful, and so rather
than call the Framework AFF, FAF was felt to be a better name (and more appro-
priate!). This section defines FAF through the familiar ‘Ontology, Framework and
Views approach’ used throughout the book.

Although the FAF is defined using SysML, an AF based on FAF may be
realised using any suitable modelling notation, such as the Unified Modelling
Language (see [1]) and Business Process Modelling Notation (see [2]).

11.2.1 The MBSE Ontology (revisited)
The FAF uses the concepts from the subset of the MBSE Ontology that was pre-
sented in Chapter 3 and which is repeated here for ease of reference.

Given that the FAF is itself an AF, only those concepts relating directly to the
‘AF’ element in Figure 11.3 are relevant to the definition of FAF. Thus, the FAF is
based directly around those concepts highlighted in Figure 11.3: ‘AF’, ‘Rule’,
‘Standard’, ‘AF Concern’, ‘Viewpoint Concern’, ‘Ontology’, ‘Ontology Element’,
‘Viewpoint’, ‘Viewpoint Element’ and ‘Perspective’. FAF does not cover the
concepts of ‘Architecture’, ‘View’ and ‘View Element’. These concepts are rea-
lised by any ‘Architecture’ that conforms to a defined ‘AF’.

11.2.2 The Framework
The FAF defines six Viewpoints that are needed when defining an AF. The
Viewpoints are shown in the diagram in Figure 11.4.

The six Viewpoints are

● The ‘AF Context Viewpoint’ (AFCV), which defines the Context for the AF. That
is, it represents the AF Concerns in Context, establishing why the AF is needed.

428 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

«ontology element»
Viewpoint Element

«ontology element»
Architectural Framework

«ontology element»
Architectural Framework

Concern

«ontology element»
Architecture

«ontology element»
Ontology

«ontology element»
Ontology Element

«ontology element»
Perspective

«ontology element»
Standard

«ontology element»
View

«ontology element»
View Element

«ontology element»
Viewpoint

«ontology element»
Viewpoint Concern

«ontology element»
Rule

{via}

«ontology element»
System

1

describes structure
of 1

1..*

uses elements from

1

1
1..*

1..*

1

1..*

1

1..*

corresponds to

1

1..*

1

1..*

describes

1..*

1..*
is derived from

1..*

1..*

1

1

provides
provenance
for

1..*

1represents
need for

1..*1..*

1

1..*

conforms to

1

1

1

1

is related to

1..*

1

collects
together

1..*

1
collects together

1..*

1

complies with

0..*

1

is related to

0..*
1..*

represents need for

1

1..*

1

1..*

visualises

1

1

is related to

1..*

constrains

is related to

Figure 11.3 Subset of the MBSE Ontology focused on Architectures and
Architectural Frameworks

«perspective»
Architectural Framework Perspective

«viewpoint»
AF Context Viewpoint

«viewpoint»
Ontology Definition Viewpoint

«viewpoint»
Viewpoint Relationships Viewpoint

«viewpoint»
Rules Definition Viewpoint

«viewpoint»
Viewpoint Context Viewpoint

«viewpoint»
Viewpoint Definition Viewpoint

{The Rules Definition Viewpoint is
related to ALL the other Viewpoints
and defines the Rules that constrain
the Architectural Framework.

Relationships to other Viewpoints are
omitted from this diagram for clarity.}

1

defines viewpoint to meet needs from

1

1

is derived from

1

1

defines relationships between viewpoints defined in

1

1

is derived from

1

1..*

is derived from

1

1..*

defines viewpoints using
elements from

1

Figure 11.4 The Framework Viewpoints for Architectural Frameworks

Architectures and Architectural Frameworks with MBSE 429

● The ‘Ontology Definition Viewpoint’ (ODV), which defines the Ontology for
the AF. It is derived from the ‘AFCV’ and defines the concepts that can appear
on a Viewpoint.

● The ‘Viewpoint Relationships Viewpoint’ (VRV), which shows the relation-
ships between the Viewpoints that make up an AF and groups them into Per-
spectives. It is derived from the ‘ODV’.

● The ‘Viewpoint Context Viewpoint’ (VCV), which defines the Context for a
particular Viewpoint. That is, it represents the Viewpoint Concerns in context
for a particular Viewpoint, establishing why the Viewpoint is needed. It is
derived from the ‘AFCV’.

● The ‘Viewpoint Definition Viewpoint’ (VDV), which defines a particular
Viewpoint, showing the Viewpoint Elements (and hence the Ontology Ele-
ments) that appear on the Viewpoint.

● The ‘Rules Definition Viewpoint’ (RDV), which defines the various Rules that
constrain the AF.

The six Viewpoints are collected into a single Perspective, the ‘AF Perspective’, as
shown by the enclosing package in Figure 11.4.

Each of these Viewpoints is expanded upon in the following section.

11.2.3 The Viewpoints
The six FAF Viewpoints are defined and discussed in the following subsections.
For each Viewpoint, there are five subsections:

● Viewpoint Rationale, which discusses the rationale for the Viewpoint.
● Viewpoint Definition, which identifies the parts of the MBSE ontology that are

shown on each Viewpoint.
● Viewpoint Relationships, which defines the Viewpoint and identifies its rela-

tionships to other Viewpoints.
● Viewpoint Visualisation, which gives an example of a View that visualises the

Viewpoint.
● Viewpoint Discussion, which discusses issues and aspects of the Viewpoint.

It is worth re-emphasising here the difference between a Viewpoint and a View:

● An AF is made up of a number of Viewpoints that define the information that
can be presented.

● An Architecture is based on an AF. It is made up of Views, with each View a
realisation of a Viewpoint.

● Viewpoints define the information that can be presented; it is a definition of
what can be produced when an Architecture is based on an AF.

● A View is an artefact, produced as part of an Architecture. It describes an
aspect of that Architecture. If the Architecture is created using an AF, then
every View will conform to a Viewpoint in the AF.

When using FAF, things get interesting. Because FAF is a meta-AF, the result of
using FAF will be both an Architecture (since an Architecture is essentially the
realisation of an AF) and an AF (since FAF is a meta-AF).

430 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

For example, when using FAF to define an AF, one can produce a Viewpoint
Definition View for a particular Viewpoint of the AF being defined. This conforms
to the FAF VDV (see Section 11.2.3.5 below) since it defines a Viewpoint made up
of a number of Viewpoint Element. It is a View (when looked at from the point of
view of FAF) that conforms to a FAF Viewpoint. However, it is also a Viewpoint of
the AF that is being developed using FAF, since it will be realised by a View in an
Architecture based on the defined AF.

For example, Chapter 12 defines parts of an AF for use in the case study. This
AF is defined using FAF. There is a Viewpoint Definition View (a View con-
forming to the FAF VDV) that defines the System Identification Viewpoint (a
Viewpoint of the defined AF).

This discussion of Viewpoints and Views has been included here because of a
convention that has been adopted by the authors in the ‘Relationships with Other
Viewpoints’ subsections of each of the six Viewpoints. Although the diagrams in
these subsections show relationships between Viewpoints, the explanatory text will
discuss the relationships in terms of Views, since the relationship actually holds
between the Views that conform to the Viewpoints. If this all sounds too confusing,
do not worry about it. The examples in Chapters 12 and 13 will make things clear.

11.2.3.1 The AF Context Viewpoint
The AFCV defines the Context for an AF. That is, it represents the AF Concerns in
context, establishing why the AF is needed.

Viewpoint Rationale
The Viewpoint Concerns that the AFCV is intended to address are shown in the
diagram in Figure 11.5.

AF Context Viewpoint

«concern»
Allow needs that the AF

is to address to be
captured

«stakeholder role»
Systems Modeller

«stakeholder role»
Sponsor

«concern»
Identify AF needs

«concern»
Identify AF

stakeholder roles

«concern»
Understand relationships

between needs

«include»

«include»
«include»

Figure 11.5 AF Context Viewpoint Context

Architectures and Architectural Frameworks with MBSE 431

Figure 11.5 shows the Viewpoint Concerns (a type of Need) that the AFCV
must address shown in context as Use Cases, together with relevant Stakeholder
Roles. The main Use Case, taken from the Context for the definition of an AF
framework (see Figure 11.2), is to ‘Allow needs that the AF is to address to be
captured’; the AFCV exists solely to capture the Needs (in fact, the AF Concerns,
which are types of Needs) of the AF being defined.

In order to do this, it is necessary to be able to:

● ‘Identify AF needs’ – Identify the Needs that the AF is being created to
address.

● ‘Understand relationships between needs’ – Understand any relationships
between the Needs that the AF is being created to address.

● ‘Identify AF stakeholder roles’ – Identify the Stakeholder Roles involved in
definition of the AF and that have an interest in or are impacted by the iden-
tified Needs.

As identified in Figure 11.2, the two key Stakeholder Roles involved are (through
the «include» relationships from ‘Define an AF for creating AFs’): the ‘Sponsor’
and the ‘Systems Modeller’.

Viewpoint Definition
The subset of the MBSE Ontology that relates to AFs is shown in Figure 11.6, with
the relevant Ontology Elements highlighted.

«ontology element»
Viewpoint Element

«ontology element»
Architectural Framework

«ontology element»
Architectural Framework

Concern

«ontology element»
Architecture

«ontology element»
Ontology

«ontology element»
Ontology Element

«ontology element»
Perspec�ve

«ontology element»
Standard

«ontology element»
View

«ontology element»
View Element

«ontology element»
Viewpoint

«ontology element»
Viewpoint Concern

«ontology element»
Rule

{via}

«ontology element»
System

1

describes structure
of 1

1..*

uses elements from

1

1

is related to

1..*

1..*

1

1..*

1

1..*

corresponds to

1

1..*

1

1..*

describes

1..*

1..*
is derived from

1..*

1..*

1

1

provides
provenance
for

1..*

1represents
need for

1..*1..*

1

1..*

conforms to

1

1

1

1

is related to

1..*

1

collects
together

1..*

1
collects together

1..*

1

complies with

0..*

1

is related to

0..*
1..*

represents need for

1

1..*

constrains

1

1..*

visualises

1

1

is related to

1..*

Figure 11.6 Definition of the AF Context Viewpoint

432 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 11.6 shows that the Ontology Elements relevant to the
AFCV are the ‘AF’ and the ‘AF Concern’.

Viewpoint Relationships
The AFCV is defined in the diagram in Figure 11.7.

Figure 11.7 defines the content of the ‘AFCV’. The ‘AFCV’ is a type of
‘Context’ and is made up of a ‘Boundary’, one or more ‘Stakeholder Role’, that are
outside the ‘Boundary’, and one or more ‘Use Case’ that are inside the ‘Boundary’.

Each ‘Use Case’ describes an ‘AF Concern’ (a type of ‘Need’) in a ‘Context’
for the ‘AF’, which yields observable results to one or more ‘Stakeholder Role’.
Each ‘Use Case’ may interact with a number of other ‘Use Case’.

Note that Figure 11.7 makes use of Ontology Elements that do not appear in
Figure 11.3. These Ontology Elements (such as Context) do appear on the full
MBSE ontology discussed in Chapter 3. For a full discussion of the concepts behind
the ‘Context’, see Chapter 9.

The ‘AFCV’ is the cornerstone of the FAF and as such does not relate to any
other Viewpoint, although there are a number of other Viewpoints that relate to it
(as will be seen in the descriptions of the other Viewpoints later in this section).

Viewpoint Visualisation
The AFCV is usually visualised using a use case diagram. An example AF Context
View is shown in Figure 11.8.

«ontology element»
Context

«ontology element»
Boundary

«ontology element»
Stakeholder Role

«ontology element»
Need

«ontology element»
Concern

«ontology element»
Architectural Framework

Concern

«ontology element»
Use Case

«viewpoint»
AF Context Viewpoint

1

interacts
with

0..*

1

defines point of view of
1

1

1..*
is within

1

1..*

is outside

1

1..*

describes the
context of

1..*

1..*
yields an observable result to

1..*

1..*

1..*

1

Figure 11.7 Relationships between AF Context Viewpoint and other Views

Architectures and Architectural Frameworks with MBSE 433

Figure 11.8 is an example AF Context View. Note here the use of View rather
than Viewpoint. Figure 11.8 is the realisation of an AFCV and hence is a View, as
shown in the diagram frame. Note also the use of the Viewpoint ID as the frame tag
in the diagram frame. This is consistent with the diagramming guidelines described
in Chapter 6.

Note also that the AF Context View shown is, in fact, the Context that was
presented for the definition of an AF shown in Figure 11.2. This is because the FAF
was itself defined using FAF.

Viewpoint Discussion
The AFCV is central to the FAF. Any AF that is defined using FAF must be based
on documented AF Concerns. The purpose of the AFCV is to capture Use Cases
that represent such Concerns in Context. An AF Context View that realises the
AFCV documents those AF Concerns.

In the section titled ‘Viewpoint Visualisation’ earlier in this section, the
example AF Context View was visualised using a use case diagram. This is the

AFCV [Package] Architectural Framework Context View [AFCV - FAF]

AF Framework Context

«stakeholder role»
Domain Expert

«stakeholder role»
Systems Modeller

«concern»
Allow needs that the AF is to

address to be captured

«concern»
Comply with best

practice

«concern»
Define an architectural
framework for creating

architectural frameworks

«stakeholder role»
Sponsor

«stakeholder role»
Standard

«concern»
Support definition of

architectural framework rules

«concern»
Support definition of

ontology for AF domain

«concern»
Support definition of
viewpoint content

«concern»
Support definition of

viewpoint needs

«concern»
Support identification of

grouping of viewpoints into
perspectives

«concern»
Support identification of relationships

between viewpoints

«concern»
Support identification of

required viewpoints

«include»

«include»

«include»

«include» «include»

«include»

«include»

«constrain»

«include»

Figure 11.8 Example AF Context View for an Architectural Framework
Framework

434 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

minimum visualisation that is needed. Given that the AF Context View essentially
captures Needs, it would be possible to use the entire ACRE approach as described
in Chapter 9, producing a number of different Views to visualise the AFCV.

11.2.3.2 The Ontology Definition Viewpoint
The ODV defines the Ontology for the AF. It is derived from the AFCV and defines
the concepts that can appear on a Viewpoint.

Viewpoint Rationale
The Viewpoint Concerns that the ODV is intended to address are shown in the
diagram in Figure 11.9.

Figure 11.9 shows the Viewpoint Concerns (a type of Need) that the ODV must
address shown in context as Use Cases, together with relevant Stakeholder Roles.
The main Use Case, taken from the Context for the definition of an AF framework
(see Figure 11.2), is to ‘Support definition of ontology for AF domain’; the ODV
exists to define the Ontology that defines all the concepts and terms (Ontology

Ontology Definition Viewpoint

«concern»
Support definition of

ontology for AF domain

«concern»
Identify ontology

elements

«concern»
Identify ontology

relationships

«concern»
Identify ontology

areas

«stakeholder role»
Systems Modeller

«stakeholder role»
Domain Expert

«stakeholder role»
Sponsor

«include»

«include»

«include»

Figure 11.9 Ontology Definition Viewpoint Context

Architectures and Architectural Frameworks with MBSE 435

Elements) that relate to any Architecture structured according to the AF that is
being defined.

The main Use Cases that must be addressed are to

● ‘Identify ontology elements’ – Identify the Ontology Elements for the domain
in which the AF will be used.

● ‘Identify ontology relationships’ – Identify the relationships between the
Ontology Elements. Such relationships are equally as important a part of the
Ontology defined using this Viewpoint as are the Ontology Elements.

● ‘Identify ontology areas’ – When defining an Ontology, it is often useful to
group together related Ontology Elements. For example, when defining an
Ontology for systems engineering, one could expect to see groupings of
Ontology Element related to the concepts of System, Life Cycle, Process,
Project etc. Such groupings are useful when defining an AF, as they help to
identify the Perspectives into which the Viewpoints, and the Views based on
them, are grouped.

As identified in Figure 11.2, the three key Stakeholder Roles involved in the main
need to ‘Support definition of ontology for AF domain’ are (through the «include»
relationships from ‘Define an AF for creating AFs’ and directly): the ‘Sponsor’, the
‘Systems Modeller’ and the ‘Domain Expert’.

Viewpoint Definition
The subset of the MBSE Ontology that relates to AFs is shown in Figure 11.10,
with the relevant Ontology Elements highlighted.

The diagram in Figure 11.10 shows that the Ontology Elements relevant to the
‘ODV’ are the ‘Ontology’ and the ‘Ontology Element’.

Viewpoint Relationships
The ODV is defined in the diagram in Figure 11.11.

Figure 11.11 shows that the ‘ODV’ is made up of an ‘Ontology’ that is itself
made up of one or more ‘Ontology Element’ that are related to each other. It is
important to note that the relationships between any ‘Ontology Element’ are
themselves an important part of the ‘Ontology’.

While not directly related to any elements that appear on an ‘AF Context
View’, an ‘Ontology Definition View’ is nonetheless derived from the information
described by an ‘AF Context View’.

Viewpoint Visualisation
The ODV is usually visualised using a block definition diagram. An example
Ontology Definition View is shown in Figure 11.12.

Figure 11.12 is an example Ontology Definition View. Note here the use of
View rather than Viewpoint. Figure 11.12 is the realisation of an ODV and hence is
a View, as shown in the diagram frame. Note also the use of the Viewpoint ID as
the frame tag in the diagram frame. This is consistent with the diagramming
guidelines described in Chapter 6.

436 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

«viewpoint»
AF Context Viewpoint

«viewpoint»
Ontology Definition

Viewpoint

«ontology element»
Ontology Element

«ontology element»
Ontology

1

1

1..*

1

1

is related to

1..*

1

is derived
from

1

Figure 11.11 Relationships between Ontology Definition Viewpoint and
other Views

«ontology element»
Viewpoint Element

«ontology element»
Architectural Framework

«ontology element»
Architectural Framework

Concern

«ontology element»
Architecture

«ontology element»
Ontology

«ontology element»
Ontology Element

«ontology element»
Perspective

«ontology element»
Standard

«ontology element»
View

«ontology element»
View Element

«ontology element»
Viewpoint

«ontology element»
Viewpoint Concern

«ontology element»
Rule

{via}

«ontology element»
System

1

describes structure
of 1

1..*

uses elements from

1

1

is related to

1..*

1..*

1

1..*

1

1..*

corresponds to

1

1..*

1

1..*

describes

1..*

1..*
is derived from

1..*

1..*

1

1

provides
provenance
for

1..*

1represents
need for

1..*1..*

1

1..*

conforms to

1

1

1

1

is related to

1..*

1

collects
together

1..*

1
collects together

1..*

1

complies with

0..*

1

is related to

0..*
1..*

represents need for

1

1..*

constrains

1

1..*

visualises

1

1

is related to

1..*

Figure 11.10 Definition of the Ontology Definition Viewpoint

Note also that the Ontology Definition View shown is, in fact, the Ontology
that was presented for Architectures and AFs in Chapter 3 and also shown in
Figure 11.3. This is because the FAF was itself defined using FAF.

Viewpoint Discussion
Whenever an AF is defined, it is essential that the concepts that can appear on the
Viewpoints are clearly documented. This helps to ensure that each Viewpoint is
defined using a consistent and related set of concepts. These concepts and the
relationships between them form an Ontology and the ODV is used to visualise this
Ontology. Whereas the AFCV is essential to establish the Needs for the AF (so we
know why we are defining an AF and know what Needs it has to address), the
Ontology Definition View is essential to establish the consistency between
Viewpoints.

Although the Ontology Definition View in Figure 11.12 is shown as a single
block definition diagram, this does not mean that only a single block definition
diagram needs be produced. If necessary the Ontology Definition View can be
visualised using a number of diagrams, showing different Ontology Elements or
showing Ontology Elements at different levels of detail.

ODV [Package] Ontology Definition View [ODV - FAF]

«ontology element»
Viewpoint Element

«ontology element»
Architectural Framework

«ontology element»
Architectural Framework

Concern

«ontology element»
Architecture

«ontology element»
Ontology

«ontology element»
Ontology Element

«ontology element»
Perspective

«ontology element»
Standard

«ontology element»
View

«ontology element»
View Element

«ontology element»
Viewpoint

«ontology element»
Viewpoint Concern

«ontology element»
Rule

{via}

«ontology element»
System

1

describes structure
of 1

1..*

uses elements from

1

1

is related to

1..*

1..*

1

1..*

1

1..*

corresponds to

1

1..*

1

1..*

describes

1..*

1..*
is derived from

1..*

1..*

1

1

provides
provenance
for

1..*

1
represents
need for

1..*1..*

1

1..*

conforms to

1

1

1

1

is related to

1..*

1

collects
together

1..*

1
collects together

1..*

1

complies with

0..*

1

is related to

0..*
1..*

represents need for

1

1..*

constrains

1

1..*

visualises

1

1

is related to

1..*

Figure 11.12 Example Ontology Definition View for an Architectural
Framework Framework

438 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

11.2.3.3 The Viewpoint Relationships Viewpoint
The VRV shows the relationships between the Viewpoints that make up an AF and
groups them into Perspectives. It is derived from the ODV.

Viewpoint Rationale
The Viewpoint Concerns that the VRV is intended to address are shown in the
diagram in Figure 11.13.

Figure 11.13 shows the Viewpoint Concerns (a type of Need) that the VRV
must address shown in context as Use Cases, together with relevant Stakeholder
Roles. The main Use Case, taken from the Context for the definition of an AF
framework (see Figure 11.2), is to ‘Support identification of required viewpoints’,
which includes ‘Support identification of relationships between viewpoints’ and

Viewpoint Rela�onships Viewpoint

«concern»
Support iden�fica�on of

required viewpoints

«concern»
Support iden�fica�on of

grouping of viewpoints into
perspec�ves

«concern»
Support iden�fica�on of
rela�onships between

viewpoints

«concern»
Be consistent with the overall

needs of the architectural
framework

«concern»
Be consistent with ontology
areas defined on ontology«stakeholder role»

Domain Expert

«stakeholder role»
Sponsor

«stakeholder role»
Systems Modeller

«constrain»

«include»

«include»

«constrain»

Figure 11.13 Viewpoint Relationship Viewpoint Context

Architectures and Architectural Frameworks with MBSE 439

‘Support identification of grouping of viewpoints into perspectives’. The VRV
exists to identify the Viewpoints that make up the AF, to show how they are related
to each other and to show how they are grouped into Perspectives.

The Use Cases for this Viewpoint are subject to two constraints:

● ‘Support identification of required viewpoints’ is constrained by the Need to
‘Be consistent with overall needs of the AF’. The Viewpoints identified as
being required in the AF must meet the Needs for the AF as defined on the
AFCV.

● ‘Support identification of grouping of viewpoints into perspectives’ is con-
strained by the need to ‘Be consistent with ontology areas defined for ontol-
ogy’. While it is not essential that the Perspectives identified on the VRV
should be the same as the groupings of Ontology Elements, as identified on the
ODV, keeping them in accord with each other can help with consistency and to
ensure that the Viewpoints defined cover the whole of the Ontology.

As identified in Figure 11.2, the two key Stakeholder Roles involved in the
main need to ‘Support identification of required viewpoints’ are (through the
«include» relationships from ‘Define an AF for creating AFs’): the ‘Sponsor’ and
the ‘Systems Modeller’. The ‘Domain Expert’ is also a key Stakeholder Role
with an interest in the need to ‘Be consistent with ontology areas defined on for
ontology’.

Viewpoint Definition
The subset of the MBSE Ontology that relates to AFs is shown in Figure 11.14,
with the relevant Ontology Elements highlighted.

The diagram in Figure 11.14 shows that the Ontology Elements relevant to the
‘VRV’ are the ‘Viewpoint’ and the ‘Perspective’.

Viewpoint Relationships
The VRV is defined in the diagram in Figure 11.15.

Figure 11.15 shows that the ‘VRV’ is made up of one or more ‘Viewpoints’
and one or more ‘Perspectives’. It shows how a ‘Viewpoint’ may be related to
others and also shows how one or more ‘Viewpoint’ can be collected into a
‘Perspective’.

A ‘Viewpoint Relationships View’ (an actual instance of a ‘Viewpoint Rela-
tionship Viewpoint’) is derived from an ‘Ontology Definition View’ (an actual
instance of an ‘ODV’), which informs the identification and grouping of each
‘Viewpoint’ that appear on the ‘Viewpoint Relationships View’. Each ‘Viewpoint’
identified on a ‘Viewpoint Relationships View’ must have been defined on a
‘Viewpoint Definition View’.

Viewpoint Visualisation
The VRV is usually visualised using a block definition diagram. An example
Viewpoint Relationships View is shown in Figure 11.16.

440 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

«viewpoint»
Ontology Defini�on

Viewpoint

«viewpoint»
Viewpoint Defini�on

Viewpoint

«ontology element»
Viewpoint

«viewpoint»
Viewpoint Rela�onships

Viewpoint

«ontology element»
Perspec�ve

1

is derived from

1

1
is related to

1..*

1..

1..

1collects together

1..*

1..*

1

1..*

1

defines rela�onships between
viewpoints defined in

11..*

defines viewpoints using
elements from

1

Figure 11.15 Relationships between Viewpoint Relationships Viewpoint
and other Views

«ontology element»
Viewpoint Element

«ontology element»
Architectural Framework

«ontology element»
Architectural Framework

Concern

«ontology element»
Architecture

«ontology element»
Ontology

«ontology element»
Ontology Element

«ontology element»
Perspective

«ontology element»
Standard

«ontology element»
View

«ontology element»
View Element

«ontology element»
Viewpoint

«ontology element»
Viewpoint Concern

«ontology element»
Rule

{via}

«ontology element»
System

1

describes structure
of 1

1..*

uses elements from

1

1

is related to

1..*

1..*

1

1..*

1

1..*

corresponds to

1

1..*

1

1..*

describes

1..*

1..*
is derived from

1..*

1..*

1

1

provides
provenance
for

1..*

1represents
need for

1..*1..*

1

1..*

conforms to

1

1

1

1

is related to

1..*

1

collects
together

1..*

1collects together

1..*

1

complies with

0..*

1

is related to

0..*
1..*

represents need for

1

1..*

constrains

1

1..*

visualises

1

1

is related to

1..*

Figure 11.14 Definition of the Viewpoint Relationships Viewpoint

Architectures and Architectural Frameworks with MBSE 441

Figure 11.16 is an example Viewpoint Relationships View. Note here the use
of View rather than Viewpoint. Figure 11.16 is the realisation of a VRV and hence
is a View, as shown in the diagram frame. Note also the use of the Viewpoint ID as
the frame tag in the diagram frame. This is consistent with the diagramming
guidelines described in Chapter 6.

Note also that the Viewpoint Relationships View shown is, in fact, the diagram
identifying Viewpoints and Perspectives that was presented in Figure 11.4. This is
because the FAF was itself defined using FAF.

Viewpoint Discussion
The purpose of the VRV is threefold. It can be used to show all the Viewpoints in
an AF; it shows the relationships between the Viewpoints (important for estab-
lishing consistency in the AF); it shows the grouping of Viewpoints into Perspec-
tives (often useful for presentation of AFs, particularly if issued as documents,
where each Perspective can be issued as a separate document).

The example in Figure 11.16 shows a single Perspective, simply because the
AF that it relates to (the FAF) has a single concern. The AF defined for the case
study in Chapter 12 has multiple Perspectives.

Each Perspective and its Viewpoints can be represented as separate block
definition diagrams or multiple Perspectives can be shown on a single block defi-
nition diagram. Such a Viewpoint Relationships View is often hard to read and is
known to some systems engineers as the viewpoint quagmire. See [3,4].

VRV [Package] Viewpoint Relationships View [VRV - FAF]

«perspective»
Architectural Framework Perspective

«viewpoint»
AF Context Viewpoint

«viewpoint»
Ontology Definition Viewpoint

«viewpoint»
Viewpoint Relationships Viewpoint

«viewpoint»
Rules Definition Viewpoint

«viewpoint»
Viewpoint Context Viewpoint

«viewpoint»
Viewpoint Definition Viewpoint

{The Rules Definition Viewpoint is
related to ALL the other Viewpoints
and defines the Rules that constrain
the Architectural Framework.

Relationships to other Viewpoints are
omitted from this diagram for clarity.}

1..*

defines viewpoints using
elements from

1

1

is derived from

1

1

is derived from

1

1..*

is derived from

1

1

defines relationships between viewpoints defined in

11

defines viewpoint to meet needs from

1

Figure 11.16 Example Viewpoint Relationships View for an Architectural
Framework Framework

442 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

11.2.3.4 The Viewpoint Context Viewpoint
The VCV defines the Context for a particular Viewpoint. That is, it represents the
Viewpoint Concerns in context for a particular Viewpoint, establishing why the
Viewpoint is needed. It is derived from the AFCV.

Viewpoint Rationale
The Viewpoint Concerns that the VCV is intended to address are shown in the
diagram in Figure 11.17.

Figure 11.17 shows the Viewpoint Concerns (a type of Need) that the VCV
must address shown in context as Use Cases, together with relevant Stakeholder
Roles. The main Use Case, taken from the Context for the definition of an AF
framework (see Figure 11.2), is to ‘Support definition of viewpoint needs’; the
VCV exists to capture the Needs (in fact, the Viewpoint Concerns, which are types
of Needs) of a Viewpoint being defined. In order to do this, it is necessary to ‘Be
consistent with needs of AF’ and to be able to

● ‘Identify viewpoint needs’ – Identify the Needs that the Viewpoint is being
created to address.

● ‘Understand relationships between needs’ – Understand any relationships
between the Needs that the Viewpoint is being created to address.

● ‘Identify viewpoint stakeholder roles’ – Identify the Stakeholder Roles
involved in the definition of the Viewpoint and that have an interest in or are
impacted by the identified Needs.

Viewpoint Context Viewpoint

«concern»
Support definition of

viewpoint needs

«concern»
Identify viewpoint

needs

«concern»
Understand relationships

between needs

«concern»
Identify viewpoint
stakeholder roles

«concern»
Be consistent with

needs of AF

«stakeholder role»
Systems Modeller

«stakeholder role»
Sponsor

«include»

«include»

«constrain»

«include»

Figure 11.17 Viewpoint Context Viewpoint Context

Architectures and Architectural Frameworks with MBSE 443

As identified in Figure 11.2, the two key Stakeholder Roles involved are (through
the «include» relationships from ‘Define an AF for creating AFs’): the ‘Sponsor’
and the ‘Systems Modeller’.

Viewpoint Definition
The subset of the MBSE Ontology that relates to AFs is shown in Figure 11.18,
with the relevant Ontology Elements highlighted.

The diagram in Figure 11.18 shows that the Ontology Elements relevant to the
‘VCV’ are the ‘Viewpoint’ and the ‘Viewpoint Concern’.

Viewpoint Relationships
The VCV is defined in the diagram in Figure 11.19.

Figure 11.19 defines the content of the ‘VCV’. The ‘VCV’ is a type of ‘Con-
text’ and is made up of a ‘Boundary’, one or more ‘Stakeholder Role’ that are
outside the ‘Boundary’, and one or more ‘Use Case’ that are inside the ‘Boundary’.

Each ‘Use Case’ describes a ‘Viewpoint Concern’ (a type of ‘Need’) in ‘Con-
text’ for the ‘Viewpoint’, which yields observable results to one or more ‘Stake-
holder Role’. Each ‘Use Case’ may interact with a number of other ‘Use Case’.

«ontology element»
Viewpoint Element

«ontology element»
Architectural Framework

«ontology element»
Architectural Framework

Concern

«ontology element»
Architecture

«ontology element»
Ontology

«ontology element»
Ontology Element

«ontology element»
Perspective

«ontology element»
Standard

«ontology element»
View

«ontology element»
View Element

«ontology element»
Viewpoint

«ontology element»
Viewpoint Concern

«ontology element»
Rule

{via}

«ontology element»
System

1

describes structure
of 1

1..*

uses elements from

1

1

is related to

1..*

1..*

1

1..*

1

1..*

corresponds to

1

1..*

1

1..*

describes

1..*

1..*
is derived from

1..*

1..*

1

1

provides
provenance
for

1..*

1represents
need for

1..*1..*

1

1..*

conforms to

1

1

1

1

is related to

1..*

1

collects
together

1..*

1
collects together

1..*

1

complies with

0..*

1

is related to

0..*
1..*

represents need for

1

1..*

constrains

1

1..*

visualises

1

1

is related to

1..*

Figure 11.18 Definition of the Viewpoint Context Viewpoint

444 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Note that Figure 11.19 makes use of Ontology Elements that do not appear in
Figure 11.3. These Ontology Elements (such as Context) do appear on the full
MBSE discussed in Chapter 3. For a full discussion of the concepts behind the
‘Context’, see Chapter 9.

Each ‘VCV’ is derived from the ‘AFCV’.

Viewpoint Visualisation
The VCV is usually visualised using a use case diagram. An example Viewpoint
Context View is shown in Figure 11.20.

Figure 11.20 is an example Viewpoint Context View. Note here the use of
View rather than Viewpoint. Figure 11.20 is the realisation of a VCV and hence is a
View, as shown in the diagram frame. Note also the use of the Viewpoint ID as the
frame tag in the diagram frame. This is consistent with the diagramming guidelines
described in Chapter 6.

Note also that the example Viewpoint Context View shown is, in fact, that for
the Viewpoint that the View realises. It is the Viewpoint Context View for the
VCV. This is because the FAF was itself defined using FAF, and thus, every
Viewpoint must have a Viewpoint Context View, including the VCV itself!

«ontology element»
Context

«ontology element»
Boundary

«ontology element»
Stakeholder Role

«ontology element»
Need

«ontology element»
Concern

«ontology element»
Use Case

«viewpoint»
AF Context Viewpoint

«ontology element»
Viewpoint Concern

«viewpoint»
Viewpoint Context

Viewpoint

1

interacts
with

0..*

1..*
is derived from

1

1

defines point of view of

1

1

1..*
is within

1

1..*

is outside

1

1..*

describes the
context of

1..*

1..*

yields an observable result to
1..*

1..*

1..*

1

Figure 11.19 Relationships between Viewpoint Context Viewpoint and other Views

Architectures and Architectural Frameworks with MBSE 445

Viewpoint Discussion
The VCV is central to the definition of any Viewpoint. The purpose of the VCV is
to capture Viewpoint Concerns that a Viewpoint must address, so that the purpose
of the Viewpoint is understood. A Viewpoint Context View that realises the VCV
documents those Viewpoint Concerns.

In the section titled ‘Viewpoint Visualisation’ earlier in this section, the
example Viewpoint Context View was visualised using a use case diagram. This is
the minimum visualisation that is needed. Given that the Viewpoint Context View
essentially captures Needs, it would be possible to use the entire ACRE approach
as described in Chapter 9, producing a number of different Views to visualise
the VCV.

11.2.3.5 The Viewpoint Definition Viewpoint
The VDV defines a particular Viewpoint, showing the Viewpoint Elements (and
hence the Ontology Elements) that appear on the Viewpoint.

Viewpoint Rationale
The Viewpoint Concerns that the VDV is intended to address are shown in the
diagram in Figure 11.21.

VCV [Package] Viewpoint Context Views [VCV - VCVp - FAF]

Viewpoint Context Viewpoint

«concern»
Support definition of

viewpoint needs

«concern»
Identify viewpoint

needs

«concern»
Understand relationships

between needs

«concern»
Identify viewpoint
stakeholder roles

«concern»
Be consistent with

needs of AF

«stakeholder role»
Systems Modeller

«stakeholder role»
Sponsor

«constrain»

«include»

«include»

«include»

Figure 11.20 Example Viewpoint Context View for the Viewpoint
Context Viewpoint

446 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Figure 11.21 shows the Viewpoint Concerns (a type of Need) that the VDV
must address shown in context as Use Cases, together with relevant Stakeholder
Roles. The main Use Case, taken from the Context for the definition of an AF
framework (see Figure 11.2), is to ‘Support definition of viewpoint content’; the
VDV exists to define the contents of a Viewpoint. In order to do this, it is necessary
to ‘Be consistent with needs of viewpoint’. That is, the Viewpoint must be defined
in such a way that it meets its Needs (or, more precisely, its Viewpoint Concerns),
described on its associated VCV.

The main needs that must be addressed are to

● ‘Identify viewpoint elements’ – Identify the Viewpoint Elements that will
appear on the Viewpoint.

● ‘Identify viewpoint relationships’ – Identify any relationships between the
Viewpoint Elements that appear on the Viewpoint.

Both of these Needs are constrained by

● ‘Conform to ontology’ – Every Viewpoint Element (and relationship) that can
appear on a Viewpoint must correspond to an Ontology Element (or relation-
ship) from the Ontology. Nothing can appear on a Viewpoint that does not
exist on the Ontology.

As identified in Figure 11.2, the two key Stakeholder Roles involved in the main
need to ‘Support definition of viewpoint content’ are (through the «include» rela-
tionships from ‘Define an AF for creating AFs’): the ‘Sponsor’ and the ‘Systems

Viewpoint Definition Viewpoint

«concern»
Support definition of
viewpoint content

«concern»
Identify viewpoint

elements

«concern»
Identify viewpoint

relationships

«concern»
Be consistent with needs

of viewpoint

«concern»
Conform to ontology

«stakeholder role»
Domain Expert

«stakeholder role»
Sponsor

«stakeholder role»
Systems Modeller

«include»

«include»

«constrain»

«constrain»

«constrain»

Figure 11.21 Viewpoint Definition Viewpoint Context

Architectures and Architectural Frameworks with MBSE 447

Modeller’. The ‘Domain Expert’ role is also involved, given the constraint imposed
by the need to ‘Conform to ontology’.

Viewpoint Definition
The subset of the MBSE Ontology that relates to AFs is shown in Figure 11.22,
with the relevant Ontology Elements highlighted.

The diagram in Figure 11.22 shows that the Ontology Elements relevant to the
‘VDV’ are the ‘Viewpoint’, ‘Viewpoint Element’ and the ‘Ontology Element’.

Viewpoint Relationships
The VDV is defined in the diagram in Figure 11.23.

Figure 11.23 shows that the ‘VDV’ defines a ‘Viewpoint’ that is made up of
one or more related ‘Viewpoint Element’. A ‘Viewpoint’ has a ‘Name’, an ‘ID’ and
a ‘Description’. The ‘ID’ property of a ‘Viewpoint’ is typically used as a shorthand
abbreviation by which the ‘Viewpoint’ can be named. For example, the ‘ID’ of the
‘Viewpoint Definition Viewpoint’ is ‘VDV’.

«ontology element»
Viewpoint Element

«ontology element»
Architectural Framework

«ontology element»
Architectural Framework

Concern

«ontology element»
Architecture

«ontology element»
Ontology

«ontology element»
Ontology Element

«ontology element»
Perspective

«ontology element»
Standard

«ontology element»
View

«ontology element»
View Element

«ontology element»
Viewpoint

«ontology element»
Viewpoint Concern

«ontology element»
Rule

{via}

«ontology element»
System

1

describes structure
of 1

1..*

uses elements from

1

1

is related to

1..*

1..*

1

1..*

1

1..*

corresponds to

1

1..*

1

1..*

describes

1..*

1..*
is derived from

1..*

1..*

1

1

provides
provenance
for

1..*

1represents
need for

1..*1..*

1

1..*

conforms to

1

1

1

1

is related to

1..*

1

collects
together

1..*

1
collects together

1..*

1

complies with

0..*

1

is related to

0..*
1..*

represents need for

1

1..*

constrains

1

1..*

visualises

1

1

is related to

1..*

Figure 11.22 Definition of the Viewpoint Definition Viewpoint

448 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Every ‘Viewpoint Definition View’ (an actual instance of a ‘VDV’) is directly
related to an ‘Ontology Definition View’ (an actual instance of an ‘ODV’), as a
‘Viewpoint’ uses elements from an ‘Ontology’ through each ‘Viewpoint Element’
making up the ‘Viewpoint’. Each ‘Viewpoint Element’ must correspond to an
‘Ontology Element’ from the ‘Ontology’ that is realised by an ‘Ontology Definition
View’. Each ‘VDV’ defines a Viewpoint to meet the Needs described on its cor-
responding ‘VCV’.

Viewpoint Visualisation
The VDV is usually visualised using a block definition diagram. An example
Viewpoint Definition View is shown in Figure 11.24.

Figure 11.24 is an example Viewpoint Definition View. Note here the use of
View rather than Viewpoint. Figure 11.24 is the realisation of a VDV and hence is a
View, as shown in the diagram frame. Note also the use of the Viewpoint ID as the
frame tag in the diagram frame. This is consistent with the diagramming guidelines
described in Chapter 6.

Note also that the example Viewpoint Definition View shown is, in fact, that
for the Viewpoint that the View realises. It is the Viewpoint Definition View for the
VDV. This is because the FAF was itself defined using FAF, and thus every
Viewpoint must have a Viewpoint Definition View, including the VDV itself!

«viewpoint»
Viewpoint Context

Viewpoint

«viewpoint»
Ontology Definition

Viewpoint

«ontology element»
Ontology Element

«ontology element»
Ontology

«viewpoint»
Viewpoint Definition

Viewpoint

«ontology element»
Viewpoint

values
 ID : Text
 Description : Text
 Name : Text

«ontology element»
Viewpoint Element

1 is related to

0..*

1

defines viewpoint to meet needs from

1

1..*
corresponds to

1

1 is related to

1..*

1..*

1

1

1

1

is related to

1..*

1..*

uses
elements
from1

1..*

1

1..*

defines viewpoints using
elements from

1

1..

1..

Figure 11.23 Relationships between Viewpoint Definition Viewpoint
and other Views

Architectures and Architectural Frameworks with MBSE 449

Viewpoint Discussion
The VDV is used to define a Viewpoint, showing which Ontology Elements can
appear on the Viewpoint. Often it is possible to realise a Viewpoint in a number of
ways. For example, an RDV could be realised as text in a document, text in a spread
sheet, a SysML block definition diagram or a UML class diagram, etc. If it is
important that the realisation for a Viewpoint be constrained, then the VDV can be
annotated to show how it should be realised. An example is shown in Figure 11.25.

Figure 11.25 shows the Viewpoint Definition View for the RDV. It has been
annotated using comments with the «realisation» stereotype to show how the
Viewpoint is to be realised. It can be seen from the diagram that the ‘RDV’ is to be
realised as a spread sheet, with Rules and relationships defined in the spread sheet
rows as described.

VDV [Package] Viewpoint Definition Views [VDV - VDVp - FAF]

«viewpoint»
Viewpoint Definition

Viewpoint

«ontology element»
Ontology Element

«ontology element»
Viewpoint

values
 ID : Text
 Description : Text
 Name : Text

«ontology element»
Viewpoint Element

1..

1..

1..*

corresponds to

1

1..*

1

1

is related to

1..*

Figure 11.24 Example Viewpoint Definition View for Viewpoint Definition
Viewpoint

450 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The authors would go so far as to say that realisation of all Viewpoints should
be defined. This ensures that all Views conforming to a Viewpoint will be realised
in the same way, helping to ensure consistency of approach and presentation by all
working on an Architecture based on the AF. It is also possible to show a number of
different visualisation options, rather than just a single one, which provides more
possibilities for different applications and projects.

11.2.3.6 The Rules Definition Viewpoint
The RDV defines the various Rules that constrain the AF.

Viewpoint Rationale
The Viewpoint Concerns that the RDV is intended to address are shown in the
diagram in Figure 11.26.

VDV [Package] Viewpoint Definition Views [VDV - RDVp - FAF - With Realisation]

«ontology element»
Architectural
Framework

«viewpoint»
Rules Definition

Viewpoint

«ontology element»
Rule

values
 ID : Text
 Description : Text

«realisation»
Spreadsheet

«realisation»
Row in spreadsheet for each Rule.
ID in column A. Description in
column B. Relationships to other
Rules in column C.

1..*

constrains

1

1..*

1

1
is related to

0..*

Figure 11.25 Example Viewpoint Definition View showing realisation

Architectures and Architectural Frameworks with MBSE 451

Figure 11.26 shows the Viewpoint Concerns (a type of Need) that the RDV
must address shown in context as Use Cases, together with relevant Stakeholder
Roles. The main Use Case, taken from the Context for the definition of an AF
framework (see Figure 11.2), is to ‘Support definition of AF rules’; the RDV exists
to define any Rules that constrain the AF. Note that such Rules can constrain any
aspect of the AF.

The main Use Cases that must be addressed are to

● ‘Define rules’ – Define any Rules that constrain the AF.
● ‘Define relationships between rules’ – Define any relationships between the

Rules. This allows complex Rules to be built up.

As identified in Figure 11.2, the key Stakeholder Role involved in the main need to
‘Support definition of AF rules’ is (through the «include» relationships from
‘Define an AF for creating AFs’): the ‘Systems Modeller’.

Viewpoint Definition
The subset of the MBSE Ontology that relates to AFs is shown in Figure 11.27,
with the relevant Ontology Elements highlighted.

The diagram in Figure 11.27 shows that the Ontology Elements relevant to the
‘RDV’ are the ‘AF’ and the ‘Rule’.

Viewpoint Relationships
The RDV is defined in the diagram in Figure 11.28.

Rules Definition Viewpoint

«concern»
Support definition of

architectural framework
rules

«stakeholder role»
Systems Modeller

«concern»
Define rules

«concern»
Define relationships

between rules

«include»

«include»

Figure 11.26 Rules Definition Viewpoint Context

452 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

«ontology element»
Viewpoint Element

«ontology element»
Architectural Framework

«ontology element»
Architectural Framework

Concern

«ontology element»
Architecture

«ontology element»
Ontology

«ontology element»
Ontology Element

«ontology element»
Perspective

«ontology element»
Standard

«ontology element»
View

«ontology element»
View Element

«ontology element»
Viewpoint

«ontology element»
Viewpoint Concern

«ontology element»
Rule

{via}

«ontology element»
System

1

describes structure
of 1

1..*

uses elements from

1

1

is related to

1..*

1..*

1

1..*

1

1..*

corresponds to

1

1..*

1

1..*

describes

1..*

1..*
is derived from

1..*

1..*

1

1

provides
provenance
for

1..*

1represents
need for

1..*1..*

1

1..*

conforms to

1

1

1

1

is related to

1..*

1

collects
together

1..*

1
collects together

1..*

1

complies with

0..*

1

is related to

0..*
1..*

represents need for

1

1..*

constrains

1

1..*

visualises

1

1

is related to

1..*

Figure 11.27 Definition of the Rules Definition Viewpoint

«ontology element»
Architectural Framework

«viewpoint»
Rules Definition Viewpoint

«ontology element»
Rule

{The Rules Definition Viewpoint is
related to ALL the other Viewpoints
and defines the Rules that constrain
the Architectural Framework.

Relationships to other Viewpoints are
omitted from this diagram for clarity.}

1

is related
to

0..*

1..*

constrains

1

1..*

1

Figure 11.28 Relationships between Rules Definition Viewpoint and other Views

Architectures and Architectural Frameworks with MBSE 453

Figure 11.28 shows that the ‘RDV’ is made up of one or more ‘Rule’. Each
‘Rule’ has an ‘ID’ and a ‘Description and may be related to one or more other
‘Rule’. A ‘Rule’ can constrain any aspect of an ‘AF’.

No explicit links are shown to the other parts of the framework, as is stated in
the constraint note on the diagram. A ‘Rule’ can constrain any aspect of an ‘AF’.
Explicitly showing this would require associations to every other Viewpoint and
Viewpoint Element.

Viewpoint Visualisation
The RDV can be visualised in a number of ways, depending on how the Rules
are to be defined. Common representations use text, block definition diagrams
and parametric diagrams. An example Rules Definition View is shown in
Figure 11.29.

Figure 11.29 is an example Rules Definition View that is realised using a block
definition diagram. Each block has the stereotype «Rule» to distinguish it from a
normal block. The Rule ID is used to name the block and the Rule Description is
represented as text, shown in the ‘Rule Text’ compartment of each block.

RDV [Package] Rules Definition View [RDV - FAF]

«rule»
AF01

notes
The definition of any Architectural
Framework must include at least one
instance (View) of each of the following
Viewpoints: AFCV; ODV; VRV; VCV; VDV;
RDV

«rule»
AF02

notes
Every Viewpoint in the Architectural
Framework must be defined on a
Viewpoint Definition Viewpoint.

«rule»
AF03

notes
Every Viewpoint Definition Viewpoint
must be based on a corresponding
Viewpoint Context Viewpoint.

«rule»
AF04

notes
Every Viewpoint in the Architectural
Framework must appear on the
Viewpoint Relationships Viewpoint.

«rule»
AF05

notes
Every Viewpoint in the Architectural
Framework must belong to one and
only one Perspective.

Figure 11.29 Example Rules Definition View for an Architectural Framework

454 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Note here the use of View rather than Viewpoint. Figure 11.29 is the realisation
of RDV and hence is a View, as shown in the diagram frame. Note also the use of
the Viewpoint ID as the frame tag in the diagram frame. This is consistent with the
diagramming guidelines described in Chapter 6.

Viewpoint Discussion
When defining an AF, it is often useful to define a number of Rules that can help to
enforce the consistency both of the AF and of any Architecture that is created based
on it. This can be particularly useful when using ‘sharp’ tools to model the Archi-
tecture. Such tools often allow user-defined consistency checks to be defined. The
Rules on a Rules Definition View can form the basis of such definition.

Note that the RDV in Figure 11.28 shows the Description property of a Rule as
being text. This text could be a simple natural language description (as in the
example in Figure 11.29), could be a formal modelling language such as VDM or Z
or any mixture as necessary. If more complex Rule definitions are needed, then
rather than representing them as simple blocks, as in Figure 11.29, Rules could be
represented using SysML constraint blocks and parametric diagrams.

11.3 The Framework for Architectural Frameworks

The complete framework for the definition of AFs is shown in the diagram in
Figure 11.30.

«ontology element»
Context

«ontology element»
Boundary

«ontology element»
Stakeholder Role

«ontology element»
Need

«ontology element»
Concern

«ontology element»
Architectural Framework

Concern

«ontology element»
Use Case

«ontology element»
System

«viewpoint»
AF Context Viewpoint

«ontology element»
Viewpoint Concern

«viewpoint»
Viewpoint Context

Viewpoint

«viewpoint»
Ontology Definition

Viewpoint

«ontology element»
Ontology Element

«ontology element»
Ontology

«viewpoint»
Viewpoint Definition

Viewpoint

«ontology element»
Viewpoint

«ontology element»
Viewpoint Element

«viewpoint»
Viewpoint Relationships

Viewpoint

«ontology element»
Perspective

«ontology element»
Architectural
Framework

«viewpoint»
Rules Definition

Viewpoint

«ontology element»
Rule

{The Rules Definition Viewpoint is
related to ALL the other Viewpoints
and defines the Rules that constrain
the Architectural Framework.

Relationships to other Viewpoints are
omitted from this diagram for clarity.}

1

1

1..*

1

1

interacts
with

0..*

1

defines viewpoint to meet needs from1

1..*
is derived from

1 1

is derived from

1

1

defines point of view of
1

1..*
corresponds to

1

1
is related to

0..*

1..

1..

1..*

1

1 is related to

1..*

1

is related
to

0..*

1

1

is related to

1..*

1collects together
1..*

1..*

1

1..*

1

defines relationships between
viewpoints defined in

1

1..*

is derived from

1..*

1..*
is within

1

1..*

uses
elements
from1

1..*
constrains

1

1

interacts
with

1..*

1..*

defines viewpoints using
elements from

1

1..*

1

1..*
is outside

1

1

is derived
from

1

1..*

describes the
context of

1..*

1..*

has an
interest in

1

1..*

yields an observable result to1..*

1..*

1..*

1

Figure 11.30 Complete Framework for Architectural Frameworks

Architectures and Architectural Frameworks with MBSE 455

The diagram in Figure 11.30 shows the complete FAF, illustrating the Ontol-
ogy Elements that can appear on each Viewpoint and the relationships between the
Viewpoints. An example of using the FAF for the definition of an AF is given in
Chapter 12. The example AF so defined is then used in Chapter 13.

11.4 Using the FAF

As discussed in Section 11.1.1, Architectures and AFs are an essential part of
systems engineering and system of systems engineering.

While there are a number of widely-used AFs, this does not necessarily mean
that they are suitable for all systems engineering and SoS engineering projects; it is
important that the correct AF, fit for purpose, be used. For example:

● Defence frameworks, such as MODAF [5], are intended to be used in the
acquisition of systems.

● TOGAF [6] is intended to provide an approach for developing IT AFs.
● Zachman [7] is a framework approach for defining IT-based enterprise

architectures.

For a discussion of these frameworks see [3].
The use of an AF is a prerequisite for the development of a robust Architecture.

Before any existing AFs can be assessed for suitability, it is essential that the Needs
for the Architecture, and hence it is guiding AF, are understood. If an existing AF is
not suitable, then a project will have to define its own.

The FAF, described earlier, forms the heart of such an approach. In order to use
FAF, a set of Processes are needed to ensure consistency of application. One such
set is ArchDeCon (Architecture Definition and Construction), a set of Processes
for the definition of an AF. The Processes are shown in Figure 11.31.

The Processes may be summarised as

● ‘AF Definition Process’ – The aim of this Process is to understand the under-
lying need for the AF. It uses the other three ArchDeCon Processes to: identify
AF Concerns for the AF and put them into Context, defines an Ontology,
define Viewpoints, Perspectives and Rules.

● ‘Ontology Definition Process’ – The aim of this Process is to identify and
define the main concepts and terms used for the AF in the form of an Ontology.

● ‘Viewpoint Definition Process’ - The aim of this Process is to identify and
define the key Viewpoints and to classify them into Perspectives. It also
defines any Rules that constrain the Viewpoints and AF.

● ‘Context Process’ – The aim of this Process is to create a Context that can be
used to create either an ‘AF Context View’ or a ‘Viewpoint Context View’ (see
Section 11.2.2 for a description of these Views and their defining Viewpoints).

A full definition of these Processes is available from the authors.

456 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

11.5 Chapter Summary

This chapter has discussed the principles and essential concepts behind Archi-
tectures and AFs, informed by best practice found in influential texts and interna-
tional standards. The essential Needs surrounding Architectures and AFs were
considered and any approach to modelling Architectures and AFs must support the
definition of Architectures, allowing Architectures to be defined that model both

PCV [Package] PCV - ArchDeCon [PCV - ArchDeCon]

«process»
Context Process

«in» Concern: Concern [1..*]
«out» Context: Context

select context()
define context()
analyse context()
resolve problems()
review()

«process»
Ontology Definition Process

«out» Ontology: Ontology
«out» Ontology definition view: Ontology Definition Viewpoint
«out» Ontology element: Ontology Element
«in» Source element: Source Element [1..*]

identify concept()
define concept()
define relationships with other concepts()
create ontology definition view()
review()

«process»
Viewpoint Definition Process

«in» Pattern context view: AF Context Viewpoint
«inout» Ontology definition view: Ontology Definition Viewpoint
«out» Rules definition view: Rules Definition Viewpoint
«out» Viewpoint context view: Viewpoint Context Viewpoint [1..*]
«out» Viewpoint definition view: Viewpoint Definition Viewpoint [1..*]
«inout» Viewpoint relationship view: Viewpoint Relationships Viewpoint

select viewpoint()
define context()
refine ontology elements()
define viewpoint definition()
establish relationships()
define rules()
review()

«process»
Architecture
Framework

Process

«process»
AF Definition Process

«out» AF context view: AF Context Viewpoint
«in» AF standard: Standard
«out» Ontology definition view: Ontology Definition Viewpoint
«out» Viewpoint definition view: Viewpoint Definition Viewpoint [1..*]
«out» Viewpoint context view: Viewpoint Context Viewpoint [1..*]
«out» Viewpoint relationships view: Viewpoint Relationships Viewpoint
«out» Rules definition view: Rules Definition Viewpoint

identify context()
identify source standard()
define pattern context()
define pattern ontology()
identify viewpoints()
review()

Figure 11.31 The ArchDeCon Processes

Architectures and Architectural Frameworks with MBSE 457

the structural aspects and the behavioural aspects of the System represented by the
Architecture. When defining an Architecture, it is essential that an established
architectural design process is followed and that any Architecture conforms to a
defined AF.

Too often Architectures are produced seemingly simply for the sake of pro-
ducing an Architecture. For this reason it is essential that the Needs of the Customer
are understood so that the Architecture is produced for a defined purpose and so
that it can be validated.

Given that any Architecture should be defined based on an AF, there is also the
need to be able to define such frameworks. An AF should be defined in terms of a
number of Viewpoints and should have Rules defined to ensure consistency. Just as
with an Architecture, it is essential that the reasons why the AF is being created are
understood. Similarly, the Needs for each Viewpoint defined as part of an AF must
also be understood.

Whatever be the approach to modelling Architectures and AFs, it should be a
model-based one, using all the techniques described in this book.

These Needs were used to guide the definition of a set of processes (Arch-
DeCon; available from the authors) and an AF (FAF) that can be used by anyone
who has to define their own AF.

References

[1] Holt J. ‘UML for Systems Engineering: Watching the Wheels’. 2nd edition.
London: IET Publishing; 2004.

[2] Object Management Group. BPMN Website [online]. Available from http://
www.bpmn.org [Accessed June 2018].

[3] Holt J., Perry S. ‘Modelling Enterprise Architectures’. Stevenage, UK: IET
Publishing; 2010.

[4] Sheard, S. ‘The frameworks quagmire, a brief look’. Proceedings of the
Seventh Annual International Symposium of the International Council on
Systems Engineering. Los Angeles, CA: INCOSE; 1997.

[5] MoD. ‘The Ministry of Defence Architectural Framework’. Ministry of
Defence; 2010. Available from https://www.gov.uk/mod-architecture-
framework [Accessed March 2013].

[6] The Open Group. The Open Group Architectural Framework (TOGAF),
Version 9.2. Available from https://publications.opengroup.org/c182 [Acces-
sed June 2018].

[7] Zachman J.A. ‘Concise Definition of the Zachman Framework’. Zachman
International; 2008. Available from http://www.zachman.com/about-the-
zachman-framework [Accessed March 2013].

458 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Chapter 12

Value Chain Modelling

12.1 Introduction

Many organisations find it difficult to know where to apply limited resources for
the most return. Having a healthy sales funnel is vital, but what is the best way to
use a limited marketing budget? All face questions like ‘Should we attend the
ACME Conference this year?’ and ‘E-Corp want another meeting. We have already
had three and got no work. Should we bother?’

This chapter outlines an initial Value Chain Framework (VCF) that the authors
have developed (and are continuing to develop) to help them capture current and
past business in order to analyse and decide where to target limited sales and
marketing resources in the best way to answer the kinds of questions posed above
and to help generate future business.

In keeping with the rest of this book, you should not be surprised to find that
the VCF has been developed using MBSE best practice – the Framework for
Architectural Frameworks (FAF) as described in Chapter 11. The use of MBSE was
also one of the key drivers in the development of the VCF: the authors are both firm
believers that the best MBSE starts at home. Do not just preach (and hopefully
practice) MBSE with you customers and the Systems you are developing for them,
but preach and most definitely practice MBSE in your own Organisation, by
applying MBSE to understanding and improving the way the Organisation works
and to how it (and you) carry out MBSE. This is, all too sadly, very rare in many
Systems Engineering Organisations; there are many that are great advocates of
Systems Engineering (if not MBSE) but who never turn such a powerful tool on
themselves and the way they work. Trying to understand the value of using MBSE
for a non-systems engineering activity was of great interest to the authors and this,
of course, meant that thinking about and capturing value chain had to be done using
MBSE techniques.

Following this introduction, the aims of the VCF are presented. The main
concepts used by the VCF are then defined and described and its Viewpoints
identified. Each Viewpoint is defined, with an example View that conforms to the
Viewpoint. Rules are then defined that constrain the use of the VCF. The chapter
concludes with some observations on issues and future work that are being
considered.

12.2 Aims of the Value Chain Framework

The main aims of the VCF are shown in the Architecture Framework Context View
in Figure 12.1.

The key stakeholder Concern that the VCF has to address is to allow the
organisation to ‘Make informed business decisions through understanding of value
chain’. This includes a number of other Concerns, to allow them to:

● ‘Analyse business activities within a business engagement’.
● ‘Understand relationships between business engagements’.

Value Chain Context

«concern»

Analyse business activity
traceability

«concern»
Analyse business activity

traceability between
activities

«concern»

Analyse business activity
traceability to contacts

«concern»

Analyse value chain for a
business activity

«concern»

See financial value

«concern»

See reputation value

«concern»

Make informed business decisions
through understanding of value chain

«stakeholder role»
Director

«concern»
Understand relationships

between business
engagements

«concern»
Analyse business activities

within a business
engagement

«include»

«include»

«include»

«include»

Figure 12.1 AFCV showing main aims of the Value Chain Framework

460 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● ‘Analyse the value chain for a business activity’ in order to both ‘See reputa-
tion value’ and ‘See financial value’ of that business activity.

● ‘Analyse business activity traceability’, both between business activities
‘Analyse business activity traceability between activities’ and from business
activities back through the business contacts that gave rise to them ‘Analyse
business activity traceability to contacts’.

The meaning of some of these terms, such as engagement and business activity, are
formally defined in the next section.

12.3 Main Concepts – the Value Chain
Framework’s Ontology

The main concepts covered by the VCF are shown in the Ontology Definition View
(ODV) in Figure 12.2.

The VCF is based around the concept of an ‘Engagement’ with a customer that
consists of one or more ‘Business Activity’. These Business Activities may be paid,
such as delivering a system, or unpaid, such as presenting at a conference. Various
types of Business Activity are supported by the VCF. A ‘Business Activity’ comes
from a ‘Contact’ or an existing ‘Business Activity’, either directly or indirectly or
by contributing in some way. A ‘Contact’ can be either a legacy ‘Contact’ or a new
‘Contact’. A new ‘Contact’ has to come from somewhere, and in the VCF such a
new ‘Contact’ is introduced by an existing legacy ‘Contact’ or through an existing
‘Business Activity’. At a higher level, an ‘Engagement’ with one customer may
initiate an ‘Engagement’ with another.

A ‘Business Activity’ has an associated cost and value and each ‘Business
Activity’ is justified by zero or more ‘Business Value’. A Business Value may be a
‘Financial Value’ quantified by one or more ‘Quotation’ that are contractualised by
zero or more ‘Purchase Order’ against which zero or more ‘Invoice’ are raised.
Alternatively, a Business Value may be a ‘Reputation Value’.

A ‘Business Value’ has a realised amount associated with it. For ‘Reputation
Value’ this may be somewhat subjective, but for a ‘Financial Value’ it is the sum of
all amounts invoiced. A ‘Financial Value’ also has an expected value, which is the
sum of the Quotation amounts issued for that ‘Financial Value’. This allows
the value for a ‘Business Activity’ to be calculated; essentially it is the sum of the
values of related Business Activities plus the sum of its Business Values less its
cost (but see Section 12.6). This value of a Business Activity is a measure of return
to the organisation of carrying out that Business Activity.

Finally, note that not all Quotations issued lead to Purchase Orders. A ‘Quo-
tation’ may suffer a ‘Delay’ which may eventually lead to a ‘Purchase Order’ but
which may also lead to a ‘Failure’ that kills off the ‘Quotation’.

With the aims of the VCF established and the key concepts defined, it is time
now to turn to the Viewpoints that make up the VCF.

Value Chain Modelling 461

«ontology element»
Business Activity

type: BusinessActivityType = XXX-UNDEFINED-XXX
cost = £0
value = £0

«ontology element»
Contact

type: ContactType = LEGACY
organisation
phone
email

«ontology element»
Business Value

realised amount = £0

«ontology element»
Financial Value

expected amount = £0

«ontology element»
Reputation Value

«ontology element»
Engagement

{Only one of these would be used
between two Business Activities}

{Only one of these
would be used
between a Contact
and a Business
Activity}

«ontology element»
Quotation

amount = £0
reference

«ontology element»
Purchase Order

amount = £0
reference

«ontology element»
Resolution

«ontology element»
Failure

«ontology element»
Delay

«ontology element»
Invoice

amount = £0
type: InvoiceType = ISSUED

realised amount
For Financial Value:

realised amount = SUM
(Quotation.Purchase
Order.Invoice.amount)

i.e. that total of all
invoices raised, via
Purchase Orders, for all
the Quotations that
quantify a Financial
Value.

expected amount
expected amount = SUM (Quotation.amount)

value
value = SUM(Business Activity.value) + SUM(Business
Value.realised amount) - cost

0..1
kills off

1

0..*

contractualises

1

0..1

introduces

0..*
1

introduces

0..*

0..*

is raised against

1..*

1

initiates0..*

1

directly leads to

0..*

1

contributes
to

0..*

0..1

delays

1

1

leads to

0..1

0..*

justifies

1

1..*

1

leads to

0..1

1

contributes to

0..*

1

indirectly leads to

0..*

1..*

quantifies

1

1

indirectly
leads to

0..*

1

directly
leads to

0..*

Figure 12.2 ODV showing Value Chain concepts

12.4 Viewpoints

The VCF defines four Viewpoints. These are shown, together with the main rela-
tionships between them, in Figure 12.3.

The key aims of each of the four Viewpoints are:

● ‘Engagement Relationship Viewpoint’ (ERVp) – used to identify Engagements
and to show how one Engagement may initiate a number of other
Engagements.

● ‘Engagement Definition Viewpoint’ (EDVp) – used to show the Business
Activities that make up an Engagement, together with relationships to Contacts
and other Business Activities. It also shows the Business Values associated
with a Business Activity.

● ‘Business Value Viewpoint’ (BVVp) – used to show Business Activities within
a single Engagement, together with the Business Value chains of Reputation
Value or Financial Value and related Quotations, Purchase Orders, Invoices,
Delays and Failures.

«viewpoint»
Engagement Relationship Viewpoint

«viewpoint»
Engagement Definition Viewpoint

«viewpoint»
Business Value Viewpoint

«viewpoint»
Contact Information Viewpoint

1..*

shows value for
business activity from

1

0..*

shows traceability
from contacts to
business activities
from

1..*

1..*

shows details of
engagement from

1..*

Figure 12.3 VRV showing Viewpoints of the Value Chain Framework

Value Chain Modelling 463

● ‘Contact Information Viewpoint’ (CIVp) – used to show Contacts and the
Contacts that they introduce or the Business Activities that they contribute to
or directly or indirectly lead to.

Each of the Viewpoints is considered in more detail in the following sections. For
each, its aims are presented using a FAF Viewpoint Context View (VCV), the
ontology elements that appear on the Viewpoint are shown using a FAF Viewpoint
Definition View (VDV) and an example View that conforms to the Viewpoint is
given.

12.4.1 Engagement Relationship Viewpoint
12.4.1.1 Aims
The main aims of the ERVp are shown in Figure 12.4.

The ERVp supports the main aim of the VCF (‘Make informed business
decisions through understanding of value chain’) by focusing on the Concern
‘Understand relationships between business engagements’.

That is, the ERVp is used to identify Engagements and to show how one
Engagement may initiate a number of other Engagements.

12.4.1.2 Definition
The Ontology Elements that appear on the ERVp are shown in Figure 12.5.

As can be seen from Figure 12.5, the ERVp is a very simple Viewpoint. It
simply shows one or more ‘Engagement’ and also shows for an ‘Engagement’ how
it initiates zero or more other ‘Engagement’.

Engagement Relationship Viewpoint Context

«concern»

Make informed business decisions
through understanding of value chain

«stakeholder role»
Director

«concern»
Understand relationships

between business
engagements

«include»

Figure 12.4 VCV showing main aims of the Engagement Relationship Viewpoint

464 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

12.4.1.3 Example
An example Engagement Relationship View is shown in Figure 12.6.

The Engagement Relationship View in Figure 12.6 is realised as a SysML
package diagram. It shows three Engagements and how they are related. The dia-
gram shows that the ‘ACME Conference’ engagement initiated the ‘ABC Cars –
Supercar Project’ Engagement which in turn initiated the ‘Inside Ltd – MBSE

«viewpoint»
Engagement Relationship

Viewpoint

«ontology element»
Engagement

1..*

1 initiates

0..*

Figure 12.5 VDV showing Ontology Elements that appear on the Engagement
Relationship Viewpoint

ERV [Package] Example [Example ERV]

«engagement»
ABC Cars - Supercar Project

«engagement»
Inside Ltd - MBSE Development

«engagement»
ACME Conference

«initiates»

«initiates»

Figure 12.6 Engagement Relationship View showing relationships between
Engagements

Value Chain Modelling 465

Development’ Engagement. In real life, an ERV may show Engagements that are
related in more of a web-like structure rather than the simple chain shown here.
Nonetheless, the ERV is very useful in identifying key Engagement; in this sim-
plified example it can be seen that the ‘ACME Conference’ Engagement is key.

12.4.2 Engagement Definition Viewpoint
12.4.2.1 Aims
The main aims of the EDVp are shown in Figures 12.4 and 12.7.

The EDVp supports the main aim of the VCF (‘Make informed business
decisions through understanding of value chain’) by focusing on the Concerns
‘Analyse business activities within a business engagement’ and ‘Analyse business
activity traceability’. This latter Concern has a more focused Concern for this

Engagement Definition Viewpoint Context

«concern»

Analyse business activity
traceability

«concern»

Analyse business activity
traceability between

activities

«concern»

Make informed business decisions
through understanding of value chain

«stakeholder role»
Director

«concern»

Analyse business activities
within a business

engagement

«include» «include»

Figure 12.7 VCV showing main aims of the Engagement Definition Viewpoint

466 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Viewpoint, shown in Figure 12.7 through the specialisation of the ‘Analyse busi-
ness activity traceability’ use case, to ‘Analyse business activity traceability
between activities’.

That is, the EDVp is used to show the Business Activities that make up an
Engagement, together with relationships to Contacts and other Business Activities.
It also shows the Business Values associated with a Business Activity. Multiple
Engagements can also be shown, along with their relationships and content. In
practice, an EDV will concentrate on the details of a single Engagement with other
related Engagements and their content shown in less detail. However, it does not
have to be used in this focused way and the details of multiple Engagements can be
shown if required (this has been done in the example below purely for explanatory
purposes).

12.4.2.2 Definition
The Ontology Elements that appear on the ERVp are shown in Figure 12.8.

The EDVp shows one or more ‘Engagement’ and for each ‘Engagement’, the
one or more ‘Business Activity’ make up the ‘Engagement’. Zero or more ‘Con-
tact’ are also shown. The way that one ‘Engagement’ can initiate others is shown,
as are relationships between a ‘Business Activity’ and others or between a ‘Con-
tact’ and zero or more ‘Business Activity’ that show how a ‘Business Activity’ or
‘Contact’ directly leads to, indirectly leads to or contributes to a ‘Business Activ-
ity’. A ‘Business Activity’ or a ‘Contact’ can introduce another ‘Contact and this
can be shown if required. Finally, the EDVp can show zero or more ‘Reputation

«ontology element»
Business Activity

«ontology element»
Contact

«ontology element»
Business Value

«ontology element»
Financial Value

«ontology element»
Reputation Value

«ontology element»
Engagement

«viewpoint»
Engagement Definition Viewpoint

1

contributes to

0..*
1contributes to0..*

1..* 0..*

1

indirectly leads to

0..*

1

directly leads to

0..*

1

initiates

0..*

0..1

introduces

0..*

1..*
0..*

1

indirectly leads to

0..*

1

introduces

0..*

0..*
justifies

1

1

directly leads to

0..*

1..*

0..*

Figure 12.8 VDV showing Ontology Elements that appear on the
Engagement Definition Viewpoint

Value Chain Modelling 467

Value’ and/or ‘Financial Value’, along with relationships showing the ‘Business
Activity’ that they justify.

12.4.2.3 Example
An example Engagement Definition View is shown in Figure 12.9.

Figure 12.9 shows an Engagement Definition View, realised as a SysML block
definition diagram. This diagram shows the three Engagements from the ERV in
Figure 12.6, together with the Contacts, Business Activities and Financial Values
that make up each Engagement. The relationships between the Contacts, Business
Activities and Financial Values are also shown. As discussed above, an EDV is
typically used to focus on the details of a single Engagement, showing related
Engagements and their content without all the detail shown (so each of the three
Engagements would have their own EDV focusing on their details). This combined
version has been produced purely to highlight some of the important points about
an EDV.

The first is that it gives a clear picture of the often complicated relationships
between Business Activities from separate Engagements that may be with different
customers. It can be seen, for example, that the ‘MBSE Training’ Business Activity
in the ‘Inside Ltd – MBSE Development’ Engagement came about through a legacy
Contact, ‘Sales Manager’ who encouraged the organisation to have a stand at the
‘ACME Conference’. This conference stand leads to meeting a new Contact, the
‘Technical Lead’ who directly leads to the ‘Consultancy Work’ Business Activity in
the ‘ABC Cars – Supercar Project’ Engagement. This Contact and the Business

EDV [Package] Example [Example EDV]

«engagement»
ABC Cars - Supercar Project

«engagement»
Inside Ltd - MBSE Development

«business activity»
Consultancy Work

tags
cost = £1000
type = PAID_CONSULTANCY
value = £30000

«contact»
Engineering Manager

tags
email =
organisation = Inside Ltd.
phone =
type = NEW

«contact»
Technical Lead

tags
email =
organisation = ABC Cars
phone =
type = NEW

«business activity»
MBSE Training

tags
cost = £300
type = PAID_TRAINING
value = £8700

«financial value»
Expected Course Value

tags
expected amount = £8500
realised amount = £9000

«business activity»
Framework Consultancy

tags
cost = £0
type = PAID_WORKSHOP
value = £0

«financial value»
Expected Workshop Value

tags
expected amount = £5000
realised amount = £0

«engagement»
ACME Conference

«contact»
Sales Manager

tags
email =
organisation = Tools'R'Us
phone =
type = LEGACY

«business activity»
ACME Conference Stand

tags
cost = £1000
type = NON-PAID_EXTERNAL EVENT_EXHIBITION
value = £37700

«initiates»

«initiates»

«justifies»«contribute»

«direct»

«introduces»

«direct»

«direct»

«contribute»

«direct»

«justifies»

«introduces»

Figure 12.9 Engagement Definition View showing details of three Engagements
and the relationships between them

468 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Activity led to a new Contact, the ‘Engineering Manager’, and to a new Business
Activity, ‘MBSE Training’ in a new Engagement ‘Inside Ltd – MBSE Development’.

The second point is that having identified the value chain (which also requires
the Business Values Views to be produced, see below), it is possible to calculate the
value of the various Business Activities. These values are shown on the diagram.
One potential issue here is that of double or inappropriate accounting; this is dis-
cussed in Section 12.6 below. What the EDV in Figure 12.9 shows is that atten-
dance at the ACME Conference, which cost £1,000, led to work with a value, after
costs, of £37,700 (note, all figures are fictional!). So, when trying to answer the
question posed at the beginning of the paper – ‘Should we attend the ACME
Conference this year?’ – based on the value chain shown on the EDV above the
answer is probably ‘yes’.

12.4.3 Business Value Viewpoint
12.4.3.1 Aims
The main aims of the BVVp are shown in Figures 12.4 and 12.10.

Business Value Viewpoint Context

«concern»

Analyse value chain for a
business activity

«concern»

See financial value

«concern»

See reputation value

«concern»

Make informed business decisions
through understanding of value chain

«stakeholder role»
Director

«include»

Figure 12.10 VCV showing main aims of the Business Value Viewpoint

Value Chain Modelling 469

The BVVp supports the main aim of the VCF (‘Make informed business
decisions through understanding of value chain’) by focusing on the Concern
‘Analyse value chain for business activity’. This has two specialisations, namely
‘See financial value’ and ‘See reputation value’.

That is, the BVVp is used to show Business Activities within a single
Engagement, together with the Business Value chains of Reputation Value or
Financial Value and related Quotations, Purchase Orders, Invoices, Delays and
Failures.

12.4.3.2 Definition
The Ontology Elements that appear on the ERVp are shown in Figure 12.11.

The BVVp focuses on a single ‘Business Activity’, showing the one or more
‘Business Value’ (‘Reputation Value’ or ‘Financial Value’) that justify the ‘Busi-
ness Activity’. If desired, the ‘Engagement’ owning the ‘Business Activity’ can
also be shown.

For any ‘Financial Value’ that is shown, the one or more ‘Quotation’ that
quantify the ‘Financial Value’ can be shown, and the result of any such ‘Quotation’
such as zero or more ‘Purchase Order’ that contractualise it and the zero or more
‘Invoice’ that are raised against any ‘Purchase Order’ can also be shown. Any
‘Failure’ that kills of a ‘Quotation’ can be shown as can any ‘Delay’ that leads to a
‘Failure’ or delays the receipt of ‘Purchase Order’ against a ‘Quotation’.

«ontology element»
Business Activity

«ontology element»
Business Value

«ontology element»
Financial Value

«ontology element»
Reputation Value

«ontology element»
Engagement

«ontology element»
Quotation

«ontology element»
Purchase Order

«ontology element»
Failure

«ontology element»
Delay

«ontology element»
Invoice

«viewpoint»
Business Value Viewpoint

{Must be the Engagement
containing the shown
Business Activity}

one of these.}

1..*

quantifies

1

0..*

is raised
against

1..*

0..*

0..*

1

0..*

0..1

delays

1

1..*

0..*

contractualises

1

0..*

justifies

1

0..1

0..*

0..*

1
leads to

0..1

1

leads to

0..1

0..*

0..*

0..1

kills off

1

{BVV must have at least

Figure 12.11 VDV showing Ontology Elements that appear on the Business
Value Viewpoint

470 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

12.4.3.3 Example
An example Business Value View is shown in Figure 12.12.

The Business Value View in Figure 12.12, realised as a SysML block definition
diagram, focuses on a single Business Activity, ‘MBSE Training’ from the ‘Inside
Ltd – MBSE Development’ Engagement.

It shows the Financial Value that justifies the Business Activity, the single
Quotation that quantifies the Financial Value, the Purchase Order that con-
tractualises the Quotation and the Invoice raised against the Purchase Order. It also
shows that the expected and realised amounts of the Financial Value are different.
In this case, the customer added £500 of additional work to the Purchase Order
(optional work quoted but not included in the main quoted price). Of course, the
opposite can sometime happen, particularly in ‘‘call-off’’ style contracts, where a
maximum is quoted but that full amount of work is never invoiced. The value of the
‘MBSE Training’ Business Activity has been calculated from the realised amount
of the Financial Value, less the cost of the Business Activity. As noted above, each
BVV allows these figures to be calculated for a Business Activity and hence allows
them to be used on an EDV.

12.4.4 Contact Information Viewpoint
12.4.4.1 Aims
The main aims of the CIVp are shown in Figures 12.4, 12.10 and 12.13.

BVV [Package] Example [Example BVV - MBSE Training]

«engagement»
Inside Ltd - MBSE Development

«business activity»
MBSE Training

tags
cost = £300
type = PAID_TRAINING
value = £8700

«financial value»
Expected Course Value

tags
expected amount = £8500
realised amount = £9000

«quotation»
2015-08-21_INS_001

tags
amount = £8500
reference = 2015/PDF/2015-08-21_INS_001.pdf

«invoice»
2015-09-30

tags
amount = £9000
type = ISSUED

«purchase order»
PO2015-12345

tags
amount = £9000
reference = INSIDE/PO2015-12345.pdf

«justifies»

«contractualises»

«raised»

«quantifies»

Figure 12.12 Business Value View showing details of a single Engagement

Value Chain Modelling 471

The CIVp supports the main aim of the VCF (‘Make informed business deci-
sions through understanding of value chain’) by focusing on the Concern ‘Analyse
business activity traceability’ (note that this also appear on the VCV for the EDVp).
This latter Concern has a more focused Concern for this Viewpoint, shown in
Figure 12.13 through the specialisation of the ‘Analyse business activity trace-
ability’ use case, to ‘Analyse business activity traceability to contacts’.

That is, the CIVp is used to show Contacts and the Contacts that they introduce
or the Business Activities that they contribute to or directly or indirectly lead to. It
can also show relationships between the Business Activities if required. Views
based on this Viewpoint can be very useful in identifying important Contacts who
have proved vital in introducing other Contacts or in leading to work.

12.4.4.2 Definition
The Ontology Elements that appear on the ERVp are shown in Figure 12.14.

The CIVp shows one or more ‘Contact’ and zero or more ‘Business Activity’.
For a given ‘Contact’, it can show the zero or more other ‘Contact’ that a ‘Contact’
initiates. Also for a given ‘Contact’, it can show the zero or more ‘Business

Contact Information Viewpoint Context

«concern»

Analyse business activity
traceability

«concern»

Analyse business activity
traceability to contacts

«concern»

Make informed business decisions
through understanding of value chain

«stakeholder role»
Director

«include»

Figure 12.13 VCV showing main aims of the Contact Information Viewpoint

472 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Activity’ that the ‘Contact’ contributes to, indirectly leads to or directly leads to.
The same can be done for each ‘Business Activity’, showing the zero or more other
‘Business Activity’ that a given ‘Business Activity’ contributes to, indirectly leads
to or directly leads to.

12.4.4.3 Example
An example Contact Information View is shown in Figure 12.12.

The Contact Information View in Figure 12.15, realised as a SysML block
definition diagram, is shown in Figure 12.15. It shows three Contacts, four Business
Activities and the relationships between them. The key Contact that can be iden-
tified here is the ‘Sales Manager’ as he has led to two new Contacts and, through
them, to three Business Activities, two of which have resulted in income and a third
that has the potential for income. He is, therefore, probably a good Contact to
cultivate.

The above diagrams give an indication of the types of information that can be
captured using the VCF. There is still work to be done and issues that need con-
sideration. These are discussed in Section 12.6.

12.4.5 Overview of Ontology Elements Covered by the Viewpoints
To show the important fact that all Ontology Elements (and their associated
Ontology Relationships) on the ODV must appear in the definition of at least one
Viewpoint (else why are they needed?), the areas of the Ontology that are covered

«viewpoint»
Contact Information Viewpoint

«ontology element»
Contact

«ontology element»
Business Activity

1

directly leads to

0..*

1

contributes to

0..*

1

directly leads to

0..*

1

contributes to

0..*

1

indirectly leads to

0..*

1

indirectly leads to

0..*0..*1..*1

introduces

0..*

Figure 12.14 VDV showing Ontology Elements that appear on the Contact
Information Viewpoint

Value Chain Modelling 473

by each Viewpoint are shown in the annotated ODV in Figure 12.16 – ODV marked
to show Ontology Elements that appear on each Viewpoint.

In practice, when defining a new Framework, the authors produce diagrams
like that in Figure 12.16 using printed copies of the ODV and different coloured
highlighter pens to highlight the coverage of each Viewpoint. This gives a very

CIV [Package] Example [Example CIV- Technical Lead]

«contact»
Technical Lead

tags
email =
organisation = ABC Cars
phone =
type = NEW

«business activity»
Consultancy Work

tags
cost = £1000
type = PAID_CONSULTANCY
value = £30000

«contact»
Engineering Manager

tags
email =
organisation = Inside Ltd.
phone =
type = NEW

«business activity»
Framework Consultancy

tags
cost = £0
type = PAID_WORKSHOP
value = £0

«business activity»
MBSE Training

tags
cost = £300
type = PAID_TRAINING
value = £8700

«business activity»
ACME Conference Stand

tags
cost = £1000
type = NON-PAID_EXTERNAL EVENT_EXHIBITION
value = £37700

«contact»
Sales Manager

tags
email =
organisation = Tools'R'Us
phone =
type = LEGACY

«introduces»

«direct»

«direct»

«direct»
«contribute»

«introduces»

«direct»

«contribute»

Figure 12.15 Contact Information View showing relationships between
Contacts and the Business Activities that resulted

474 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

BVV

ERV

CIV

EDV

«ontology element»
Business Activity

type: BusinessActivityType = XXX-UNDEFINED-XXX
cost = £0
value = £0

«ontology element»
Contact

type: ContactType = LEGACY
organisation
phone
email

«ontology element»
Business Value

realised amount = £0

«ontology element»
Financial Value

expected amount = £0

«ontology element»
Reputation Value

«ontology element»
Engagement

{Only one of these would be used
between two Business Activities}

{Only one of these
would be used
between a Contact
and a Business
Activity}

«ontology element»
Quotation

amount = £0
reference

«ontology element»
Purchase Order

amount = £0
reference

«ontology element»
Resolution

«ontology element»
Failure

«ontology element»
Delay

«ontology element»
Invoice

amount = £0
type: InvoiceType = ISSUED

realised amount
For Financial Value:

realised amount = SUM
(Quotation.Purchase
Order.Invoice.amount)

i.e. that total of all
invoices raised, via
Purchase Orders, for all
the Quotations that
quantify a Financial
Value.

value
value = SUM(Business Activity.value) + SUM(Business
Value.realised amount) - cost

1

indirectly
leads to

0..*

1

initiates0..*

0..1

delays

1

0..*

contractualises

1

0..1

kills off

1

1

introduces

0..*

0..*

is raised against

1..*

1

directly leads to

0..*

1

contributes to
0..* 1

leads to

0..1

1

leads to

0..1

1

directly
leads to

0..*

1..*

1

contributes
to

0..*

0..1

introduces

0..*

1..*

quantifies

1

0..*

justifies

1

1

indirectly leads to

0..*

expected amount
expected amount = SUM (Quotation.amount)

Figure 12.16 ODV marked to show Ontology Elements that appear on each Viewpoint

quick visual way of ensuring all defined concepts have been covered. For more
detailed discussion of the thought processes that take place (at least in one of the
authors’ heads), see [1], Chapter 19.

12.5 Rules Governing the use of the Value Chain Framework

As a minimum, the VCF defines five Rules that govern its use. These are shown in
Figure 12.17.

The five defined Rules are:

● VC01 – Every Engagement that appears on an ERV must be defined on an
EDV.

That is, the relationships that an Engagement has with other Engagements
cannot be shown on an ERV if that Engagement has not been defined in terms
of its Business Activities etc. on an EDV. Once you identify an Engagement,
you must capture its details.

● VC02 – Every Business Value (Financial Value or Reputation Value) that
appears on an EDV must be analysed on a BVV.

«rule»
VC02

notes
Every Business Value (Financial Value or
Reputation Value) that appears on an EDV must
be analysed on a BVV.

«rule»
VC01

notes
Every Engagement that appears on an ERV must
be defined on an EDV.

«rule»
VC03

notes
A Business Activity with a related Business Value
(Financial Value or Reputation Value) must have
an incoming relationship from at least one
Business Activity or Contact.

«rule»
VC04

notes
Every Contact must be qualified as LEGACY OR
have an incoming relationship from a Business
Activity or another Contact.

«rule»
VC05

notes
A Business Activity which is of type NON-PAID
must have a cost > £0.

Figure 12.17 VDV showing Rules of the Value Chain Framework

476 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

That is, if a Business Activity is shown to have some kind of associated
Business Value, then that Business Value must be analysed on a BVV. So, for
example, a Financial Value that appears linked to a Business Activity on an
EDV would have to be analysed in terms of related Quotations, possible Pur-
chase Orders, etc. on a BVV. Once you claim a Business Value, you have to
analyse it.

● VC03 – A Business Activity with a related Business Value (Financial Value or
Reputation Value) must have an incoming relationship from at least one
Business Activity or Contact.

That is, a Business Activity that is worth something to the company cannot
just appear from nowhere. It must come from an existing Business Activity or
from a Contact.

● VC04 – Every Contact must be qualified as LEGACY OR have an incoming
relationship from a Business Activity or another Contact.

That is, any new Contact (i.e. not a legacy contact known from before Value
Chain modelling was undertaken) must come from somewhere, either a
defined Business Activity (which, do not forget, can be unpaid, such as
attending a conference) or from another Contact that is already in the Value
Chain model.

● VC05 – A Business Activity which is of type NON-PAID must have a cost > £0.
Should be self-explanatory! Any Business Activity that is not directly paid for

(such as attending an exhibition) must have some direct cost to the company and
this cost must be captured against the Business Activity.

12.6 Implementation of the Value Chain Framework

As with all the Frameworks described in this book, implementation in a SysML
modelling tool brings the real practical benefits of MBSE to the use of the Fra-
mework. The implementation of some Frameworks lends itself to more automation
than others, dependent on the subject of the Framework. The VCF falls into this
group.

Having implemented the VCF in their own organisation, the authors suggest
the following as a minimum level of automation that is needed:

● Importing of historical data. New work can be added to a model using the
VCF as it comes in, through the Viewpoints implemented as diagrams and
toolboxes in a tool profile. However, the benefit of the VCF comes from
having all historical data as part of the model so that a richer information set
exists that can be queried. Automating (or semi-automating) the import of such
data, perhaps from that held in a spreadsheet, for example, is essential if this
historical data is to be used.

● Addition of new data. Adding new data is much less problematic than the
historical data as, if done when each new piece of work comes in, the burden is
much less. However, even this should be semi-automated. The creation,
through automation, of standard package structures with boiler-plate content is

Value Chain Modelling 477

useful for keeping the information well structured. Such automation could, for
example, present the modeller with a number of dialogues that request infor-
mation and which then trigger the generation of whole chains of elements in
the model.

● Automation of calculations. The calculation of value for a Business Activity
and expected and realised amounts for a Financial Value is tedious and a
perfect candidate for automation. Scripts could be written within a SysML tool
to automatically calculate and propagate such calculations through the model,
but see the observation below on double or inappropriate accounting.

● Model integrity. Like all Frameworks in this book, the VCF includes a num-
ber of integrity rules. Some of these are implicit through the relationships
shown on the ODV. Others are defined as explicit Rules (see Section 5).
Checking model conformance to these rules/Rules by hand is time-consuming
and error-prone and so these checks should be automated in the tool imple-
mentation of the VCF. Most SysML tools (or at least those that we consider to
be ‘‘sharp tools’’) allow such checks to be implemented through queries, per-
haps using SQL, or through scripting. An example is the Rule that every
Contact of type ‘‘new’’ must be introduced by another Contact or a Business
Activity; they cannot just appear from nowhere. In the tool used by the authors,
this check is currently implemented as an SQL query that shows Contacts, their
type and who/what introduced them, if any.

● Interrogating the model. The main purpose of using the VCF is to enable
questions to be asked of the model, such as ‘‘What is all the paid work (i.e.
Financial Values with a realised amount) that came from a given Contact (or
Business Activity)?’’ or ‘‘What is the total value to us of this Engagement?’’
Again a combination of SQL queries and scripting should be used to define and
answer such questions.

● Standard reports. With a number of standard questions defined and imple-
mented, as discussed above, the next step should be to define a number of
standard reports, using the SysML tool’s document generation facility, which
will make use of these queries and scripts to populate the reports. These reports
should be configured so that the content (and as much of the formatting as
possible) is automatically generated by the tool. The model is the single source
of truth and the content of these reports should not be edited outside the model,
other than perhaps to address issues of formatting.

One issue that is still being investigated, at time of writing, and which requires
some thought is that of double or inappropriate accounting. This is particularly a
problem for Business Activity value. For example, consider the ‘Consultancy
Work’ Business Activity on the ‘ABC Cars – Supercar Project’ Engagement. The
direct value through its Financial Values is £30,000. It would be misleading here to
add the £8,700 value from the ‘MBSE Training’ Business Activity in the ‘Inside
Ltd – MBSE Development’ Engagement that this work led to, even though by
carrying out the ‘Consultancy Work’ Business Activity the company realised an
additional £8,700 in resulting work with another organisation. However, when

478 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

looking at the ‘ACME Conference Stand’ Business Activity in the ‘ACME Con-
ference’ Engagement, its value has been calculated as the sum of the values from
the Business Activities in the ‘ABC Cars – Supercar Project’ and Inside Ltd –
MBSE Development’ Engagements. The ‘ACME Conference Stand’ Business
Activity had no direct Business Value, only value through the Engagements and
Business Activities that it led to, so in this case it seems appropriate that they are
totalled to give its value. The exact rules to apply to enable such automatic calcu-
lations (one of the automation tasks noted above) are currently under consideration.
Changes to the Ontology may be needed to allow support such rules.

Another issue that needs further consideration is that of the impact of entire
organisational overhead on the value chain. For example, a ‘‘non-productive’’
worker, such as a manager, is an overhead that must be mitigated across all paid
work. Such overheads would, therefore, impact on the ‘cost’ of producing a quo-
tation, for example. At present this is not explicitly considered, being rolled into
the calculated cost. This is currently easy for the author’s organisation as they are a
small consultancy with no staff that are purely an overhead on the company. For
larger organisations, overhead costs might want to be considered separately and
the VCF modified accordingly. The issue then becomes how to apportion such
overhead costs across the various Business Activities in the value chain. It is also
worth emphasising here that the VCF is not intended as a replacement for a full
financial planning tool, but a simple way for an organisation to visualise its value
chain.

12.7 Summary

The VCF is a useful tool that can be used by an Organisation or Organisational Unit
to understand their business value chain and to do so in a way uses good MBSE
practices. It defines four Viewpoints: the ERVp is used to identify Engagements
and to show how one Engagement may initiate a number of other Engagements.
The EDVp is used to show the Business Activities that make up an Engagement,
together with relationships to Contacts and other Business Activities. It also shows
the Business Values associated with a Business Activity. Multiple Engagements
can also be shown, along with their relationships and content. The BVVp is used to
show Business Activities within a single Engagement, together with the Business
Value chains of Reputation Value or Financial Value and related Quotations, Pur-
chase Orders, Invoices, Delays and Failures. The CIVp is used to show Contacts
and the Contacts that they introduce or the Business Activities that they contribute
to or directly or indirectly lead to. It can also show relationships between the
Business Activities if required. Views based on this Viewpoint can be very useful in
identifying important Contacts who have proved vital in introducing other Contacts
or in leading to work.

Implementation of the VCF in a SysML tool that supports automation through
scripting allows any Value Chain model to be populated easily and quickly with
both historical and current data. This static model becomes, through automation, a

Value Chain Modelling 479

useful tool that can be maintained easily and, more importantly, from which useful
information can be extracted through defined reports.

For the author’s organisation the benefits were twofold and no doubt some of
the same benefits will apply to all users of the VCF. First, by capturing their
Business Activities they now have a far deeper understanding of the relationships
between the work that they have done and are doing for customers. This has
revealed some surprising key Contacts and key Business Activities which were
thought to be unimportant and wasteful in effort and cost, but which on analysis
have proved to be very important in terms of the work that they have indirectly led
to, indicating that cultivation of these Contacts is important (although, of course,
past performance does not guarantee future return!). The opposite has also been
true: some Contacts and Business Activities that were thought to be significant (at
least in terms of being ‘‘big names’’) have, so far, turned out to consume more
effort and money than they have generated. Second, by capturing their value chain
using a model-based approach, rather than say using a number of spreadsheets, it
now forms part of their enterprise architecture in a direct way, as it is all part of the
same model. Traceability and analysis can extend, within a single tool, throughout
the entire model; for example, their processes and staff competencies, which are
part of their enterprise architecture model, can be linked to Business Activities
helping to ensure that they have suitable processes and competent staff in place in
order to deliver the Business Activities. This would be very difficult to do with a
major part of this information held externally in spreadsheets. On a mundane but
nevertheless important level, the model allows diagrams to be generated that
immediately show the often complicated relationships in the value chain. Some-
thing that is very difficult to see when the data is spread over a number of work-
sheets in a spreadsheet.

Reference

[1] Holt, J. and Perry, S. ‘Foundations for Model-Based Systems Engineering:
From Patterns to Models’. London: IET Publishing; 2016.

480 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Part 4 – Case Study

P4.1 Overview

This page intentionally left blank

Chapter 13

Case Study Introduction and Architectural
Framework

13.1 Introduction

In order to demonstrate the concepts, principles and notation in Parts 1–3, a case study
will be used. This case study is presented in Chapter 14. The current chapter sets the
case study in Context by considering the Needs that it addresses in Section 13.1.1. This
is followed, in Section 13.2, by the definition of an Architectural Framework that will
be used as the main means of presentation of the case study in Chapter 14. This is
followed by a discussion of the use of SysML auxiliary constructs in the definition of
Viewpoints. Finally, the chapter concludes with a summary and references.

13.1.1 Background
The Needs that the case study is intended to address are shown in Figure 13.1.

Case Study Context

«requirement»
Demonstrate MBSE concepts

covered in book

«requirement»
Demonstrate use of ontology,
framework & view approach

«requirement»
Demonstrate use of

SysML

«requirement»
Demonstrate consistency

through extended example

«requirement»
Cover key areas

«requirement»
...competency

«requirement»
...architectural

frameworks

«requirement»
...life cycles

«requirement»
...needs

«requirement»
...SoS needs

«requirement»
...organisations

«requirement»
...processes

«requirement»
...systems

«requirement»
...projects

«stakeholder role»
Systems Engineering

Manager

«stakeholder role»
Systems Engineer

«constrain»

«include» «include»

«constrain»

Figure 13.1 Case study Context

The main Need that the case study must address is to ‘Demonstrate MBSE
concepts covered in book’. Chapters 13 and 14 exist specifically to provide a more
in-depth example of the concepts discussed so far. When covering these concepts, it
is important that both the approach taken throughout (‘Demonstrate use of onto-
logy, framework and view approach’) and the SysML notation used (‘Demonstrate
use of SysML’) are covered by the case study.

It is also important to ensure that all the areas of MBSE discussed in the book
are covered by the case study, as shown by the ‘Cover key areas’ Use Case and its
specialisations. Finally, it is essential that the consistency of approach and notation
be highlighted and in such a way that it can be seen as a whole rather than as a
collection of piecemeal examples. This is captured in the final Use Case in
Figure 13.1, ‘Demonstrate consistency through extended example’. The Need
captured by this Use Case is considered by the authors to be very important. It
would be possible to demonstrate all the key concepts through a number of
unconnected examples. However, this makes it harder to see how all the concepts
relate to and reinforce each other and how consistency can come out of a robust
MBSE approach since each example exists either in isolation or as part of a very
small collection of diagrams. So to fulfil this Need, the case study is a single,
extended example, that is presented as an Architecture of a System. The remainder
of this chapter defines the Architectural Framework that will be used as the basis of
this Architecture. The subject of the case study will be revealed in Chapter 14.

13.2 The MBSE Architectural Framework

This section presents the MBSE Architectural Framework (MBSEAF) that forms the
basis of the example Architecture presented in Chapter 14. The MBSEAF has been
defined using the Framework for Architectural Frameworks (FAF) and ArchDeCon
Processes that are described in Chapter 11. For this reason, the MBSEAF is defined
and presented as a set of Views that conform to the six Viewpoints defined in the
FAF. An Architectural Framework (AF) Context View is presented first to detail the
Architectural Framework Concerns that the MBSEAF is intended to address. This is
followed by an Ontology Definition View to define the concepts that will be used in
the MBSEAF and two Viewpoint Relationship Views that define the Perspectives
that are found in the MBSEAF together with the Viewpoints in each Perspective.
A Rules Definition View comes next, giving an illustration, but not a complete
definition, of the types of Rules that should be defined for the MBSEAF. A number
of Viewpoints are then defined using a Viewpoint Context View and a Viewpoint
Definition View. Again, this is not done for all the Viewpoints in the MBSEAF, but
for a sample in order to give an additional example, in addition to that found in
Chapter 11, of the way that Viewpoints are defined using the FAF approach.

13.2.1 The AF Context View
The AF Context View for the MBSEAF is shown in Figure 13.2. The underlying
Needs behind the Use Cases shown in Figure 13.2 are Architectural Framework
Concerns, as opposed to Requirements, Goals or Capabilities. See Chapter 11 for a
discussion of Concerns.

484 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Figure 13.2 shows that the main Architectural Framework Concern that the
MBSEAF must address is to ‘Provide architectural framework for modelling a
system’. The types of modelling that the Architectural Framework must support are
indicated by the four Use Cases that constrain the main Concern:

● ‘Must support acquisitions, development and deployment’ – the Architectural
Framework must be suitable for use throughout the whole of a System’s Life
Cycle, from acquisition, through development and onto deployment. Many
Architectural Frameworks only support part of a Life Cycle necessitating the use of
multiple Architectural Frameworks, or even worse, attempting to use an Archi-
tectural Framework for purposes for which it was not intended. An example of this
is the Ministry of Defence Architecture Framework (MODAF). This is an Archi-
tectural Framework intended for use in the acquisition of Systems but often used,
with varying degrees of success, for the development and deployment of Systems.

● ‘Comply with best practice’ – as with anything we do in systems engineering, it is
important that the work complies with best practice in order to ensure the quality
of the work undertaken. The same holds for any Architectural Framework we
define; it must comply with best practice in the form of Architectural Framework
Standards.

● ‘Be suitable for multiple domains’ – defining an Architectural Framework is a
time-consuming activity. An Architectural Framework that can be used in
multiple domains means that new frameworks need not be defined for every
new domain encountered. In addition, having an Architectural Framework that

AFCV [Package] AFCV [Context for the MBSE Architectural Framework]

MBSEAF Context

«concern»

Provide architectural
framework for modelling a

system

«concern»

Must support acquisitions,
development & deployment

«concern»
Comply with best

practice

«concern»

Be suitable for multiple
domains

«concern»

Cover key areas

«concern»
...architectural

frameworks

«concern»

...competency

«concern»

...needs

«concern»

...SoS needs

«concern»

...life cycles

«concern»

...processes

«concern»

...projects

«concern»

...systems

«concern»

...organisations

«stakeholder role»
Systems Engineer

«stakeholder role»
Systems Engineering

Manager

«stakeholder role»
AF Standard

«constrain»«constrain»

«constrain»

«constrain»

Figure 13.2 AF Context View for the MBSEAF

Case Study Introduction and Architectural Framework 485

can be used across multiple domains means that the framework can be used
across an Organisation and across multiple Projects; the more widely a fra-
mework is used within an Organisation, the more the return on investment
placed on its initial creation and, more importantly, the better the commu-
nication between those involved in developing Systems since the Architectural
Framework with its defined Viewpoints and underlying Ontology establishes a
common vocabulary throughout the Organisation.

● ‘Cover key areas’ – given that this book defines a number of key areas that are
important to model-based systems engineering, through the MBSE Ontology,
any Architectural Framework should also cover these areas.

The Concerns that are represented by the Use Cases in Figure 13.2 have guided the
definition of the MBSEAF, but tempered with the pragmatic understanding that the
MBSEAF is an example Architectural Framework only. Defining a full MBSEAF
would require more space than is available in this chapter. Nonetheless, for those
readers who want to define an Architectural Framework for their own Organisation
and who do not want to adopt existing Architectural Frameworks such as MODAF
or TRAK, the MBSEAF is a good place to start.

13.2.2 The Ontology Definition View
The Ontology Definition View (ODV) for the MBSEAF is shown in Figure 13.3.

Given that the case study is intended to demonstrate all the concepts covered so
far, the Ontology that the MBSEAF is based on is the MBSE Ontology previously
presented and used throughout the book. It is presented again in Figure 13.3, with
a frame that identifies it as an Ontology Definition View through the ‘ODV’ frame tag.

This ODV forms a starting point; when defining Viewpoints below any addi-
tions will be noted in the relevant Viewpoint Definition View for Viewpoints that
require additional concepts.

13.2.3 The Viewpoint Relationships View
The Viewpoint Relationships View (VRV) for the MBSEAF is shown in Figure 13.4.

The MBSEAF has nine Perspectives that are defined to cover all the concepts
found on the ODV in Figure 13.3. Eight of the Perspectives are shown in Figure 13.5.
The ninth Perspective is the Architectural Framework Perspective and is the same as
the FAF described in Chapter 11. This Perspective is not shown in Figure 12.5 since
it is a meta-Perspective that is used to define the MBSEAF itself; an Architecture
based on the MBSEAF, for example that is presented in Chapter 14, would not
contain any Views based on the Viewpoints in the Architectural Framework Per-
spective, since this Perspective is used to define the MBSEAF. The current chapter
shows a number of Views, produced using the Architectural Framework Perspective
(i.e. the FAF from Chapter 11), that define the Perspectives and Viewpoints of the
MBSEAF that is used to produce the Architecture covered in Chapter 14.

The Viewpoints within each Perspective are shown in the VRV in Figure 13.5.

486 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

ODV [Package] ODV [MBSE Ontology - High-Level]

«ontology element»
Viewpoint Element

«ontology element»
Architectural Framework

«ontology element»
Architecture

«ontology element»
Ontology

«ontology element»
Ontology Element

«ontology element»
View

«ontology element»
View Element

«ontology element»
Viewpoint

«ontology element»
Rule

«ontology element»
Enabling System

«ontology element»
Constituent System

«ontology element»
System Element

«ontology element»
System Context

«ontology element»
System of Interest

«ontology element»
System of Systems

«ontology element»
System

«ontology element»
Virtual System

«ontology element»
Collaborative System

«ontology element»
Directed System

«ontology element»
Acknowledged System

«ontology element»
Product

«ontology element»
Service

«ontology element»
Activity

«ontology element»
Artefact

«ontology element»
Process

«ontology element»
Process Execution Group

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
Level

«ontology element»
Competence

«ontology element»
Competency

«ontology element»
Competency Scope

«ontology element»
Competency Profile

«ontology element»
Person

«ontology element»
Life Cycle

«ontology element»
Life Cycle Interaction

«ontology element»
Life Cycle Interaction Point

«ontology element»
Life Cycle Model

«ontology element»
Gate

«ontology element»
Stage

«ontology element»
Project

«ontology element»
Programme

«ontology element»
Organisational Unit

«ontology element»
Organisation

«ontology element»
Concern

«ontology element»
Need

«ontology element»
Source Element

«ontology element»
Need Description

«ontology element»
Scenario

«ontology element»
Capability

«ontology element»
Goal«ontology element»

Requirement

«ontology element»
Stakeholder Context

«ontology element»
Project Context

«ontology element»
Organisational Context

«ontology element»
Semi-formal Scenario

«ontology element»
Formal Scenario

«ontology element»
Process Context

1..*

1

1..*

0..1

1..*

1

1..*

1

1..* 1

1

is related to

0..*

1..*

is executed during

1

1..*

de
sc

rib
es

 th
e

ev
ol

ut
io

n
of

1

1..*

shows
behaviour
of

1

1

exhibits

11..*
conforms to

1

1..*

constrains

1..*

1..*

visualises

1

1

interfaces
with

1..*

1..*

interacts with

1

1is held at
1

1..*

corresponds to

1

1describes

1

1
is realised as

1..*

1

shows the order of execution of1..*

1

is responsible
for

1..*

1..*

1

1..*

constrains

1

1..*

represents the need for

1

1..*

describes

1..*

1
assesses the execution of

1

1

represents
the need for

1

1..*

describes m
easured

11..*

1

1..*

runs

1..*

1

consumes 1..*

1

interacts
with

1..*

1..*produces/consumes

1..*

1

describes measured
abilities of

1

1..*

1

{incomplete}1..*
is needed to
deliver

1

1..*holds1..*

1
describes interactions between

1

1..*

1

1

1..*

meets
1..*

1

interacts with
1..*

1

interacts
with

1..*

1..* 1..*

has an
interest in

1

1..*

describes desired

1

1..*
validates

1..*

1

represents
the need for

1..*

1..*

describes the context of

1..*

1..*
uses elements from

1 1..*realises1..*

1

produces

1..*

1..*

describes the evolution of

1

1 requires

1

1..*

1..*

1

1..*

describes the need for
1

1

1

is assessed against

1

1..*

is elicited from

1..*

1

describes structure of

1

1..*

1

1..*

is executed during

1

1..*

1

Figure 13.3 Ontology Definition View for the MBSEAF

There are a number of points to note about the Perspectives in Figure 13.5:

● The ‘SoS Perspective’ includes all the Viewpoints of the ‘Need Perspective’.
● The ‘Need Perspective’ can represent Needs for any of the other Perspectives.
● The ‘Context Definition Viewpoint’ and ‘Validation Viewpoint’ of the ‘Needs

Perspective’ both have a number of sub-types (specialisations of the View-
points). These are omitted from Figure 13.5.

Seven out of the nine Perspectives are based directly on the Frameworks described
in Part 3 and so are not described further in this chapter. Table 13.1 provides a cross
reference from the various Perspectives to the relevant chapters.

The remaining two Perspectives are described briefly below:

● ‘System Perspective’ – defines Viewpoints that allow aspects of System
structure and behaviour to be captured.

● ‘Organisational Perspective’ – defines Viewpoints that allow aspects of the
structure of Organisations and Organisational Units to be captured, as well as
Posts and their relationships to Stakeholder Roles, the Person filling the roles
and associated Competencies.

VRV [Package] VRV [MBSEAF]

«framework»
MBSE Architectural Framework

«perspective»
Need Perspective

«perspective»
SoS Perspective

«perspective»
Life Cycle Perspective

«perspective»
Project Perspective

«perspective»
Process Perspective

«perspective»
System Perspective

«perspective»
Organisational Perspective

«perspective»
Architectural Framework Perspective

«perspective»
Competency Perspective

Figure 13.4 Viewpoint Relationships View for the MBSEAF showing
the Perspectives

488 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

VRV [Package] VRV [Identification of Perspectives and Viewpoints]

«perspective»
System Perspective

«perspective»
Organisational Perspective

«perspective»
Competency Perspective

«perspective»
Life Cycle Perspective

«perspective»
Process Perspective

«perspective»
Need Perspective

«perspective»
SoS Perspective

«viewpoint»
Validation Interaction

Viewpoint

«viewpoint»
Context Interaction

Viewpoint

«viewpoint»
Requirement Context

Viewpoint

«viewpoint»
Context Definition

Viewpoint

«viewpoint»
Definition Rule Set

Viewpoint

«viewpoint»
Requirement Description Viewpoint

«viewpoint»
Source Element Viewpoint

«viewpoint»
Validation Viewpoint

«viewpoint»
Traceability Viewpoint

Shows traceability across any
Viewpoint or Viewpoint Element

«viewpoint»
Information Viewpoint

«viewpoint»
Process Behaviour

Viewpoint

«viewpoint»
Process Content

Viewpoint

«viewpoint»
Process Instance

Viewpoint

«viewpoint»
Process Structure

Viewpoint

«viewpoint»
Requirement Context

Viewpoint

«viewpoint»
Stakeholder Viewpoint

«viewpoint»
Life Cycle Model

Viewpoint

«viewpoint»
Life Cycle Viewpoint

«viewpoint»
Interaction Identification

Viewpoint

«viewpoint»
Interaction Behaviour

Viewpoint

«perspective»
Project Perspective

«viewpoint»
Programme Structure

Viewpoint

«viewpoint»
Project Schedule

Viewpoint

«viewpoint»
Competency Profile

Viewpoint

«viewpoint»
Competency Scope

Viewpoint

«viewpoint»
Applicable Competency

Viewpoint

«viewpoint»
Framework Viewpoint

«viewpoint»
Martian Instance

Viewpoint

«viewpoint»
Post Instance Viewpoint

«viewpoint»
Post Structure Viewpoint

«viewpoint»
Post to Role Viewpoint

«viewpoint»
Rank Hierarchy Viewpoint

«viewpoint»
Organisation Unit

Structure Viewpoint

«viewpoint»
Organisation Unit
Instance Viewpoint

«viewpoint»
System Structure

Viewpoint

«viewpoint»
System Configuration

Viewpoint

«viewpoint»
Interface Definition

Viewpoint

«viewpoint»
System Interaction

Viewpoint

«viewpoint»
System Identification

Viewpoint

«viewpoint»
System Behaviour

Viewpoint

«viewpoint»
System State Viewpoint

«viewpoint»
System Parametric

Viewpoint

1..*

describes
execution of

1

1..*

shows structure of a system from

1

1..*

shows behaviour of system on

1

1..*

show
s project schedule for system

 from

1

1..*
instantiates

1..*

1..*

is generated
against

1

1..*

defines needs in
context from

1..*
1..*shows interactions

between systems from
1..*

1..*
maps posts to roles from

1..*

1..*

shows states of
system on1

1..*

shows interfaces between
systems from

1..*

1..*

defines constraints on
descriptions of needs on

1..*

1

defines context for

1

1

defines
stakeholder

roles in

1..*

1..*

shows command
responsibility for

1..*

1..*
combines

1..*

1..*

defines artefacts in

1..*

1..*
instantiates

1..*

1..*

defines
behaviour for

1

1defines
ontology for

1..*

1..*
is generated

against
1

1..*

describes
execution of

1

1..*

id
en

tif
ie

s
so

ur
ce

s
of

 n
ee

ds
 o

n

1..*

1..*
shows configuration of
a system from

1

1..*

satisfies

1

1..*

shows parametric
behaviour of system
on

1

1..*
associates posts with ranks from

1..*

1..*

identifies
interaction
points of

1..*

1

shows schedule
of a project from

1

1

expands

1

1..*

references

1..*

1

is based on

1

1..*

validates
use case on

1

1..*
shows command responsibility for

1..*

1..*

shows filling
of posts from

1..*

1..*

shows roles to posts from
1..*

1..*

defines processes
that satisfy

1..*

1..*

m
ak

es
 u

se
 o

f i
nt

er
fa

ce
s

fro
m

1..*

1..*

defines execution of
processes in

1

Figure 13.5 Viewpoint Relationships View for the MBSEAF showing Viewpoints in each Perspective

The Viewpoints that are contained in these two Perspectives are described in
Section 13.2.5.

13.2.4 The Rules Definition View
The Rules Definition View defines those Rules that constrain an Architectural
Framework in some way. There are three types of Rules that are usually defined for
an Architectural Framework:

● Rules that define the minimum set of Views that have to be present in an
Architecture based on the Architectural Framework

● Rules that define consistency checks between Viewpoints and the Views based
on them

● Rules that define consistency checks within Viewpoints and the Views based
on them

Rather than defining all the possible rules that apply to the MBSEAF, Figure 13.6
shows an example of each of the three types.

Rule ‘RD01’ is an example of a Rule that defines a minimum set of Views that
an Architecture based on the MBSEAF must contain. Note that the Rule makes it
clear that it applies when developing a System. If the MBSEAF is being used for
another purpose, for example defining a set of Processes for an Organisation, then
this Rule would not apply. There would be a similar Rule defining a minimum set
of Views to be produced when developing Processes.

Rule ‘RD02’ is an example of a Rule that applies between Viewpoints and
their realising Views. When developing a System Architecture, the Rule says that
you must have modelled both the structure of a System and its behaviour; you
cannot model just behaviour.

Rule ‘RD03’ is an example of a Rule that applies within a Viewpoint and its
realising View. When looking at Requirements in Context – modelling them as Use
Cases on a Requirement Context View – none of the Use Cases can exist in
isolation. They must be related to a Stakeholder Role or to another Use Case.

13.2.5 Viewpoint Definitions
The Viewpoints in seven of the nine Perspectives shown in Figures 13.4 and 13.5 have
already been described in this book, as shown in Table 13.1 (see Section 13.2.3).

Table 13.1 Cross reference to descriptions of the MBSEAF Perspectives

Perspective Described in . . .

Process Perspective Chapter 7
Project Perspective Chapter 8
Life Cycle Perspective Chapter 8
Competence Perspective Chapter 8
Need Perspective Chapter 9
SoS Perspective Chapter 10
Architectural Framework Perspective Chapter 11
System Perspective See description later in this section
Organisational Perspective See description later in this section

490 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

For this reason, they will not be defined here. The new Viewpoints shown in
Figure 13.5 are briefly described in Table 13.2.

Careful reading of Table 13.2 will show a number of capitalised terms that are
not found on the Ontology Definition View in Figure 13.3, namely Post and Rank.
This indicates that the Ontology needs expansion to include these terms. Do not
forget, nothing can appear on a Viewpoint that is not present on the Ontology. The
expansion of the Ontology to include these terms is discussed in Section 13.2.5.1,
where one of the Viewpoints that makes use of these new concepts is defined.

Two of these Viewpoints, the Post Structure Viewpoint from the Organisa-
tional Perspective and the System Structure Viewpoint from the System Perspec-
tive, are defined fully in the following sections. In a full definition of the MBSEAF,
the same approach would be applied to all the Viewpoints in these Perspectives.
Examples of all the Viewpoints in Table 13.2, and indeed of all the Viewpoints in
the MBSEAF, will be presented in Chapter 14.

13.2.5.1 The Post Structure Viewpoint
Viewpoint Context View
The Viewpoint Context View for the Post Structure Viewpoint is shown in
Figure 13.7.

RDV [Package] RDV [Example Rules]

«rule»
RD01

notes
When developing a System, the minimum Views that must be
produced are:
- Requirement Description View
- Context Definition View
- Requirement Context View
- System Identification View
- System Structure View
- Interface Definition View
- System Interaction View

«rule»
RD02

notes
Every System Behaviour View
must have its owning System
defined on a System Structure
View.

«rule»
RD03

notes
Every Use Case on a Requirement
Context View must be connected
to at least one other Use Case or
Stakeholder Role; there can never
be any unconnected Use Cases.

Figure 13.6 Rules Definition View for the MBSEAF showing example Rules

Case Study Introduction and Architectural Framework 491

Table 13.2 New Viewpoints and their purpose

Perspective Viewpoint Purpose

Organisational
Perspective

Organisation Unit
Structure Viewpoint

Used to show the typical structure of an
Organisation, broken down in to Organi-
sational Units which can be further
subdivided

Organisation Unit
Instance Viewpoint

Used to show the structure of an actual
Organisation, conforming to the structure
in the Organisation Unit Structure
Viewpoint

Rank Hierarchy
Viewpoint

Used to show Ranks and their hierarchy

Post Structure
Viewpoint

Used to show typical Posts and lines of
command between Posts and between
a Post and an Organisational Unit.
Also shows the minimum Rank that can
fill a Post

Post Instance
Viewpoint

Used to show actual Posts, the actual Orga-
nisational Units that the Posts command
and the actual Ranks of the Person filling
each Post

Post to Role Viewpoint Used to show the Stakeholder Roles that are
required by each Post

Martian Instance
Viewpoint

*** SPOILER ALERT! *** Used to show
the actual Person (and in the case study,
Martians (!)) that fill each Post

System
Perspective

System Identification
Viewpoint

Used to identify Systems and the relation-
ships between them

System Structure
Viewpoint

Used to define the structure of a System,
showing how it is composed of System
Elements. Shows relationships between
System Elements, their properties and
behaviours

System Configuration
Viewpoint

Used to show of a System is actually con-
figured based on its structure, together
with the Interfaces between the System
Elements

Interface Definition
Viewpoint

Used to define Interfaces between Systems
and between System Elements within a
System

System Interaction
Viewpoint

Used to define interactions between Systems
and between System Elements within a
System

System State
Viewpoint

Used to define state-based behaviour of a
System and its System Elements

System Behaviour
Viewpoint

Used to define the behaviour of a System
and its System Elements

System Parametric
Viewpoint

Used to define parametric behaviour of a
System and its System Elements

492 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The Viewpoint Concerns that the Post Structure Viewpoint is intended to
address are shown as Use Cases on the Viewpoint Context View in Figure 13.7. The
main Use Case is to ‘Define posts’. This is the primary aim of the Viewpoint – to
allow Posts within an Organisation to be modelled. There are two inclusions that
allow extra information to be captured. The first is ‘Define minimum rank for a
post’ that allows the minimum military Rank that is required by a Post to be
defined. The second is ‘Define lines of command’ with two specialised Use
Cases, ‘ . . . between posts’ and ‘ . . . between post and an organisational unit’.
Fulfilling these Use Cases allow lines of command to be modelled, showing which
Posts command other Posts and which Posts command which Organisational Units.

Viewpoint Definition View
As discussed earlier in this section, the Organisational Perspective introduces two
new concepts, Post and Rank, which are not found on the ODV in Figure 13.3.
These concepts could be added to that diagram, but for the sake of clarity a separate
ODV showing how these relate to existing concepts has been produced. This is
shown in Figure 13.8.

VCV [Package] VCV [Post Structure Viewpoint]

Post Structure Viewpoint

«concern»

Define posts

«concern»
Define lines of

command

«concern»
Define minimum rank

for a post

«concern»

...between posts
«concern»

...between a post and an
organisational unit

«stakeholder role»
Systems Engineer

«stakeholder role»
Systems Engineering

Manager
«include» «include»

Figure 13.7 Viewpoint Context View for the Post Structure Viewpoint

Case Study Introduction and Architectural Framework 493

The ODV in Figure 13.8 shows that a ‘Post’ commands zero or more ‘Post’ and
zero or more ‘Organisational Unit’ and that each ‘Post’ requires a minimum
‘Rank’. Each ‘Rank’ is subordinate to zero or one other ‘Rank’. Each ‘Post’
requires one or more ‘Stakeholder Role’ (which then links through to ‘Competency
Scope’). One or more ‘Person’ fill a ‘Post’.

This extended Ontology is used to define each of the Viewpoints of the Orga-
nisational Perspective. For reference, the annotated diagram in Figure 13.9 shows
which parts of the Ontology in Figure 13.8 appear on which of the Viewpoints.

ODV [Package] ODV [Extended Organisation and Person Ontology Elements]

«ontology element»
Organisation

«ontology element»
Organisational Unit

«ontology element»
Person

«ontology element»
Stakeholder Role

«ontology element»
Competency Scope

«ontology element»
Post

«ontology element»
Rank

1

commands

0..*

0..*

holds

1

1..*

requires minimum

1

1..*

1

1..*

holds

1..*

1

is subordinate to

0..1

1

requires

1

1..*

fills
11..*

requires

1..*

1

commands

0..*

Figure 13.8 Ontology Definition View showing extended concepts related
to Organisation and Person

494 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The Viewpoint Definition View (VDV) for the Post Structure Viewpoint is
shown in Figure 13.10.

The VDV in Figure 13.10 shows that the ‘Post Structure Viewpoint’ is made up
of one or more ‘Post’, one or more ‘Rank’ and zero or more ‘Organisational Unit’.
For each ‘Post’, it shows the minimum ‘Rank’ required by the ‘Post’, any other
‘Post’ that a given ‘Post’ commands and any ‘Organisational Unit’ that a given
‘Post’ commands.

It is worth noting here that the Post Instance Viewpoint will have a similar (if
not identical) definition. The difference between them is that the Post Structure

«ontology element»
Organisation

«ontology element»
Organisational Unit

«ontology element»
Person

«ontology element»
Stakeholder Role

«ontology element»
Competency Scope

«ontology element»
Post

«ontology element»
Rank

1

commands

0..*

0..*

holds

1

1..*

requires minimum

1

1..*

1

1..*

holds

1..*

1

is subordinate to

0..1

1

requires

1

1..*

fills
11..*

requires

1..*

1

commands

0..*

Organisational Unit
Structure/Instance Viewpoints

Rank Hierarchy Viewpoint

Figure 13.9 Annotated Ontology showing mapping of Ontology Elements
to Viewpoints of Organisational Perspective

Case Study Introduction and Architectural Framework 495

Viewpoint is intended to be used to define typical Posts, for example ‘Pack Leader’
commanding a ‘Pack’. The Post Instance Viewpoint is intended to define actual
Posts, for example ‘1138-11 Pack Leader’ commanding ‘Pack 1138-11’.

13.2.5.2 The System Structure Viewpoint
Viewpoint Context View
The Viewpoint Context View for the System Structure Viewpoint is shown in
Figure 13.11.

The Viewpoint Concerns that the System Structure Viewpoint is intended to
address are shown as Use Cases on the Viewpoint Context View in Figure 13.11.
The main Use Case is to ‘Show system structure’; the Viewpoint is intended to
allow the structure of a System to be modelled. The main Use Case also has a
number of inclusions:

● ‘Show relationships between system elements’ – the Viewpoint must be able to
capture the relationships between System Elements.

● ‘Show system elements’ – the Viewpoint must be able to show the System
Elements that a System is made up of.

● ‘Identify properties’ – the Viewpoint must be able to show the properties of
both the System (as stated by the specialised Use Case ‘Identify properties for
system’) and for its System Elements (as stated by the specialised Use Case
‘Identify properties for system elements’).

● ‘Identify functionality’ – the Viewpoint must be able to show the functionality
that can be provided (but not how it is provided) of both the System (as stated
by the specialised Use Case ‘Identify functionality for system’) and for its
System Elements (as stated by the specialised Use Case ‘Identify functionality
for system elements’).

VDV [Package] VDV [Post Structure Viewpoint]

«ontology element»
Post

«ontology element»
Organisational Unit

«ontology element»
Rank

«viewpoint»
Post Structure Viewpoint

1
commands

0..*
1..*

1

0..*

1

commands

0..*

1..*

requires minimum

1

1..*

Figure 13.10 Viewpoint Definition View for the Post Structure Viewpoint

496 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The main Use Case has two specialised Use Cases ‘ . . . for constituent systems’
and ‘ . . . for systems of systems’; the Viewpoint can be used to model the structure
of an independent System, the Constituent System of an SoS or the structure
of an SoS.

Viewpoint Definition View
The Viewpoint Definition View for the System Structure Viewpoint is shown in
Figure 13.12.

Figure 13.12 shows that a ‘System Structure Viewpoint’ shows a one or more
‘System’ that can be a ‘Constituent System’ or a ‘System of Systems’ made up of
one or more ‘Constituent System’. For a ‘Constituent System’, the Viewpoint will
show one or more ‘System Element’ that make up each ‘Constituent System’
together with the interactions between them, which would be modelled as high-
level relationships between each ‘System Element’. For each ‘System’, zero or
more ‘System Property’ and zero or more ‘System Function’ are shown.

There are two points worth noting about this Viewpoint. First, it introduces two
new MBSE Ontology elements: System Property and System Function. Remember
that a Viewpoint can show only elements that appear on the MBSE Ontology, so
these two additions should be added to the ODV in Figure 13.3.

The second point concerns the level of abstraction at which the Viewpoint is
used. If used to model a System of Systems, then the System Elements that are

VCV [Package] VCV [System Structure Viewpoint]

System Structure Viewpoint

«concern»

Show system structure

«concern»
...for constituent

systems
«concern»

...for systems of systems

«concern»
Show relationships
between system

elements

«concern»

Show system elements
«concern»

Identify properties

«concern»
Identify properties for

system
«concern»

Identify properties for
system elements

«concern»

Identify functionality

«concern»
Identify functionality for

systems

«concern»
Identify functionality for

system elements

«stakeholder role»
Systems Engineer

«stakeholder role»
Systems Engineering

Manager

«stakeholder role»
Customer

«include»
«include»

«include»

«include»

Figure 13.11 Viewpoint Context View for the System Structure Viewpoint

Case Study Introduction and Architectural Framework 497

shown on a View that realises the Viewpoint will be Constituent Systems.
Remember that what constitutes a System is often a matter of perspective: one
Organisation’s System Element will be another Organisation’s System and vice
versa. For this reason, System Property and System Function are shown as being
parts of a System. The Viewpoint Context View in Figure 13.11 shows that prop-
erties and functions can be shown for both Systems and System Elements, and so
these concepts could also be linked to System Element in Figure 13.12 by

VDV [Package] VDV [System Structure Viewpoint]

«ontology element»
Constituent System

«ontology element»
System

«ontology element»
System Element

«ontology element»
System of Systems

«ontology element»
System Property

«ontology element»
System Function

«viewpoint»
System Structure

Viewpoint

0..*
1

1..*

1

1..* 1

1..*

1

0..*

1

interacts with

1..*

Figure 13.12 Viewpoint Definition View for the System Structure Viewpoint

498 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

aggregation relationships. However, this has not been done as it would make the
diagram overly complicated and also, since we can look at Systems and System
Elements from different levels of abstraction, it is sufficient to show this via the
relationships to System.

13.3 Defining Viewpoints using SysML Auxiliary Constructs

So far, all Viewpoints have been defined using versions of block definition dia-
grams with stereotyped blocks. The Concerns that they address and the Stakeholder
Roles involved have been defined using use case diagrams. An alternative is to use
the SysML viewpoint auxiliary construct, as shown in Figure 13.13.

A SysML viewpoint is a special kind of block that has the stereotype «view-
point» and a number of associated tags that hold information about the viewpoint:

● Stakeholder – Set of stakeholders that the viewpoint is aimed at
● Purpose – The purpose addresses the stakeholder concerns
● Concern – The interests of the stakeholders addressed by the viewpoint
● Language – The language(s) used to construct the viewpoint
● Method – The method(s) used to construct the views for this viewpoint
● Presentation – The method and format of presentation used for the viewpoint

The above descriptions are taken from the SysML specification, see [1]. In the
specification, these tags are defined simply to contain strings of text. In the
example in Figure 13.13, the ‘concern’ tag has been populated with the names of

VDV [Package] VDV [Definition of Post Structure Viewpoint using SysML Viewpoint Auxiliary Construct]

«viewpoint»
Post Structure Viewpoint

concern = "Define posts, Define minimum rank for a post, Define lines of
command...between posts, Define lines of command...between a post and an
organisational unit"
language = "SysML"
method = "MBSE"
presentation = "PowerPoint slide"
purpose = "Used to show typical Posts and lines of command between Posts
and between a Post and an Organisational Unit.
Also shows the minimum Rank that can fill a Post."
stakeholder = "Systems Engineering Manager, Systems Engineer"

Figure 13.13 Viewpoint Definition View for the Post Structure Viewpoint
using SysML viewpoint auxiliary construct

Case Study Introduction and Architectural Framework 499

the Uses Cases from the Viewpoint Context View in Figure 13.7. If the Viewpoint
Concerns that these Use Cases represent are not modelled in this way, then the
‘concern’ tag could contain much more descriptive text.

While the viewpoint construct is useful as a summary of a Viewpoint and while
it does require the Concerns that a Viewpoint is to address to be considered and
explicitly stated, it does not allow the definition of the Viewpoint to be modelled.
One possible use for them is in the initial development of an Architectural Fra-
mework; they can be useful when considering the Viewpoints that are required and
in producing what is essentially a text-based definition of a Viewpoint. They might
also be useful in the production of the VRV, being used instead of blocks. However,
this will vary depending on the SysML tool that you are using. The SysML speci-
fication is unclear whether or not a viewpoint can take part in relationships with
other viewpoints. If your Tool does allow them to be used just like blocks in terms
of the allowed relationships that they can take part in, then they could very usefully
be used on a VRV. If, as is the case with some Tools, they cannot be used in this
way, then the VRV is better modelled using stereotyped blocks. If using both
viewpoints and blocks in this way, then the block representing a Viewpoint could be
linked to the viewpoint representing the same via a refines dependency, for exam-
ple. This could then be shown explicitly as in Figure 13.14.

VDV [Package] VDV [Post Structure Viewpoint with Refinement Links]

«ontology element»
Post

«ontology element»
Organisational Unit

«ontology element»
Rank

«viewpoint»
Post Structure Viewpoint

«viewpoint»
Post Structure Viewpoint

concern = "Define posts, Define minimum rank for a post, Define lines of
command...between posts, Define lines of command...between a post and
an organisational unit"
language = "SysML"
method = "MBSE"
presentation = "PowerPoint slide"
purpose = "Used to show typical Posts and lines of command between
Posts
and between a Post and an Organisational Unit.
Also shows the minimum Rank that can fill a Post."
stakeholder = "Systems Engineering Manager, Systems Engineer"

SysML viewpoint auxiliary construct.

MBSE Viewpoint -
concept is notation
independent

1
commands

0..*

1

commands

0..*

1..*0..* 1..*

1

1..*

requires minimum

1

«refine»

Figure 13.14 Viewpoint Definition View for the Post Structure Viewpoint showing
refine dependency to associated viewpoint

500 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The choice of a refine dependency in Figure 13.14 is somewhat arbitrary. The
weaker traces dependency could have been used or an allocate dependency in the
opposite direction. Whatever notation chosen, the choice should be consistent and
included in the kind of diagramming and modelling guidelines discussed in
Chapter 6.

13.4 Chapter Summary

This chapter has defined an Architectural Framework, the MBSEAF, which is used
in Chapter 13 as the basis of the example Architecture presented there. The
MBSEAF has nine Perspectives that cover all the concepts found in the Ontology
Definition View defined earlier in this section. This ODV is itself based on the
MBSE Ontology given in Chapter 3 and used throughout the book since the
intention of the case study presented here and in Chapter 13 is to provide an
extended example that covers all of the concepts found in this book. Eight of the
Perspectives are used to develop the Architecture in Chapter 14. The remaining
Perspective, the Architectural Framework Perspective, has been used in this chapter
to define the MBSEAF.

An example was also given of the use of the standard SysML viewpoint aux-
iliary construct that can be used to define Viewpoints. While useful, its limitations
will be clearer when compared with the extended FAF approach described in
Chapter 11 and used as a basis of the Architectural Framework Perspective used in
this chapter.

Reference

[1] Object Management Group. ‘SysML Specification’, 2012. [ONLINE] Avail-
able at: http://www.omgsysml.org. [Last Accessed May 2017].

Case Study Introduction and Architectural Framework 501

This page intentionally left blank

Chapter 14

The Case Study

14.1 Introduction

This chapter presents an extended example that, as discussed in Chapter 13, is
intended to demonstrate the MBSE concepts covered in this book using the SysML
as the main means of presentation.

Rather than trying to retrospectively apply the many and varied techniques,
concepts, Frameworks and Views to an actual Project and System, we have rather
chosen to model a System from scratch. There is always a danger when doing this
that, if a real System is chosen, there will always be those readers who know more
about the System than the authors. This can have a serious impact on the learning
experience as the reader inevitably notices mistakes in the modelling of the System
which detracts from the learning experience.

For this reason, we have chosen a fictional example, albeit one that allows all
the Perspectives defined in the MBSE Architectural Framework in Section 4.1 to be
explored. The example we have chosen is one from popular culture that can be
traced back to at least 1898 when H.G. Wells published one of his most famous
novels. Our example, though, is inspired by more recent examples from the 1960s
onwards. The example we have chosen is the Martian invasion of Earth. If you are
interested in our sources, see [1–3].

Each of the Perspectives defined in Section 4.1 is considered, with at least one
example of each View from each Perspective given. The intention in this chapter is
not to describe the thinking behind each View; that can be found in the relevant
chapter of the book on which the Perspective is based. Rather, the discussion will
focus on aspects of each View that are worthy of discussion, as well as commentary
on the way each View is realised.

14.2 The Need Perspective

The Need Perspective is perhaps the most important of all the Perspectives, being
concerned with the modelling of Needs for a System: capturing the Needs, relating
them to their Source Elements, defining any constraining Rules that apply to the
description of the Needs, putting them into Context, establishing how to validate
the Needs and establishing traceability.

This section contains the Views that make up the Need Perspective: the Source
Element View, the Definition Rule Set View, the Requirement Description View,
the Context Definition View, the Validation View and the Traceability View. For a
full description of the Viewpoints in this Perspective and the concepts behind them,
see Section 3.3.

14.2.1 The Source Element View
The Source Element View is used to capture all relevant source information that is
required to get the Needs right when undertaking MBRE. An example Source
Element View for the Martian invasion of Earth is shown in Figure 14.1.

The Source Element View is realised using a block definition diagram, with each
Source Element modelled using a block. In Figure 14.1, these blocks have had the
stereotype «source element» applied to emphasise that they represent Source Elements.
This stereotype has a number of tags defined for it, allowing additional information
about each Source Element to be captured such as the type of Source Element, its
status, date, version and location. Examples are shown above. The diagram also shows
how associations can be used to relate different Source Elements together.

14.2.2 The Definition Rule Set View
The Definition Rule Set View is used to define Rules that may have to be applied to
each Need Description. The Definition Rule Set View can be as simple as a table of

SEV [Package] Invasion Earth [Source Elements]

«source element»
Overlord Directive

tags
date = 1947-01-01
location = file://mars_central/overlord/issued docs
status = ISSUED
type = Project Document
version = 66

«source element»
The Art of Galactic Domination

tags
location = file://mars_central/standards/approved
status = APPROVED
type = Standard
version = 2.1

«source element»
Mars Attacks

tags
date = 1962
status = ISSUED
type = Publication

«source element»
Mars Attacks!

tags
date = 1996
status = ISSUED
type = Film

«source element»
Invasion from Outer

Space

tags
date = 2010
status = ISSUED
type = Game

{AND}

1

is inspired by

1

1

is based on

1

1

is inspired by1

Figure 14.1 Source Element View showing Source Elements, relationships
between them and properties

504 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

text through to complex mathematical equations. An example of a Definition Rule
Set View is shown in Figure 14.2.

The Definition Rule Set View in Figure 14.2 is realised as a block definition
diagram with each Rule represented using a stereotyped block. The notes field
(called in some SysML tools the description field) of the block is used to contain the
text of the «rule». Another approach would be to define a tag ‘‘Rule Text’’ for
the «rule» stereotype, allowing the text to be displayed in the tag compartment
of the block. The information shown in Figure 14.2 is a minimum: a name or
identifier for a Rule, along with descriptive text. Additional tags could be added to
capture the justification and source of each Rule, for example.

The Rules defined in Figure 14.2 could just as easily have been defined in a
table. However, defining them as blocks within a SysML model means that they
exist as Model Elements and hence can be the target (or indeed, source) of trace
relationships within the model if required, something that is not possible if repre-
sented as a simple textual table in a document.

Rule ‘R06’ above makes reference to a complexity measure that has to be cal-
culated. This Rule might be further expanded on another Definition Rule Set View
diagram that shows how the calculation is performed. This could be realised as a
textual description of the method or through SysML diagrams such as the activity
diagram or the parametric diagram that show how the calculation is performed.

DRSV [Package] Rules [Generic Rules]

«rule»
R01

notes
The words QUICK or QUICKLY must
NOT be used.

«rule»
R02

notes
The words REASONABLE or
REASONABLY must NOT be used.

«rule»
R03

notes
The word MINIMUM must NOT be
used.

«rule»
R04

notes
The word MAXIMUM must NOT be
used.

«rule»
R05

notes
Each Need must have a unique
identifier.

«rule»
R06

notes
The complexity of a Need must be
between 9 and 10 (inclusive) as
measured by the Flesch-Kinkaid
Grade Level score.

Figure 14.2 Definition Rule Set View showing Rules represented using blocks

The Case Study 505

14.2.3 The Requirement Description View
The Requirement Description View is used to capture structured descriptions of each
Need in the form of Need Descriptions. Two examples are shown in Figures 14.3
and 14.4.

The Requirement Description View is realised as a requirement diagram as
shown in Figure 14.3. Each Need Description is realised as a SysML requirement
and has, as a minimum, a name, unique identifier and descriptive text. These are
shown for all the Need Description in Figure 14.3, but most SysML tools will allow
the id# and txt to be turned off on a diagram if required. Relationships between
Need Descriptions can also be shown on a Requirement Description View. Only
two are shown in Figure 14.3, showing nesting to emphasise that ‘Have defences’ is
made up of two additional Needs Descriptions: ‘Have a cloaking device’ and ‘Self-
destruct’. Note also that one of these Need Descriptions violates one of the Rules in
Figure 14.2. The identification of the offending Need Description, the Rule it vio-
lates and possible remedial action are left to the reader!

Of course, on a real Project, there will be many more Need Descriptions than
this, requiring many Requirement Description Views to be produced. When creat-
ing multiple Views in this way, it is useful to separate unrelated Need Descriptions
on to separate Views. This has been done, in a small way, in Figures 14.3 and 14.4.
Whereas Figure 14.3 shows high-level Need Descriptions for the ‘Flying Saucer’
System, those related more to the overall Project have been modelled separately in
Figure 14.4.

14.2.4 The Context Definition View
The Context Definition View is used to identify the Contexts that are explored in
the Requirement Context View. These Contexts may take many forms including
Stakeholder Roles and System Elements from different levels of hierarchy in a
System. An example of each is given in Figures 14.5 and 14.6.

The Context Definition View is realised using a use case diagram with actors
used to represent each relevant Context. If Stakeholder Roles are being considered
as Contexts, then the actors will be Stakeholder Roles, as shown in Figure 14.5 by
the application of the stereotype «stakeholder role».

The Context Definition View in Figure 14.6 is one based on System Contexts
rather than Contexts based on Stakeholder Roles. Note that this CDV is represented
as a block definition diagram. You will encounter this same diagram in
Section 14.9.1, albeit with a different frame tag, where it forms one of the System
Identification Views. This is an example of low-level model reuse, where the
content of a diagram is reused on multiple Views.

14.2.5 The Requirement Context View
The Requirement Context View is used to give Needs meaning by looking at them
from a particular Context. Each Context identified on a Context Definition View
will, potentially, have their own Requirement Context View, otherwise why are
they on the Context Definition View at all?

506 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

RDV [Package] Flying Saucer [Basic Need Descriptions - System]

«need description»
Provide flying saucer

id = "REQ001"
text = "The project shall provide a
flying saucer for the subjugation of
other planets."

«need description»
Have weapons

id = "REQ002"
text = "The flying saucer shall have
at least three offensive weapons."

«need description»
Link weapons

id = "REQ003"
text = "Weapons between multiple
flying saucers must be able to be
linked together to provide superior
fire power."
type = "REQUIREMENT"

«need description»
Allow navigation

id = "REQ005"
text = "The flying saucer shall have a
navigation system."

«need description»
Have defences

id = "REQ004"
text = "The flying saucer shall have
appropriate defences."

«need description»
Have a cloaking device

id = "REQ004-01"
text = "The flying saucer shall have a
cloaking device to avoid detection
by enemy defence systems."

«need description»
Self-destruct mechanism

id = "REQ004-02"
text = "Provide a local and remote
self-destruct mechanism, just in
case."

«need description»
Enable abduction

id = "REQ006"
text = "The flying saucer shall allow
the identification of specific puny
humans and enable them to be
abducted into the flying saucer
holding cells."

«need description»
Hold one platoon

id = "REQ007"
text = "The flying saucer shall be
able to transport a minimum of one
full Platoon (9 Packs) of troops."

«need description»
Communicate with

Mothership

id = "REQ008"
text = "The flying saucer shall be able
to receive commands from the
Mothership and be able to report
back within its range."

«need description»
Travel

id = "REQ009"
text = "The flying saucer must be
able to land on other planets and
also to dock on a Carrier Ship."

Figure 14.3 Requirement Description View showing high-level Need
Descriptions for ‘Flying Saucer’ System

The Case Study 507

A Requirement Context View is realised as a use case diagram. When an
abstract Need, modelled as a concrete Need Description on a Requirement
Description View, is looked at from a particular Context, it becomes a Use Case
and is realised on a Requirement Context View as a use case.

Figure 14.7 shows a Requirement Context View for the ‘Army’ Stakeholder
Role. Each of the Use Cases appearing on this View will correspond to Need
Descriptions on a Requirement Description View. Another Requirement Context
View, this time for the ‘Flying Saucer’ Context identified on the Context Definition
View in Figure 14.6, is shown in Figure 14.8.

The Requirement Context View in Figure 14.8 shows a high-level Context for
the ‘Flying Saucer’ System. It shows the high-level Use Cases for the ‘Flying
Saucer’ Context, only expanding the central ‘Provide flying saucer’ Use Case to the
next level along with any related extending Use Cases or specialisations of Uses
Cases. It is good practice to create such high-level Contexts for any System and
such a Requirement Context View should, wherever possible, conform to the ‘‘7 �
2’’ rule of complexity (which in practice is often more like ‘‘9 � 5’’!). Even the
most complex System can often be summarised in double handful of Use Cases.

The high-level Requirement Context View from Figure 14.8 has been expan-
ded in Figure 14.9, with many of the Use Cases expanded to the next level. This
diagram is really as complex as is useful. Any more levels of expansion will make
the diagram very cluttered. If this level of detail is needed, then consider creating a

RDV [Package] Flying Saucer [Basic Need Descriptions - Project]

«need description»
Finish on time

id = "REQ010"
text = "The project will finish on
time, on pain of death."

«need description»
Utilise slave labour

id = "REQ011"
text = "The flying saucer shall be
built using slave labour wherever
possible - both subjugated races
and non-compliant Martians."

«need description»
Deploy units

id = "REQ012"
text = "At least 20,000 flying
saucers must be able to be
deployed."

Figure 14.4 Requirement Description View showing high-level Need Descriptions
for ‘Flying Saucer’ Project

508 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Requirement Context View at a lower level in the System hierarchy. For example,
suppose ‘Provide weapon capability’ and its related Uses Cases need to be expan-
ded to a lower level. From the Context Definition View in Figure 14.6, it can be
seen that the ‘Weapon Subsystem’ is a possible Context and therefore can have its
own Requirement Context View. This would be the place to expand on the ‘Provide
weapon capability’ and its related Uses Cases.

CDV [Package] Stakeholder Context Definition [Main Stakeholder Roles]

«stakeholder role»
Stakeholder Role

«stakeholder role»
Customer

«stakeholder role»
External

«stakeholder role»
Supplier

«stakeholder role»
Overlord

«stakeholder role»
Puny Earthling

«stakeholder role»
Civilian

«stakeholder role»
Military

«stakeholder role»
Vehicle

«stakeholder role»
Army

«stakeholder role»
Breeding Stock

«stakeholder role»
Leader

«stakeholder role»
Trooper

«stakeholder role»
Warrior

«stakeholder role»
Scientist

Figure 14.5 Context Definition View showing possible Stakeholder Contexts

The Case Study 509

A final point to make here concerns the actors on the Requirement Context
Views, representing Stakeholder Roles that are outside the Context under con-
sideration. Look at Figure 14.7 which shows the Context for the ‘Army’. This
diagram has an actor ‘Flying Saucer’. This means that when the Requirement
Context View for the ‘Flying Saucer’ is created, it must have an actor ‘Army’ on it.
This is the case. This holds for any Stakeholder Role and Context. The ‘Invasion’
Context will have an ‘Army’ actor, as will the ‘Puny Earthling’ Context.

14.2.6 The Validation View
The Validation View is used for demonstrating that Needs can be satisfied by the
System. Such Validation Views can be both informal Scenario-based Views and
more mathematical-based Views. Examples of both are given in this section.

When creating Scenario-based Validation Views, they are realised using
sequence diagrams. Such Validation Views, like Context Definition Views, can be
created at the Stakeholder Role level, System level, etc. When creating at the Sta-
keholder Role level, the emphasis is on interactions between the Stakeholder Roles,
with the System treated as a black box. Each such Validation View is intended to
validate a Use Case. An example of a Validation View created at the Stakeholder
Role level is shown in Figure 14.10, a Scenario for the ‘Provide ground attack
capability’ Use Case from the Requirement Context View in Figure 14.7.
Typically, multiple Validation Views are created, considering both ‘‘success’’ and
‘‘failure’’ Scenarios.

CDV [Package] System Context Definition [Flying Saucer Structure]

«system»
Flying Saucer

«system element»
Hull

«system element»
Power Subsystem

«system element»
Environmental

Subsystem

«system element»
Engine Subsystem

«system element»
Landing Subsystem

«system element»
Materials-Handling

Subsystem

«system element»
Comms Subsystem

«system element»
Navigation Subsystem

«system element»
Defence Subsystem

«system element»
Weapon Subsystem

Supplies power to all
subsystems

2

1

1

1

1 11

1

1gets location
information from

1 1

works in
conjunction
with

1

1

1

Figure 14.6 Context Definition View showing possible System Contexts

510 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

A ‘‘failure’’ Scenario for the same Use Case is shown in Figure 14.11. This
starts the same way but ends differently. The common behaviour could be
abstracted out into a separate diagram that is referenced using SysML’s interaction
use mechanism. An example of this is given in Section 14.9.7 where sequence
diagrams are used for the System Interaction View. This Scenario also addresses
aspects of the ‘Provide self-destruct by remote trigger’ Use Case and as such can be
considered the ‘‘success’’ Scenario for that Use Case.

Having created a Validation View representing a Stakeholder Role Scenario, it
is possible to detail this at a lower level of abstraction by opening the black box and
creating a white box System level Scenario. This has been done in Figure 14.12.

The Validation View in Figure 14.12 shows the same Scenario as that in
Figure 14.11, but this time at the System level. Here, the emphasis is on the

RCV [Package] Army Context [High-level]

Army Context

Travel to target location

Subjugate Earthlings

Communicate

Identify targets

Engage with target

Kill

Kill self

Capture

Experiment

«stakeholder role»
Flying Saucer

«stakeholder role»
Puny Earthling

«stakeholder role»
Overlord

«extend»

«include»

«include»

«extend»

«extend»

«include»

«extend»

«extend»

Figure 14.7 Requirement Context View showing high-level Context
for the ‘Army’ Stakeholder Role

The Case Study 511

RCV [Package] Flying Saucer Context [High-level]

Flying Saucer Context

Provide flying saucer

Travel Provide
communications

Provide weapon
capability

Provide defensive
capability

Provide transport
capability

Provide self-destruct

Provide self-destruct by
remote trigger

Provide self-destruct by
local trigger

Provide transport
capability for prisoners

Provide transport
capability for troops

«stakeholder role»
Puny Earthling

«stakeholder role»
Army

«stakeholder role»
Overlord

«include»

«include»

«extend»

«include»

«extend»

«include»

«include»

Figure 14.8 Requirement Context View showing high-level Context
for ‘Flying Saucer’ System

RCV [Package] Flying Saucer Context [Low-level]

Flying Saucer Context

Provide flying saucer

Travel

Provide
communications

Provide weapon
capability

Provide defensive
capability

Provide transport
capability

Provide self-destruct

Provide self-destruct by
remote trigger

Provide self-destruct by
local triggerProvide transport

capability for prisoners

Provide transport capability
for troops

«stakeholder role»
Puny Earthling

«stakeholder role»
Army

«stakeholder role»
Overlord

Provide shielding

Provide cloaking

Allow two-way
communications

Take off

Land

Allow navigation

Provide ground attack
capability

Allow abduction Allow weapons to be
linked

Provide a minimum of 3
weapons

Provide lasers

«include»

«include»

«constrain» «constrain»

«include»

«include»

«include»

«include»

«include»

«extend»

«include»

«include»

«include»

«include»

«include»

«include»

«extend»

«include»

Figure 14.9 Requirement Context View showing low-level Context
for ‘Flying Saucer’ System

512 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

VV [Package] Attack [Attack - Success - Stakeholder]

:Overlord :Puny Earthling

:Flying Saucer

Attack()

Wipe them out(more)

Report(success)

Wipe them out(all of them)

Figure 14.10 Validation View showing successful Scenario at Stakeholder Role
level for ‘Flying Saucer’ System

VV [Package] Attack [Attack - Failed- Stakeholder]

:Overlord :Puny earthling

:Flying saucer

Wipe them out(all of them)

Attack()

Report(failure)

Die fool()

Repel()

Self-destruct(remote)

Figure 14.11 Validation View showing failure Scenario at Stakeholder
Role level for ‘Flying Saucer’ System

interactions between System Elements. The interactions that were shown to and
from the life lines representing Stakeholder Roles in Figure 14.11 are now shown
connected to gates on the enclosing diagram frame.

Sometimes, it is necessary to take a more mathematical approach to validation.
One way of doing this in SysML is to create Validation Views that make use of
parametric constraint blocks and parametric diagrams. Examples are given in
Figures 14.13 and 14.14 which address the Use Case ‘‘Travel to target location’’
from the Requirement Context View in Figure 14.7.

Two specialisations of the Validation View need to be created when using a
constraint-based approach to validation. The first is a Constraint Definition View, an
example of which is shown in Figure 14.13. Here, a block definition diagram is used

VV [Package] Attack [Attack - Failed - System]

:Weapon Subsystem:Atomic Pile:Materials-Handling
Subsystem

Die fool()

Wipe them out(all of them)

Victim acquired()

Report(failure)

Attack()

Target coordinates()

Self-destruct(remote)

Repel()

Target survived()

Figure 14.12 Validation View showing failure Scenario at System level
for ‘Flying Saucer’ System

514 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

with constraint blocks to define the mathematical and logical equations that are used
to define the mathematical relationships that form the basis of validation. You will
encounter this same diagram in Section 14.9.8, albeit with a different frame tag,
where it forms one of the System Parametric Views. This is an example of low-level
model reuse, where the content of a diagram is reused on multiple Views.

The way that the defined constraints are used is modelled on the second spe-
cialisation, the Constraint Usage View. An example of this is shown in Figure 14.14
where a parametric diagram is used to realise the View. This relates the defined
constraints to System Properties in a parametric network. Such a network can be
implemented in a mathematical tool, from a spread sheet to a mathematical simu-
lation system, in order to execute the network with actual values for the various
System Properties. Again, you will encounter this same diagram in Section 14.9.8,
albeit with a different frame tag, where it forms one of the System Parametric Views.

14.2.7 The Traceability View
The Traceability View is used to show traceability both to and from Needs (actually
to and from their concrete representation as Need Descriptions). It can be used in
many different ways, showing all the traceability of a certain type or showing all

PCDV [Package] System Constraints [Definition of Constraints]

«constraint»
Travel Time

constraints
{Time - Distance/Velocity}

parameters
 Distance : m
 Time : s
 Velocity : m/sec

«constraint»
Atmos Available per Crew

constraints
{Atmos available = (Ship volume + Reserve volume) / Number of troops}

parameters
 Number of troops : Integer
 Atmos available : cubic metres
 Reserve volume : cubic metres
 Ship volume : cubic metres

«constraint»
Atmos Required per Crew

constraints
{Atmos required = Rate * Time}

parameters
 Rate : m^3/sec
 Atmos required : cubic metres
 Time : s

«constraint»
Environment Decision

constraints
{IF Atmos available >= Atmos required THEN Decision = TRUE ELSE Decision = FALSE}

parameters
 Atmos available : cubic metres
 Atmos required : cubic metres
 Decision : Boolean

Figure 14.13 Parametric Constraint Definition View showing definition of
parametric constraint blocks

The Case Study 515

the traceability for a particular Need. Examples of both approaches are given in
Figures 14.15 and 14.16.

The Traceability View is often realised on a requirement diagram since, at least
when considering traceability as part of the Need Perspective, it always involves Need
Description which are realised in SysML as requirements. This is not to say that other
realisations are not possible; indeed, one common representation is a table showing the
source and target of a traceability link, along with the type of traceability represented
(such as refinement of a Need by a Use Case, validation of a Use Case by a Scenario,
etc.). However, a graphical realisation is often very useful to give an immediate feel
for the degree of connectedness due to the traceability relationships.

The Traceability View in Figure 14.15 is an example that concentrates on the
refinement of Needs by Use Cases. Every Use Case created on a Requirement
Context View must be traced, through a refinement relationship, to a Need

PCUV [Package] Constraint Usage [Flight Decision Based on Environmental Needs]

From Flying Saucer

From Martian

From Flying Saucer

: Atmos Available per Crew

Ship volume : cubic metres

Number of troops : Integer

Atmos available : cubic
metres

Reserve volume : cubic metres

: Environment Decision

Decision : Boolean

Atmos available : cubic metres

Atmos required : cubic metres

: Atmos Required per Crew

Rate : m^3/sec

Atmos required : cubic metres

Time : s

: Travel Time

Distance : m Time : s

Velocity : m/sec

Possible range

Velocity

Crew carried

Air supply

Reserve supply

Breathing rate

Okay to launch

Figure 14.14 Parametric Constraint Usage View showing use of parametric
constraint blocks (constraint properties) for determining flight
decision based on ship air supply

516 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Description from a Requirement Description View, otherwise why does the Use
Case exist. Conversely, every such Need Description must have at least one Use
Case that refines it, otherwise the Need that the Need Description represents is not
being addressed.

TV [Package] Use Cases to Needs [Refinement of Needs by Use Cases]

«need description»
Link weapons Allow weapons to be

linked

«need description»
Travel

«need description»
Allow navigation

«need description»
Communicate with

Mothership

«need description»
Hold one platoon

Provide transport
capability for troops

Provide transport
capability

Allow two-way
communications

Provide
communications

Allow navigation

Take off

Land

Travel

Allow abduction

Provide cloaking

Provide defensive
capability

Provide flying saucer

Provide self-destruct

Provide weapon
capability

«need description»
Have defences

«need description»
Enable abduction

«need description»
Have a cloaking device

«need description»
Have weapons

«need description»
Provide flying saucer

«need description»
Self-destruct mechanism

Provide transport
capability for prisoners

Provide shielding

Provide self-destruct by
remote trigger Provide self-destruct by

local trigger

«refine»

«refine»

«refine»

«refine»«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

Figure 14.15 Traceability View showing refinement of Needs by Use Cases

The Case Study 517

Often, it is useful to show all the traceability to and from a Need. An example
of this is shown in Figure 14.16. Here, the traceability for the Need ‘Have weapons’
is shown. The Source Elements from which ‘Have weapons’ comes are traced
through a trace dependency. The Use Case that refines ‘Have weapon’ is shown
through a refine dependency. The Scenarios that validate the Use Case are also
shown, connected through a validate dependency. These Scenarios have the SysML
stereotype «testCase» applied. Finally, a package, representing the part of the
model containing the ‘Weapon Subsystem’ is shown, with a trace dependency to
the ‘Provide weapon capability’ and a satisfy dependency to the ‘Have weapons’
Need. This is done to show which part of the model addresses the ‘Have weapon’
Need and ‘Provide weapon’ Use Case. A trace dependency is used between the

TV [Package] Single Requirement Traceability [Have Weapons]

«need description»
Have weapons

Provide weapon
capability

«source element»
Mars Attacks!

«source element»
Invasion from Outer

Space

Weapon Subsystem

«testCase»
[Interaction] Attack
[Attack - Success -

Stakeholder]

«testCase»
[Interaction] Attack

[Attack - Failed -
Stakeholder]

«satisfy»

«validate»«validate»

«trace»

«refine»

«trace»

«trace»

Figure 14.16 Traceability View showing traceability for a single Requirement
Description

518 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

package and the use case rather than a satisfy dependency simply because SysML
only allows a satisfy dependency to be connected to a requirement.

14.3 The System of Systems Perspective

The System of Systems Perspective expands on the Need Perspective to add addi-
tional Viewpoints that are required when modelling the Needs for a System of
Systems. It includes all the Viewpoints of the Need Perspective, used at the System
of System level.

The additional Views provide an overview of the relationships between the
Contexts of the various Constituent Systems that make up a System of Systems and
provide a combined view of the Scenarios for Use Cases that are involved in the
System of Systems.

This section contains the additional Views that make up the System of Systems
Perspective: the Context Interaction View and the Validation Interaction View.
Only the additional Views will be discussed, along with some necessary supporting
Views. For a full description of the Viewpoints in this Perspective and the concepts
behind them, see Chapter 10.

Before looking at examples of the additional Views, it is first necessary to
define the Contexts for the System of Systems. This is done in Figure 14.17.

The Context Definition View in Figure 14.17 shows a System of Systems,
‘Invasion’, made up of two Constituent Systems, ‘Spaceship System’ and ‘Army’.
Because this Context Definition View is for the System of Systems, it is entirely
possible that it is produced by a different Organisational Unit from that which is
responsible for the design of the individual Constituent Systems. For this reason,
the names used for the Constituent Systems might not match exactly with those

CDV [Package] Context Definition [System of Systems Structure]

«sos»
Invasion

«constituent system»
Space Ship

«constituent system»
Army

1

1..*

transports

1

1..*

Figure 14.17 Context Definition View showing System of System and its
Constituent Systems

The Case Study 519

used by other Organisational Units tasked with design of the Constituent Systems.
For example, Figure 14.17 has ‘Spaceship System’ but in the System Perspective
(see Section 14.9), the corresponding System is called ‘Spaceship’ (with a number
of subtypes). In addition, the term ‘Army’ in Figure 14.17 is used generically as a
branch of the military, whereas in the Organisational Perspective (see Sec-
tion 14.7), an ‘Army’ is just part of an ‘Army Group’ and thus represents an
Organisational Unit rather than branch of the military. Such difference in terms is
quite common on real projects and can be a source of confusion if not handled
carefully. One way of addressing this would be to use the various traceability
relationships or even allocations to map on term to another.

Given the Context Definition View in Figure 14.17, three Requirement Context
Views would then be expected: one for ‘Invasion’ and one for each of the two
Constituent Systems, ‘Spaceship System’ and ‘Army’. The Requirement Context
View for the ‘Invasion’ System of Systems from the point of view of the ‘Overlord’
Stakeholder Role is given in Figure 14.18. Those for ‘Army’ and ‘Spaceship Sys-
tem’ were given in Figures 14.7 and 14.8. Note that Figure 14.8 is actually that of a
‘Flying Saucer’ but, as discussed in above and in Section 14.9, the ‘Flying Saucer’
is a particular kind of ‘Spaceship System’.

RCV [Package] Contexts [Overlord Context]

Invasion SoS - Overlord Context

Subjugate races
Rule galaxy

Populate other systems

Enslave aliens Experiment on aliens

Inspire fear

Destroy opposition

Destroy aliens

Destroy planets

«stakeholder role»
Breeding Stock

«stakeholder role»
Puny Earthling

«stakeholder role»
Army

«stakeholder role»
Citizen

«stakeholder role»
Spaceship System

«extend»

«include»

«include»

«constrain»

«include» «include»

Figure 14.18 Requirement Context View for ‘Invasion’ System of Systems from
point of view of ‘Overlord’ Stakeholder Role

520 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The Requirement Context View for the ‘Invasion’ System of Systems in Fig-
ure 14.18 is drawn from the point of view of the ‘Overlord’ Stakeholder Role. Other
Stakeholder Roles might be involved at the System of Systems level and would
therefore have their own Requirement Context View. In a similar way, the ‘Inva-
sion’ System of Systems would have a Requirement Context View created for it as
a System. The same comments apply to Figure 14.18 regarding the terms used as
were made for Figure 14.17.

14.3.1 The Context Interaction View
The Context Interaction View is used to provide an overview of the relationships
between the Contexts of the various Constituent Systems that make up a System of
Systems. An example Context Interaction View showing the interactions between
the ‘Flying Saucer’ and ‘Army’ Contexts is shown in Figure 14.19.

The Context Interaction View is realised as a use case diagram. The Context
for each Constituent System is shown on the diagram, joined via any actors
representing the System of Systems (in this case, the ‘Overlord’ actor). When
creating a Context Interaction View, be on the lookout for other actors that appear
in multiple contexts. For example, ‘Puny Earthling’ appears twice in Figure 14.19
and so could have been replaced with a single copy that is connected to both
Contexts, as has been done with the ‘Overlord’ actor. This would show that the two
Constituent Systems, ‘Flying Saucer’ and ‘Army’, both interact with ‘Puny
Earthling’. We know from Figure 14.17 that ‘Puny Earthling’ is not part of the
System of Systems; it is not a Constituent System. Questions can then be asked
regarding the nature of these connections and whether ‘Puny Earthling’ provides
any functionality that could or should be part of the System of Systems, i.e. that
would make it a Constituent System.

CIV [Package] Context Interactions [Context Interactions]

Flying Saucer Context Army Context

«stakeholder role»
Flying Saucer

Capture

Communicate

Engage with
target

Experiment

Identify targets

KillKill self

Subjugate
Earthlings

Travel to target
location

«stakeholder role»
Puny Earthling

«stakeholder role»
Overlord

Provide
self-destruct by
remote trigger

Provide
communications

Provide
self-destruct

Provide
defensive
capability

Provide weapon
capability

Provide
self-destruct by

local trigger

Provide flying saucer

Provide transport
capability

Travel

Provide transport
capability for

prisoners

Provide transport
capability for troops

«stakeholder role»
Puny Earthling

«stakeholder role»
Army

«include»

«extend»

«include»
«extend»

«extend»

«include»

«include»

«extend»

«include»

«include»

«extend»

«include»

«extend»
«extend»

«include»

Figure 14.19 Context Interaction View showing interactions between
the ‘Flying Saucer’ and ‘Army’ Contexts

The Case Study 521

14.3.2 The Validation Interaction View
The Validation Interaction View is used to provide a combined view of the Sce-
narios for Use Cases that are involved in the System of Systems; it combines
information from the Validation Views for various Constituent Systems. An
example is given in Figure 14.20.

VIV [Package] Invasion & Attack [Invasion & Attack]

:Overlord :Flying Saucer :Army:Puny Earthling

par

par

Repel()

Attack()

Wipe them out(all of them)

Wipe them out(all of them)

Repel()

Die fool()

Report(failure)

Self-destruct
(remote)

Attack()

Report(failure)

Re-asses self
value()

Die fool()

Figure 14.20 Validation Interaction View showing interacting
System-level Scenarios

522 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The Validation Interaction View is used to combine Validation Views if they
represent the same (or aspects of the same) Scenario. The diagram in Figure 14.20
shows the Validation Interaction View for the combined Use Cases of ‘Provide
self-destruct by remote trigger’ from the Context of the ‘Flying Saucer’ (see Fig-
ure 14.11) and the ‘Kill self’ Use Case from the Context from the ‘Army’ System.
The latter is shown in Figure 14.21.

Since the Validation Interaction View is used to combine Validation Views, it
will typically be realised as a sequence diagram. The key when producing Vali-
dation Interaction Views is to ensure that they are drawn for related Scenarios.
Their intent is to allow validation of Scenarios for the System of Systems that are
realised by behaviour in multiple Constituent System and hence modelled as Use
Cases and Scenarios on Requirement Context Views and Validation Views for
those Constituent Systems. When the Validation Views for those Use Cases are
combined and compared, are they consistent with the corresponding Use Case at
the System of Systems level? Do they reveal common behaviour in multiple Con-
stituent Systems that could, perhaps, be pushed out to a new Constituent System or
up to the System of Systems itself?

VV [Package] Invasion [Invasion]

:Army:Overlord :Puny Earthling

Wipe them out(all of them)

Re-assess self value()

Report(failure)

Attack()

Repel()

Die fool()

Figure 14.21 Validation View for Use Case ‘Kill self’ for Constituent System
‘Army’

The Case Study 523

14.4 The Life Cycle Perspective

The Life Cycle Perspective is very important, yet one that is often ignored in real-
life systems engineering Projects. One of the main reasons for this is that there are
many types of Life Cycles, as discussed previously in this book, and it is crucial to
be able to differentiate between them and see how they interact with one another.
The Life Cycle Perspective contains a number of Views that enable this under-
standing: the Life Cycle View, the Life Cycle Model View, the Interaction Iden-
tification View and the Interaction Behaviour View. For a discussion on the
definition of the Life Cycle Perspective Views, see Chapter 8.

14.4.1 Life Cycle View
The Life Cycle View is a structural View that very simply identifies the Stages that
exist within a specific Life Cycle. Examples of three different Life Cycles are
provided in Figures 14.22–14.24.

The diagram in Figure 14.22 shows the Stages that exist in the Development
Life Cycle. Notice that these Stages have been named as ‘Development Stage’ to
avoid confusion with Stages in other Life Cycle. This Development Life Cycle is
the one that will be familiar with most systems engineering, and the Stages shown

LCV [Package] Life Cycle Perspective [Development Life Cycle]

«life cycle»
Development Life Cycle

«stage»
Development Stage

«stage»
Concept

«stage»
Construction

«stage»
Development

«stage»
Operations

«stage»
Support

«stage»
Retirement

6

Figure 14.22 Life Cycle View for Development Life Cycle

524 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

here have been taken directly from ISO 15288. It was stated previously in this
book that ISO15288 is the most widely used systems engineering Standard in the
world – it turns out that it is also the most widely used systems engineering
Standard on Mars!

The diagram in Figure 14.23 shows a Life Cycle View for a different Life
Cycle, this time one that describes the deployment of materiel, such as equipment,
weapons, vehicles, etc. In this case, the Stages cover:

● ‘Store’, where the materiel is held in a safe and secure location.
● ‘Transport’, where the materiel is transported to wherever it will be deployed.
● ‘Operate’, where the materiel is actually used in (extreme) anger.
● ‘Close’, where, once the materiel has reached the end of its usefulness, then it

is closed down and left.
● ‘Destroy’, where whatever is left is destroyed to prevent anyone else from

using it and to create one last moment of mayhem. Martians are not great
environmentalists.

LCV [Package] Life Cycle Perspective [Deployment Life Cycle]

«life cycle»
Deployment Life Cycle

«stage»
Deployment Stage

«stage»
Store

«stage»
Transport

«stage»
Operate

«stage»
Close

«stage»
Destroy

5

Figure 14.23 Life Cycle View for Deployment Life Cycle

The Case Study 525

This Life Cycle will not exist in isolation and, as will be seen on later Views, will
interact with other Life Cycles.

The diagram in Figure 14.24 shows a Life Cycle View for an Acquisition Life
Cycle. Notice that the Stages in this case reflect the acquisition of a System, rather
than its development or deployment, as were shown in the previous two diagrams.
These Stages are:

● ‘Idea’, where the initial idea for the System is dreamt up and the requirements
are generated.

● ‘Tender’, where the tender information, including a number of Contexts, such
as the System Context and Project Context, is put out to potential Suppliers
who then respond to the tender. On the basis of these submissions, a preferred
Supplier is selected to deliver the System.

● ‘Deliver’, where the System is delivered by the Supplier and is accepted, or
not, by the Customer.

● ‘Deploy’, where the System is deployed in its target environment.
● ‘Disposal’, where the System is finally disposed of.

Again, this Life Cycle will not exist in isolation and will interact with other Life
Cycles.

LCV [Package] Life Cycle Perspective [Acquisition Life Cycle]

«life cycle»
Acquisition Life Cycle

«stage»
Acquisition Stage

«stage»
Idea

«stage»
Tender

«stage»
Delivery

«stage»
Deploy

«stage»
Disposal

5

Figure 14.24 Life Cycle View for Acquisition Life Cycle

526 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

14.4.2 The Life Cycle Model View
The Life Cycle View showed the structure of a number of Life Cycles and identi-
fied their Stages. The Life Cycle Model Views shows the behaviour of each Life
Cycle at a number of different levels:

● Showing the interactions between the Stages.
● Showing the interactions between Process Execution Groups within each

Stage.
● Showing the interactions between Processes within each Process Execution

Group.

An example of each of these levels will be shown on the following diagrams.

The diagram in Figure 14.25 shows the Life Cycle Model View at a high level
by showing the interactions between the Stages in the Development Life Cycle.
Notice here that the life lines on this diagram are instances of the Stages from
Figure 14.22. Also, it is not necessary to show all of the Stages from the Life Cycle
View, as is the case here. It should be remembered that the Life Cycle Model View
is, in essence, just a Scenario and therefore will show a possible sequence, which
may or may not include every Stage.

LCMV [Package] Development Life Cycle [Rearm Project - Development Life Cycle - Stages]

«stage»
:Construction

«stage»
:Concept

«stage»
:Development

«stage»
:Operations

The Operations Stage
corresponds to the
Reduce Project

Figure 14.25 Life Cycle Model View showing development life cycle Stages

The Case Study 527

The diagram in Figure 14.26 shows the next level of detail which focuses
on the behaviour within a Stage. According the MBSE Ontology, there are a
number of Process Execution groups that are executed within each Stage.
Therefore, each life line in this diagram corresponds to a Process Execution
Group, rather than a Stage. Exactly the same principles hold in that the diagram
shows a single Scenario.

The diagram in Figure 14.27 drops down another level and focuses on the
Processes that are executed within a specific Process Execution Group. In this case,
each life line corresponds to a development Process, and the diagram shows a single
Scenario for a number of Process executions.

It should be noted that this View is the same as the Process Instance View from
the Process Perspective in which it shows the execution of Processes, but it is used
for different purposes. The Process Instance View is concerned with validation of
Use Cases and their associated Needs, whereas the Life Cycle Model View is more
concerned with exploring different possible Scenarios that may be executed on a
Project.

LCMV [Package] Development Life Cycle [Rearm Project - Development Life Cycle - Concept Stage - Process Execution Groups]

«process execution group»
:Understand Project Needs

«process execution group»
:Understand Equipment Needs

«process execution group»
:Understand Tactical Needs

par {2y}

{3y}
{2y}

{3y}

Figure 14.26 Life Cycle Model View showing breakdown of a Stage
into Process Execution Groups

528 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

14.4.3 Interaction Identification View
The Interaction Identification View is a structural View that focuses on identifying
the Interaction Points that exist between different Life Cycles. It should be clear
from the Life Cycle Views that there are clear relationships between the different
Life Cycles, and this View makes those relationships explicit.

LCMV [Package] Development Life Cycle [Rearm Project - Development - Concept ...

«process»
:Stakeholder

Requirements

«process»
:Analysis

«process»
:Design

Starts Understand Tactical Needs
and Understand Equipment Needs
Process Execution Groups

{3m}

{3m}

{3m}

{3m}

{3m}

{3m}

{6m}

Figure 14.27 Life Cycle Model View showing breakdown of a Process Execution
Group into Processes

The Case Study 529

The diagram in Figure 14.28 shows the three Life Cycles that were shown
previously, the Development Life Cycle, the Deployment Life Cycle and the
Acquisition Life Cycle. In this View, each Interaction Points is shown by using a
dependency stereotyped as «interaction point» that crosses the boundaries, repre-
sented by packages, between each Life Cycle.

As this is a structural View, there is no behaviour of the interactions shown,
which are shown in the following View.

14.4.4 Interaction Behaviour View
The Interaction Behaviour View shows how the various Life Cycles interact with
one another. In essence, this shows a number of Life Cycle Model Views and how
they behave towards one another.

The diagram in Figure 14.29 shows the same three Life Cycles as discussed
previously but this time focuses on their behaviour. Each rectangular boundary on
the diagram corresponds to a Life Cycle Model View, and the interactions between
these Views correspond to the Interaction Points that were identified in
Figure 14.28.

IIV [Package] Life Cycle Perspective [Interactions between Life Cycles]

«life cycle»
Development Lifecycle

«life cycle»
Deployment Life Cycle

«life cycle»
Acquisition Life Cycle

«stage»
Construction

«stage»
Concept

«stage»
Development

«stage»
Operations

«stage»
Retirement

«stage»
Support

«stage»
Disposal

«stage»
Delivery

«stage»
Deploy

«stage»
Idea

«stage»
Tender

«stage»
Operate

«stage»
Close

«stage»
Destroy

«stage»
Store

«stage»
Transport

«interaction point»

«interaction point»

«interaction point»

«interaction point»

«interaction point»

«interaction point»

«interaction point»

Figure 14.28 Interaction Identification View between Life Cycles

530 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

14.5 The Process Perspective

The Process Perspective is concerned with identifying, analysing and defining
Processes that may be used for any activity within the Organisation. This is the
aspect of MBSE that has been used the most throughout this book as a number of
Processes have been defined (indeed, the whole Case Study is the output of a set of
Processes known as STUMPI, available from the authors) and, therefore, the
descriptions for each View will be minimal and are included here for completeness.
The ‘‘seven views’’ approach to Process Modelling has been used so much that
even the Martian Overlord has mandated it for all domination and invasion Pro-
jects, as will be shown on the Process Context in the Requirement Context View.
The Process Perspective is made up of the following Views: Process Structure
View, Requirement Context View, Process Context View, Stakeholder View,
Information View, Process Behaviour View and Process Instance View.

14.5.1 Process Structure View
The Process Structure View identifies and defines the concepts and terminology
used for the MBSE activities within the Organisation. This View is essentially an
Ontology, so that MBSE Ontology will be used for this Case Study, and is descri-
bed in great detail in Chapter 3 and Appendix A, so will not be repeated here.

14.5.2 Requirement Context View
The Requirement Context View defines the Context for the Processes. This View is
exactly the same as the Requirement Context View from the ACRE approach, and,

IBV [Package] Life Cycle Perspective [Typical Life Cycle Interactions]

Development Life Cycle Acquisition Life Cycle Deployment Life Cycle

«stage»
:Construction

«stage»
:Concept

«stage»
:Support

«stage»
:Deploy

«stage»
:Delivery

«stage»
:Disposal

«stage»
Destroy

«stage»
Close

«stage»
Store

«interaction»

«interaction»

«interaction»

«interaction»

«interaction» «interaction»

Figure 14.29 Interaction Behaviour View

The Case Study 531

indeed, the entire set of ACRE Views may be used to specify the Needs of the
Process as desired. In most cases, however, it is sufficient to only create the Views
described here.

The diagram in Figure 14.30 shows the Requirement Context View that shows
the Process Context. Note that the use cases on this diagram are focused on the
Needs of the Processes that need to be developed, rather than of the Needs of the
System.

Each of the use cases shown on this View must be validated using the Process
Instance Views that instantiate Processes from the Process Content View.

For a full discussion on the finer points of Context modelling, see Chapters 5, 9
and 10.

14.5.3 Process Content View
The Process Content View shows the Process library for a specific aspect of the
Organisation.

RCV [Package] Process Perspective [Process Context]

Process Context

Develop systems
engineering
processes

Use "seven views"
approach

Meet standards

Continually
improve process Disseminate

process

Define process

... for deployment

... for development

... for acquisition

«stakeholder role»
Warrior

«stakeholder role»
Overlord

«stakeholder role»
Process Modeller «include»

«include»

«constrain»

«include»

«constrain»

Figure 14.30 Requirement Context View for Process Context

532 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 14.31 shows the Process Content View for the Case
Study. Notice that only a few Processes are shown on this diagram and that many
more would exist in reality. These Processes are kept to a minimum for the sake of
legibility and brevity.

14.5.4 Stakeholder View
The Stakeholder View shows the Stakeholder Roles that are associated with the
Processes in the form of a classification hierarchy.

The diagram in Figure 14.32 shows a simple Stakeholder View for the Stake-
holder Roles associated with deployment. This is only a subset of the overall Sta-
keholder View, focusing on the ‘Warrior’ Stakeholder Role.

14.5.5 Information View
The Information View identifies the Artefacts associated with the Processes and the
relationships between them. These can be used to define the structure of a specific
Artefact or may show the relationships between the Artefacts at a higher level. The
Information View may also be created at a detailed level for each Process or at a
higher level, showing the relationships between all Artefacts.

The diagram in Figure 14.33 shows the Information View for the Herd Process,
focusing on the relationships between each Artefact.

PCV [Package] Process Perspective [Process Perspective]

«process»
Deployment Process

«process»
Planetary Deployment

Process

«process»
Interplanetary Deployment

Process

«process»
Navigation

«process»
Victim Acquisition

«process»
Victim Engagement]

«process»
Self-Destruction

«process»
Herd

+ «artefact» Destination detail
+ «artefact» Environmental data
+ «artefact» Target detail
+ «artefact» Target roster

+ «activity» locate target()
+ «activity» identify target()
+ «activity» force route()
+ «activity» record statistics()
+ «activity» terminate target()
+ «activity» search()
+ «activity» pursue()

«process»
Capture

+ «artefact» Destination detail
+ «artefact» Environmental detail
+ «artefact» Target detail
+ «artefact» Target roster

+ «activity» lay trap()
+ «activity» spring trap()
+ «activity» wait for trap to spring()
+ «activity» secure targets()
+ «activity» placate targets()
+ «activity» eliminate target()
+ «activity» update roster()

«process»
Experimentation

+ «artefact» Required information
+ «artefact» Response
+ «artefact» Target detail
+ «artefact» Target roster

+ «activity» identify required information()
+ «activity» probe()
+ «activity» record responses()
+ «activity» interrogate()
+ «activity» eliminate target()
+ «activity» transfer target()
+ «activity» respond()

{incomplete}
{incomplete}

Figure 14.31 Process Content View

The Case Study 533

SV [Package] Process Perspective [Deployment Stakeholder Roles]

«stakeholder role»
Warrior

«stakeholder role»
Sapper

«stakeholder role»
Chaser

«stakeholder role»
Scientist

«stakeholder role»
Spotter

«stakeholder role»
Terminator

«stakeholder role»
Commander

«stakeholder role»
Lurker

Figure 14.32 Stakeholder View for deployment Stakeholder Roles

IV [Package] Process Perspective [Herd Process]

«artefact»
Environmental

Detail

«artefact»
Target Detail

«artefact»
Destination

Detail

«artefact»
Target Roster

1

records details of

1

1

is abstracted from
1

1

defines terminal
location for

1

1

records details of

1

Figure 14.33 Information View for Herd Process

534 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 14.34 shows the Information View for the Capture
Process, focusing on the relationships between each Artefact.

The diagram in Figure 14.35 shows the Information View for the Experi-
mentation Process, focusing on the relationships between each Artefact.

14.5.6 Process Behaviour View
The Process Behaviour View shows how each Process behaves internally.
The order of execution of Activities (using operations) is shown along with the
production and consumption of Artefacts (using objects). The responsibility for
Activities is also shown by allocating Stakeholder Roles to operations using swim
lanes.

IV [Package] Process Perspective [Capture Process]

«artefact»
Target Roster

«artefact»
Target Detail

«artefact»
Destination Detail

«artefact»
Environmental

Detail

1

records details of

1

1
is abstracted from

1

1

records details of

1

1

defines terminal
location for

1

Figure 14.34 Information View for Capture Process

The Case Study 535

The diagram in Figure 14.36 shows the Process Behaviour View for the Herd
Process.

The diagram in Figure 14.37 shows the Process Behaviour View for the Cap-
ture Process.

The diagram in Figure 14.38 shows the Process Behaviour View for the
Experimentation Process.

14.5.7 Process Instance View
The Process Instance View shows the execution of Processes in a specific Scenario.
These are used specifically to validate the Use Cases from the Requirement Context
View to ensure that the Processes satisfy their original Needs.

IV [Package] Process Perspective [Experimentation Process]

«artefact»
Target Roster

«artefact»
Target Detail

«artefact»
Invasion

Knowledge

«artefact»
Target Status

«artefact»
Response

«artefact»
Required

Information

1

records details of

1

1..*

1..*0..*

corresponds
to

1

1..*

1

reflects
status of

1

1

dictates

1..*

Figure 14.35 Information View for Experimentation Process

536 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 14.39 shows a Process Instance View that provides the
validation for the ‘ . . . for deployment’ use case from Figure 14.30.

This View looks the same as the Life Cycle Model View, as discussed pre-
viously, but is exactly analogous with a Validation View from the ACRE Processes.
The Process Instance View is a Validation View that is used specifically for vali-
dating that Processes satisfy their original Needs.

PBV [Package] Process Perspective [Herd Process]

«stakeholder role» :Terminator«stakeholder role» :Chaser«stakeholder role» :Spotter

search
(Herd::)

Environmental data:
Environmental Detail

identify target
(Herd::)

pursue
(Herd::)

force route
(Herd::)

terminate
target
(Herd::)

invoke
'Capture'

locate target
(Herd::)

record
statistics
(Herd::)

Target roster: Target
Roster

Destination
detail:

Destination
Detail

[in range]

[escaping][capturable]

Figure 14.36 Process Behaviour View for Herd Process

The Case Study 537

14.6 The Project Perspective

The Project Perspective is used to capture aspects of Projects and Programmes that
are executed in order to deliver Systems. It allows the structure of Programmes of
related Projects to be defined as well as the schedule for an individual project. For
details, see Chapter 8.

This section contains the Views that make up the Project Perspective: the
Programme Structure View and the Project Schedule View.

14.6.1 The Programme Structure View
The Programme Structure View is used to show how a Programme is made up of a
number of related Projects. An example is given in Figure 14.40 which shows a
single Programme, ‘Invasion Earth’, which is made up of three Projects: ‘Recon’,
‘Rearm’ and ‘Reduce’.

In Figure 13.40, a block definition diagram has been used to realise the Pro-
gramme Structure View, with blocks used for both Programmes and Projects. These
are differentiated from each other through the use of stereotypes. Associated with

PBV [Package] Process Perspective [Capture Process]

«stakeholder role» :Sapper «stakeholder role» :Chaser«stakeholder role» :Lurker «stakeholder role» :Terminator

invoke
'Capture'

placate
targets

(Capture::)

lay trap
(Capture::)

spring trap
(Capture::)

wait for trap to
spring

(Capture::)

secure targets
(Capture::)

eliminate
target

(Capture::)

update roster
(Capture::)

Target detail: Target
Detail

Environmental data:
Environmental Detail

Target roster:
Target Roster

invoke
'Experimentation'

[trap worked]

[target safe]

[target unsafe]

[trap failed]

Figure 14.37 Process Behaviour View for Capture Process

538 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

each of these stereotypes are the tags ‘commencement date’ and ‘end date’ to hold
additional information for the Programme and Projects. The relationships between
the Projects are shown using dependencies; these show that the ‘Reduce’ Project
depends on the ‘Rearm’ Project which, in turn, depends on the ‘Recon’ Project.

There are a number of points related to the realisation that are worthy of
discussion.

● Composition has been used to show how the Projects are related to the orga-
nising Programme. This means that each of the three Projects shown is part of
the ‘Invasion Earth’ Programme only. Should one of the Projects also form part
of another Programme, then aggregation could be used for that Project, rather
than composition in order to emphasise the shared nature of such a Project.

PBV [Package] Process Perspective [Experimentation Process]

«stakeholder role» :Chaser «stakeholder role» :Terminator«stakeholder role» :Scientist«stakeholder role» :Puny Earthling

invoke
'Experimentation'

transfer target
(Experimentation::)

probe
(Experimentation::)

Required information:
Required Information

identify required
information

(Experimentation::)

Target detail:
Target Detail

interrogate
(Experimentation::)

respond
(Experimentation::)

Response:
Response

record responses
(Experimentation::)

eliminate target
(Experimentation::)

[response
useful]

[response useless]

Figure 14.38 Process Behaviour View for Experimentation Process

The Case Study 539

PIV [Package] Process Perspective [Multiple Target Experimentation Scenario]

«process»
:Experimentation

«process»
:Capture

«process»
:Herd

loop

[for each target]

invoke 'Capture'()

invoke 'Experimentation'()

Figure 14.39 Process Instance View for Deployment with multiple
Targets and experimentation

PSV [Package] Programmes [Structure of Invasion Earth Programme]

«programme»
Invasion Earth

commencement date = 1947-07-07
end date = 2014-10-07

«project»
Recon

commencement date = 1947-07-07
end date = 1962-07-07

«project»
Rearm

commencement date = 1957-07-07
end date = 2012-07-07

«project»
Reduce

commencement date = 2014-07-07
end date = 2014-10-07

11

1

1

Figure 14.40 Programme Structure View showing dependencies
between Projects

540 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● Additional tags could be added to both the Programme and Project stereotypes
in order to hold additional information, such as responsible Organisation.

● Although Projects are shown with a single dependency, there is nothing to
prevent a Project being dependent on multiple Projects. If the dependency is to
a Project in a different Programme, then the Programme Structure View allows
for the display of multiple Programmes. This would then also allow relation-
ships between Programmes to be shown.

If required, additional concepts could be added, such as milestones or lines of
development. Remember, if you find you need to add additional information to a
View, you must ensure that its definition (i.e. its Viewpoint) is updated. This might
also require changes to the underlying Ontology.

14.6.2 The Project Schedule View
The Project Schedule View is used to provide an overview of the execution of a
Project over time. An example is given in Figure 14.41.

A Gantt chart is used to realise the Project Schedule View in Figure 14.41. This
is the Project Schedule View for the ‘Rearm’ Project that is part of the ‘Invasion
Earth’ Programme. The example is necessarily simplified for presentational pur-
poses: only the Concept stage is broken down, and then only one of its Process
Execution Groups is broken down as far as the Processes inside it. These Processes
could be broken down into Tasks if desired.

Remember that the Project Schedule View is very closely related to the Life
Cycle Model View of the Life Cycle Perspective and also to the Processes defined
in the Process Perspective. See, for example, the Life Cycle Model Views in

ID Task Name Start End Duration
1957 1958 1959 1960 1961 1962 1963

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

1 261w08/ 07/ 196208/ 07/ 1957Concept

2 104w05/ 07/ 195908/ 07/ 1957Understand Project Needs

10 156w01/07/196206/07/1959Understand Tactical Needs

11 157w08/07/196206/07/1959Understand Equipment Needs

12 1300w07/06/198709/07/1962Development

13 1300w06/05/201208/06/1987Construction

13w06/10/195708/07/1957Stakeholder Requirements

13w05/01/195807/10/1957Analysis

13w06/04/195806/01/1958Design

Responsibility

Requirement
Engineer; Reviewer
Systems Modeller;
Reviewer
Systems Modeller;
Reviewer

3

4

5

6

8

Requirement
Engineer; Reviewer13w06/07/195807/04/1958Stakeholder Requirements

Systems Modeller;
Reviewer13w04/01/195906/10/1958Design

7 Systems Modeller;
Reviewer13w05/10/195807/07/1958Analysis

Requirement
Engineer;Reviewer26w05/07/195905/01/1959Stakeholder Requirements9

Figure 14.41 Project Schedule View showing part of the ‘Rearm’ Project

The Case Study 541

Section 4.2. The Project Schedule View in Figure 14.41 is consistent with the three
Life Cycle Model Views presented there. The information in the ‘Responsibility’
column in Figure 14.41 is taken from the Process Behaviour Views for the corre-
sponding STUMPI Processes available from the authors.

See Chapter 8 for a detailed discussion on the Project Schedule View. Also, do
not forget that a Programme is just a special kind of Project and, as such, can have
its own Project Schedule View (and associated Life Cycle Model Views).

14.7 The Organisational Perspective

The Organisational Perspective is concerned with modelling aspects of an Orga-
nisation’s structure, the Posts that need to be filled in the Organisation, the Stake-
holder Roles that are relevant to each Post, the Rank (or Grade) that is required to
fill a Post and the actual Person (or Martian!) that fills each Post.

This section contains the Views that make up the Organisational Perspective:
the Organisation Unit Structure View, the Organisation Unit Instance View, the
Rank Hierarchy View, the Post Structure View, the Post Instance View, the Post to
Role View and the Martian Instance View.

14.7.1 The Organisation Unit Structure View
The Organisation Unit Structure View is used to show the typical structure of an
Organisation, broken down in to Organisational Units which can be further sub-
divided. For the Martian army, an example is shown in Figure 14.42, with Martian
terms translated into the nearest Human terms.

In Figure 14.42, a block definition diagram has been used to realise the
Organisational Unit Structure View, with blocks used to represent Organisational
Units and composition relationships used to show the structure. A stereotype is used
to show that the blocks represent Organisational Units.

The final Organisational Unit on the diagram, the ‘Pack’, is shown as being
composed of three ‘Martian’. These are, however, not Organisational Units but
rather have the stereotype «person» to show that the ‘Martian’ block represents a
Person. This has raised two points. One of these is shown on the diagram in a note,
namely that the Ontology that forms the basis of the MBSE Architectural Frame-
work (see Chapter 13) could be updated to replace the concept of Person with that
of Martian. The second point is that the Ontology defined on the Ontology Defi-
nition View in Chapter 13 is inconsistent with the Organisational Unit Structure
View in Figure 14.42 from which we can infer that an Organisational Unit can be
made up of one or more Person. However, such a relationship is not found in the
Ontology Definition View and would need to be added to that View to ensure
consistency. Of course, we have not formally defined the Organisational Unit
Structure View in Chapter 12. Had we done so, this inconsistency would have been
discovered and addressed as part of the definition of the Organisational Unit
Structure Viewpoint.

542 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

14.7.2 The Organisation Unit Instance View
The Organisation Unit Instance View is used to show the structure of an actual
Organisation, conforming to the structure defined in the Organisation Unit Struc-
ture Viewpoint. An example of an Organisation Unit Instance View for the Martian
army is shown in Figure 14.43.

The Organisation Unit Instance View in Figure 14.43 shows ‘‘actual’’ instances
of Organisational Units corresponding to the typical structure found in Figure 14.42.
Since the intention of the Organisation Unit Instance View is to show instances of
Organisational Units, it makes sense to use instance specifications on a block defi-
nition diagram. This has been done here, with stereotypes again being used to show

OUSV [Package] Army Structure [Army Unit Structure - Typical]

«organisational unit»
Army Group

«person»
Martian

«organisational unit»
Company

«organisational unit»
Army

«organisational unit»
Cohort

«organisational unit»
Legion

«organisational unit»
Pack

«organisational unit»
Platoon

Martian could replace the concept of Person on the ODV in Chapter 13
Figure 3.

3

3

9

9

9

9

9

Figure 14.42 Organisational Unit Structure View showing typical army unit
structure

The Case Study 543

that the instance specifications represent Organisational Units. Thus, we can see that
‘Army Group Earth’ is an actual ‘Army Group’ and is made up of ‘Earth Army 1’ to
‘Earth Army 9’, each an actual ‘Army’. The stereotypes show that these are all
Organisational Groups. The rest of the actual structure is modelled in a similar
fashion, with notes being used to elide information and show the range of Organi-
sational Units and how they are named.

Here it is worth remembering that the Organisation Unit Instance View must
correspond to an Organisation Unit Structure View. For example, if ‘Earth Army 9’

OUIV [Package] Army Structure [Army Unit Structure - Actual - Earth Invasion]

«organisational unit»
Army Group Earth: Army Group

«organisational unit»
Earth Army 1: Army

«organisational unit»
Earth Army 9: Army

to

«organisational unit»
Legion 11: Legion

«organisational unit»
Legion 93: Legion

«organisational unit»
Legion 91: Legion

«organisational unit»
Legion 13: Legion

to
to

«organisational unit»
Cohort 131: Cohort

«organisational unit»
Cohort 139: Cohort

to
etc.

etc.

«organisational unit»
Company 1311: Company

«organisational unit»
Company 1319: Company

to etc.

«organisational unit»
Platoon 1319-1: Platoon

«organisational unit»
Platoon 1319-9: Platoon

toetc.

etc.
«organisational unit»
Pack 1319-91: Pack

«organisational unit»
Pack 1319-99: Pack

to

Figure 14.43 Organisational Unit Instance View showing structure
of invading army

544 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

was made up of only two ‘Legion’, there would be an inconsistency between
the Organisation Unit Instance View and its Organisation Unit Structure View in
Figure 14.42, which would have to be changed to show that an ‘Army’ is composed
of two or more ‘Legion’ (or perhaps even one or more in order to allow maximum
flexibility).

14.7.3 The Rank Hierarchy View
The Rank Hierarchy View is used to show Ranks and their hierarchy. An example
showing Martian army Ranks is shown in Figure 14.44, with Martian Ranks
translated into Human equivalents where there is no other suitable translation.

A block definition diagram is used to realise the Rank Hierarchy View, with
blocks representing Ranks. Again, stereotypes are used to show that the blocks
represent Ranks. The subordination of one Rank to another is shown via stereo-
typed dependencies. The use of the ‘{incomplete}’ constraint on the generalisation
between the ‘Rank’ and the ‘Army Rank’ blocks shows that Figure 14.44 is
incomplete and that other high-level Ranks are omitted (e.g. ‘Navy Rank’ and

RHV [Package] Army Ranks [Standard Field Ranks]

«rank»
Rank

«rank»
Army Rank

«rank»
Overlord

«rank»
General

«rank»
Marshall

«rank»
Sub-General

«rank»
Brigadier

«rank»
Colonel

«rank»
Sub-Captain

«rank»
Captain

«rank»
Major

«rank»
Minion

«rank»
Corporal

«rank»
Sergeant

«i
s

su
bo

rd
in

at
e

to
»

«is subordinate to»

«is subordinate to»

«i
s

su
bo

rd
in

at
e

to
» «is subordinate to»

{incomplete}

«is subordinate to»

«is subordinate to» «i
s

su
bo

rd
in

at
e

to
»

«is subordinate to»

«is subordinate to»

«is subordinate to»

Figure 14.44 Rank Hierarchy View showing standard army field ranks

The Case Study 545

‘Science Rank’). These would need to be defined on their own Rank Hierarchy
Views. If the equivalence of Ranks needs to be modelled, then the Ontology
Definition View for the MBSE Architectural Framework could be extended to
show that a Rank is equivalent to another. The definition of the Rank Hierarchy
View (i.e. the Rank Hierarchy Viewpoint) could then be extended to allow rela-
tionships to be added showing such Rank equivalence.

14.7.4 The Post Structure View
The Post Structure View is used to show typical Posts and lines of command
between Posts and between a Post and an Organisational Unit. It also shows the
minimum Rank that can fill a Post. An example defining typical Posts in the
Martian army is given in Figure 14.45.

A block definition diagram has been used in Figure 14.45 to show realise the
Post Structure View. Each Post is represented using a block with a stereotype

PSV [Package] Army Posts [Typical Army Command Posts]

«post»
Post

«post»
Army Commander

«post»
Pack Leader

«post»
Army Post

«post»
Cohort Commander

«post»
Platoon Commander

«post»
Group Commander

«post»
Legion Commander

«post»
Company Commander

{incomplete}

Figure 14.45 Post Structure View showing typical army posts

546 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

marking the blocks as being Posts. As with the Rank Hierarchy View, the use of the
‘{incomplete}’ constraint shows that not all Posts are shown on this diagram. Lines
of command were deliberately omitted from Figure 14.45 in order not to clutter the
diagram. They are shown in Figure 14.46, along with the minimum Rank required
for each Post.

PSV [Package] Army Posts [Typical Army Command Posts Showing Lines of Command and Minimum Ranks]

Army Ranks

«rank»
Brigadier

«rank»
Captain

«rank»
Corporal

«rank»
General

«rank»
Marshall

«rank»
Sergeant

«rank»
Sub-General

Army Posts

«post»
Group Commander

«post»
Army Commander

«post»
Cohort Commander

«post»
Company

Commander

«post»
Legion Commander

«post»
Pack Leader

«post»
Platoon

Commander

Army Structure

«organisation...
Legion

«organisation...
Army Group

«organisation...
Cohort

«organisation...
Company

«organisation...
Pack

«organisation...
Platoon

«organisation...
Army«requires rank»

«commands»

«commands»

«commands»

«requires rank»

«requires rank»

«commands»

«commands»

«commands»

«requires rank»

«requires rank»

«requires rank»

«requires rank»

«commands»

«commands»

«commands»

«commands»

«commands»

«commands»

«commands»

Figure 14.46 Post Structure View showing lines of command and minimum ranks

The Case Study 547

The Post Structure View in Figure 14.46 now shows the minimum Rank
required for each Post, as well as the lines of command between Posts and between
Posts and Organisational Units. Note the use of packages to provide a visual
grouping of the Ranks, Posts and Organisational Units. Lines of command and
minimum Ranks are shown using stereotyped dependencies. Associations could
also be used for either or both. Note also how the use of stereotypes on this diagram
also helps to differentiate between the different Ontology Elements being repre-
sented by the blocks.

Remember that the Post Structure View must be consistent with other Views.
For example, the Ranks shown in Figure 14.46 must appear on a Rank Hierarchy
View. Similarly, the Organisational Units must appear on an Organisational Unit
Structure View.

If your Organisation is less militaristic than that modelled in this section, then
think Grade rather than Rank, ‘manages’ rather than ‘commands’ and ‘requires
grade’ rather than ‘requires rank’. For example, the Post of ‘Team Leader’ manages
a ‘Team’ Organisational Unit, manages a ‘Team Member’ Person and requires a
‘G6’ Grade.

Not all Posts have command responsibility. Such Posts could be shown on a
separate Post Structure View, again to avoid cluttering diagrams. An example is
shown in Figure 14.47.

Figure 14.47 shows three Posts that all require the same minimum Rank but
which have no command responsibility. This is in agreement with the Ontology
Definition View showing extended concepts related to Organisation and Person in
Chapter 13, which shows that a Post commands zero or more Posts and zero or
more Organisational Units.

PSV [Package] Army Posts [Typical Army Posts - Non-Command]

«rank»
Minion

«post»
Ambusher

«post»
Scout

«post»
Breacher

«requires rank»

«requires rank»

«requires rank»

Figure 14.47 Post Structure View showing non-command posts

548 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

14.7.5 The Post Instance View
The Post Instance View is used to show actual Posts, the actual Organisational
Units that the Posts command and the actual Ranks of the Person filling each Post.
A small example is shown in Figure 14.48.

Given that the Post Instance View shows actual Posts, etc., it should be no
surprise that a block definition diagram is used with instance specifications show-
ing instances of each Post and Organisational Unit. Again, these instance specifi-
cations are marked with stereotypes to show that they represent Posts and
Organisational Units. In a diagram with more Posts and Organisational Units than
shown here, packages could again be used to provide a visual grouping if required,
in a similar way to their use in Figure 14.46.

Again, remember that the instances of Posts shown on the Post Instance View
must correspond to defined Posts on a Post Structure View.

14.7.6 The Post to Role View
The Post to Role View is used to show the Stakeholder Roles that are required by
each Post. A small example for the Martian army is shown in Figure 14.49.

A block definition diagram is used in Figure 14.49 to realise the Post to Role
View, but with actors used to represent the Stakeholder Roles (as was done in
Figure 14.5). As with the other Views in the Organisational Perspective, stereotypes
are used to add distinguishing and clarifying information. The mapping from a Post
to the required Stakeholder Roles has been realised using a stereotypes dependency.
Again, this relationship could also be modelled using an association instead. In
circumstances where one modelling element has no real benefit over another, often
the decision as to which to use is a matter of personal (and often aesthetic) choice.
However, whatever choice of realisation is made must be used consistently
throughout the architecture. One way of enforcing this is to annotate the Viewpoint

PIV [Package] Army Posts [Actual Posts - Platoon 1138-1 (Partial)]

«post»
1138-1 Platoon Commander: Platoon Commander

«post»
1138-11 Pack Leader: Pack Leader

«organisational unit»
Platoon 1138-1: Platoon

«organisational unit»
Pack 1138-11: Pack

«commands»

«commands»

«commands»

Figure 14.48 Post Instance View showing examples of actual Posts, actual
Organisational Units and lines of command

The Case Study 549

Definition View for each Viewpoint so that the realisation to be used for each
Viewpoint Element is defined.

14.7.7 The Martian Instance View
The Martian Instance View is used to show the actual Person (and in this case,
Martians) that fill each Post. A small example showing two Persons and their Posts
is shown in Figure 14.50.

PtoRV [Package] Army Competencies [Example Required Roles]

«post»
Ambusher

«post»
Pack Leader

«post»
Scout

«stakeholder role»
Terminator

«stakeholder role»
Commander

«stakeholder role»
Lurker

«stakeholder role»
Spotter

«requires role»

«requires role»

«requires role»

«requires role»

«requires role»

«requires role»

Figure 14.49 Post to Role View showing required Stakeholder Roles for typical Posts

MIV [Package] Army Deployment [Platoon 1138-1 Pack Leaders (Partial)]

«person»
Akikok: Martian

Rank = Corporal

«person»
Ekikok: Martian

Rank = Sergeant

«post»
1138-11 Pack Leader: Pack Leader

«post»
1138-12 Pack Leader: Pack Leader

«fills»

«fills»

Figure 14.50 Martian Instance View showing actual Martians assigned to
actual Posts

550 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Since the Martian Instance View is showing instances of Person and Post,
instance specifications on a block definition diagram are again used to realise the
Martian Instance View. The filling of Posts is modelled using a stereotyped
dependency. As before, an association could have been used as an alternative.

From the point of view of consistency, any instance of a Post that appears on a
Martian Instance View must appear on a Post Instance View. The Post ‘1138-11
Pack Leader : Pack Leader’ appears on the Post Instance View in Figure 14.48;
presumably the Post ‘1138-12 Pack Leader : Pack Leader’ appears on a different
Post Instance View.

Note the assignment of values to the slots in the instance specifications for the
Person blocks. A slot in an instance specification corresponds to a property in the
block that types the instance specification. It is, in effect, an instance of a property.
Two points are worth noting regarding their use here. First, Figure 14.46 shows that
the minimum ‘Rank’ for a ‘Pack Leader’ is ‘Corporal’. However, in Figure 14.50 it
can be seen that ‘Ekokak’ has ‘Rank’ of ‘Sergeant’; he (she? It?) is actually over-
qualified. Either there is not an available ‘Platoon’ for him to command, or he is
deemed unsuitable in some way. This is just as true in ‘‘real’’ Organisations; a
person can get promoted to a Rank or Grade that makes them suitable for holding a
higher Post, but such a Post may not be available. The MBSE Architectural Fra-
mework allows for such situations to be captured. The second point is that the
‘Rank’ slot shown means that the ‘Martian’ block must have a property named
‘Rank’. This is not shown on the Organisation Unit Structure View in Figure 14.42
where it has been omitted for clarity.

14.8 The Competency Perspective

The Competency Perspective is concerned with ensuring that Each Person has the
appropriate set of Competencies to perform their Stakeholder Roles effectively. All
of the Views that make up the Competency Perspective may be used as part of a
Competency Assessment exercise. The Competency Perspective is made up of the
following Views: the Framework View, the Applicable Competency View and the
Competency Scope View.

14.8.1 Framework View
The Framework View is concerned with providing an understanding of the source
Framework that will be used as a basis for demonstrating Competence. This will
typically be some sort of Standard, such as a publically available Standard or an in-
house Standard. The Framework View will typically be visualised by a number of
diagrams as Competency Frameworks can be very large and can require quite a lot
of modelling – see Chapter 16 for examples of this.

The diagram in Figure 14.51 shows one diagram that makes up the Framework
View. In this case, the focus of the diagram is on the various Competency Areas
that make up the Framework and their associated Competencies. The View itself
takes the form of a simple Classification Hierarchy, and it should be noted that not

The Case Study 551

all of the possible Competencies are shown here as the full View will be larger and
potentially more complex.

Note how stereotypes are used to show extra information about which blocks
are representing Competency Areas and which are representing Competencies.

This View identifies the basic Competencies that will be used as part of the
other Competency Perspective Views. These Competencies will also map to other
parts of the overall MBSE model, such as the MBSE Ontology, the MBSE Pro-
cesses, etc. This is discussed in more detail in Chapter 16.

14.8.2 Applicable Competency View
The Applicable Competency View identifies the subset of the Competencies that
were defined in the Framework view that is relevant for the set of Stakeholder
Roles that are being assessed as part of the Competency Assessment exercise.

The diagram in Figure 14.52 shows the Applicable Competency View for a
specific Competency Assessment exercise. This is clearly not a SysML diagram but
a simple graphically, chart-type representation. This is not the only graphical
representation that could be used but has been adopted because it makes the
Competency Scope View easier to generate as it looks very similar.

It does not matter what graphical notation is adopted and the View may even
be realised as a simple text list, but whatever the format adopted, it must form
part of the overall model in which it must be consistent with the other Views.
For example, the y-axis on the chart shows the Levels that were defined as the part

FV [Package] Framework View [Framework View]

«competency area»
Competency Area

«competency area»
Supranormal«competency area»

Skill«competency area»
Knowledge

«competency area»
So� Skill

«competency area»
Technical Skill

«competency area»
Science Knowledge

«competency»
Anatomy Study

«competency»
Death Theory

«competency»
Pain Inducement

«competency»
Tool Maintenance

«competency»
Death Prac�ce

«competency»
Restraint Technique

«competency»
Dissec�on

«competency»
Threat

Management

«competency»
Interroga�on

«competency»
Tempta�on

«competency»
Omnipresence

«competency»
Omnipotence

«competency»
Omniscience

1 1

1 1

1

1

111

1

1

{incomplete}

1

1

{incomplete}

Figure 14.51 Framework View for Invasion case study

552 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

of the MBSE Ontology that focused on Competency. Likewise, the x-axis shows
landscape-oriented boxes that represented the Competency Areas from the Frame-
work View and portrait-oriented boxes that represent the Competencies from the
Framework View.

14.8.3 Competency Scope View
The Competency Scope View comprises a single diagram for each Stakeholder
Role that is to be assessed as part of the competency Assessment exercise. The
Competency Scope View takes the Applicable Competency View and then identi-
fies which Competencies are relevant for the Stakeholder Role and defines at what
level each should be held.

The diagram in Figure 14.53 shows the Competency Scope View for the Sci-
entist Stakeholder Role. Note the similarities between this View and the Applicable
Competency View shown in Figure 14.52.

Science Knowledge

A
na

to
m

y
St

ud
y

Technical Skill

Level 4-
Expert

Level 1-
Awareness

Level 2-
Support

Level 3-
Lead

Pa
in

 In
du

ce
m

en
t

D
ea

th
 T

he
or

y

D
is

se
ct

io
n

R
es

tr
ai

nt
 T

ec
hn

iq
ue

s

D
ea

th
 P

ra
ct

ic
e

To
ol

 M
ai

nt
en

an
ce

Soft Skill

Te
m

pt
at

io
n

In
te

rr
og

at
io

n

Th
re

at
 M

an
ag

em
en

t

Figure 14.52 Applicable Competency View

The Case Study 553

The diagram in Figure 14.54 shows the Competency Scope View for the Ter-
minator Stakeholder Role. Note the differences between the Competencies required
for this Stakeholder Role and that of the Scientist shown in Figure 14.53.

14.9 The System Perspective

The System Perspective is concerned with capturing the structure and behaviour of
a System or System of Systems. It captures the Systems and their System Elements,
the Interfaces between them, their System Properties and System Functions and
their behaviour in terms of internal behaviour in a System or System Element or its
System Functions and the interactions between Systems and System Elements.

This section contains the Views that make up the System Perspective: the
System Identification View, the System Structure View, the Interface Definition
View, the System Configuration View, the System State View, the System Beha-
viour View, the System Interaction View and the System Parametric View.

Science Knowledge

A
na

to
m

y
St

ud
y

Technical Skill

Level 4-
Expert

Level 1-
Awareness

Level 2-
Support

Level 3-
Lead

Pa
in

 In
du

ce
m

en
t

D
ea

th
 T

he
or

y

D
is

se
ct

io
n

R
es

tr
ai

nt
 T

ec
hn

iq
ue

s

D
ea

th
 P

ra
ct

ic
e

To
ol

 M
ai

nt
en

an
ce

Soft Skill

Te
m

pt
at

io
n

In
te

rr
og

at
io

n

Th
re

at
 M

an
ag

em
en

t

Figure 14.53 Competency Scope View for Scientist Stakeholder Role

554 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

14.9.1 System Identification View
The System Identification View is used to identify Systems and the relationships
between them. An example showing the main elements of the Martian invasion
fleet is shown in Figure 14.55.

The System Identification View has been realised using a block definition
diagram as shown in Figure 14.55. The main element shown is a System of Sys-
tems, the ‘Invasion Fleet’, composed of nine ‘Mothership’ Systems. Note the use of
stereotypes to show the types of Ontology Elements represented by the various
blocks. The main Systems involved are shown, as are the relationships between
them. Note the relationships between Systems, the System of Systems and Orga-
nisational Units and the use of a package to visually differentiate the Organisational
Units from the Systems and System of Systems.

The System Identification View in Figure 14.55 deliberately omits System
Functions and System Properties in order to keep the diagram uncluttered. Such

Science Knowledge

A
na

to
m

y
St

ud
y

Technical Skill

Level 4-
Expert

Level 1-
Awareness

Level 2-
Support

Level 3-
Lead

Pa
in

 In
du

ce
m

en
t

D
ea

th
 T

he
or

y

D
is

se
ct

io
n

R
es

tr
ai

nt
 T

ec
hn

iq
ue

s

D
ea

th
 P

ra
ct

ic
e

To
ol

 M
ai

nt
en

an
ce

Soft Skill

Te
m

pt
at

io
n

In
te

rr
og

at
io

n

Th
re

at
 M

an
ag

em
en

t

Figure 14.54 Competency Scope View for Terminator Stakeholder Role

The Case Study 555

information can be added to more detailed, specific System Identification Views, as
has been done in Figure 14.56.

The System Identification View in Figure 14.56 focuses on the ‘Mothership’,
‘Carrier Ship’ and ‘Flying Saucer’ from Figure 14.55. These all share a number of
System Properties that are abstracted to an abstract block ‘Spaceship’ that they are
all specialisations of.

Each System can also be broken down into its main System Elements on a
System Identification View. An example of this is shown in Figure 14.57.

In Figure 14.57, the ‘Flying Saucer’ has been broken down into its System
Elements, with the major relationships between them shown. Again, System

SIV [Package] Invasion Fleet [Main Elements]

«system»
Flying Saucer

«system»
Carrier Ship

«system»
Mothership

«system»
Targeting Beacon

«sos»
Invasion Fleet

Army Structure

«organisational unit»
Platoon

«organisational unit»
Army

«organisational unit»
Army Group

«organisational unit»
Cohort

1

transports

1

1

deploys

1..*

9

1

1

can slave weapons
with

1..*

1
transports

81

1..*

homes in on

1

1

transports

1

1

transports

1

1

transports

1

1
transports

27

Figure 14.55 System Identification View showing main elements of ‘Invasion Fleet’

556 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

SIV [Package] Ship Types [Main Ship Types]

«system»
Flying Saucer

«system»
Carrier Ship

«system»
Mothership

«system»
Space Ship

values
 Air supply : cubic metres
 Crew carried : integer
 Okay to launch : Boolean
 Possible range : m
 Reserve supply : cubic metres
 Velocity : m/sec

Figure 14.56 System Identification View showing types of ‘Spaceship’

SIV [Package] Ship Structure [Flying Saucer Structure]

«system»
Flying Saucer

«system element»
Hull

«system element»
Power Subsystem

«system element»
Environmental

Subsystem

«system element»
Engine Subsystem

«system element»
Landing Subsystem

«system element»
Materials-Handling

Subsystem

«system element»
Comms Subsystem

«system element»
Navigation Subsystem

«system element»
Defence Subsystem

«system element»
Weapon Subsystem

Supplies power to all
subsystems

2 1

1

1gets location
information from

1

1 1

1

1 1

11

works in
conjunction
with

11

Figure 14.57 System Identification View showing main elements
of ‘Flying Saucer’

The Case Study 557

Properties and System Functions are omitted, both for reasons of clarity and
because the System Structure View (covered in the next section) is more suited to
the modelling of System Properties and System Functions. Some relationships have
been omitted for clarity, as shown by the note attached to the ‘Power Subsystem’.

14.9.2 System Structure View
The System Structure View is used to define the structure of a System, showing
how it is composed of System Elements. It shows the relationships between System
Elements, their System Properties and System Functions. A number of examples
follow.

The System Structure View in Figure 14.58 has been realised using a block
definition diagram with blocks representing Systems and System Elements. As with
the System Identification View, stereotypes have been used to mark those blocks
that represent System Elements. This, however, raises an interesting point. The
‘Power Subsystem’ is a System Element since it is part of the ‘Flying Saucer’
System as shown on the System Identification View in Figure 14.57. However, it is
itself further decomposed, as shown, into an ‘Atomic Pile’ and a ‘Power Conduit’.
It can also, therefore, from a different level of abstraction, be considered to be a
System in its own right, which would make the ‘Atomic Pile’ and ‘Power Conduit’
System Elements, as shown. This was discussed in Chapter 13 in the discussion of
the definition of the System Structure Viewpoint. The need to work and model at
different levels of abstraction in this way is very common in systems engineering.
In Figure 14.58, ‘Power Subsystem’ is being treated as a System in this way.

SSV [Package] Power Subsystem [Main Elements]

«system element»
Power Subsystem

getAvailablePower(demandedPower: Power): Power

«system element»
Power Conduit

«system element»
Atomic Pile

Supplies power to all
subsystems

System Function
getAvailablePower()
via Power Interface
provided through Pwr
demand port.

1

1

distributes
power via

1

1

Figure 14.58 System Structure View showing high-level structure of
‘Power Subsystem’

558 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The ‘Power Subsystem’ has a single System Function, modelled as an opera-
tion: ‘getAvailablePower’. However, this System Function is not provided directly
by the ‘Power Subsystem’ but rather via an Interface ‘Power Interface’ provided by
‘Power Subsystem’. A note has been used on the diagram to clarify this aspect of
the model. The Interface itself is defined on an Interface Definition View (see
Figure 14.61 in the following subsection), and its use shown on a System Config-
uration View (see Figure 14.62 in the System Configuration View subsection).
Again, this emphasises the consistency between the various Views that must exist if
an Architecture is to be more than just a set of pictures.

A further example of a System Structure View is given in Figure 14.59, this
time for the ‘Defence Subsystem’. Again, a note is used to indicate that some (but
not all) of the System Functions provided by the ‘Ray Shield’ are provided by the
Interface ‘Shield Interface’; the other System Functions are those provided directly

SSV [Package] Defence Subsystem [Main Elements]

«system element»
Defence Subsystem

«system element»
Ablative Armour

«system element»
Ray Shield

raiseShield()
lowerShield()
selfTestOnStart()
recalibrate()
setPower(Power)
powerUp()
powerDown()
prepareToFire()
fireComplete()
selfDestruct()

values
 Max safe power : Power
 Max available power : Power
 Time to failure : s

Some System Functions
provided via the Shield
Interface on the Shield
cntrl port.

1

1

surrounds
1

RS 1

Figure 14.59 System Structure View showing high-level structure of ‘Defence
Subsystem’, along with System Properties and System Functions

The Case Study 559

by the ‘Ray Shield’. In this example, a number of System Properties are also shown
for ‘Ray Shield’, modelled as SysML properties (and in this case, as value prop-
erties). Note also the use of a role name (the ‘RS’) on the composition between
‘Defence Subsystem’ and ‘Ray Shield’. This is used to name the ‘Ray Shield’ when
it is realised as a part on the System Configuration View in Figure 14.63.

The final System Structure View presented in Figure 14.60 shows the main
System Elements of the ‘Weapon Subsystem’. Some System Properties and System
Functions are also shown, as are the relationships to other Systems and System
Elements, with packages used to provide a clear graphical boundary to these other
Systems. Note again the use of role names on the composition from ‘Weapon
Subsystem’. These are again used so that the System Elements (‘Fire Control’ and
‘Laser Cannon’) can be named when used on a System Configuration View, such as
that in Figure 14.63. Because each of the three ‘Laser Cannon’ that form part of the
‘Weapon Subsystem’ is to be referred to individually, it is necessary to use three
separate compositions, each with its own role name and a multiplicity of one, rather
than a single composition with a single role name and a multiplicity of three. The
latter option is valid from a SysML point of view but would not allow the three
separate roles of ‘Cannon1’, ‘Cannon2’ and ‘Cannon3’ to be distinguished on a
System Configuration View. This is a limitation of the SysML. There is no easy
way to represent a multiplicity greater than one as separate parts on an internal
block diagram. As a modeller, it would be useful to say that the ‘Weapon Sub-
system’ is composed of three ‘Laser Cannon’ (via a single composition) and

SSV [Package] Weapon Subsystem [Main Elements]

«system element»
Weapon Subsystem

«system element»
Fire Control

powerUp()
powerDown()
initialise()
computeFiringSolution()
okayToFire()
weaponFired(Integer)

«system element»
Laser Canon

recalibrate()
selfTestOnStart()
fire(Power, Integer)
powerUp()
powerDown()
fireOnTarget(Power, Boolean): Boolean
acquireTarget(Position, Vector): Boolean

values
 Max available power : Power
 Max safe power : Power

Defence Subsystem

«system element»
Ray Shield

Navigation Subsystem

«system element»
Navigation Subsystem

1

controls

1

FCS 1 Cannon3 1Cannon2 1Cannon1 1

1

controls

3

1

gets location information from

1

Figure 14.60 System Structure View showing high-level structure of
‘Weapon Subsystem’

560 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

associate three different roles names with this single composition, allowing the
roles to be represented as distinct parts on an internal block diagram. Unfortu-
nately, to date, the SysML does not allow this.

14.9.3 Interface Definition View
The Interface Definition View is used to define Interfaces between Systems and
between System Elements within a System. The Interfaces used in the Systems and
System Elements of the ‘Flying Saucer’ are shown in Figure 14.61.

The Interface Definition View is realised as a block definition diagram with
interface blocks (unsurprisingly) being used to model Interfaces. Five different
Interfaces are shown in Figure 14.61. In this example (and in the intent behind the
Interface Definition Viewpoint), these Interfaces are all of an operational or ser-
vice-based nature and so can easily be realised as operations of an interface block.
The way that the Interfaces are used is shown on a System Configuration View.

Other types of Interface, such as those based on the transfer of energy, data or
material, are not identified explicitly on an Interface Definition View (in the
MBSEAF) but, rather, are implied through connections via item flows between
ports on a System Configuration View. The MBSEAF could be extended to allow
such Interfaces to be explicitly modelled, as well as allowing more advanced
aspects of an Interface to be captured, such as protocol and behaviour. The Interface

IDV [Package] Interfaces [Power, Weapon and Defence Subsystem Interfaces]

«interface»
Power Interface

getAvailablePower(demandedPower: Power): Power

«interface»
Fire Control Shield Interface

okayToFire()

«interface»
Fire Control Weapon Interface

weaponFired(wpnID: Integer)

«interface»
Shield Interface

powerUp()
powerDown()
prepareToFire()
fireComplete()
selfDestruct()

«interface»
Weapon Interface

powerUp()
powerDown()
fireOnTarget(demandedPower: Power, overload: Boolean): Boolean
acquireTarget(posi�on: Posi�on, track: Vector): Boolean

Figure 14.61 Interface Definition View showing interfaces used by subsystems

The Case Study 561

Definition View as defined for MBSEAF is the minimum that is required. The
definition of additional Interface Views is left as an exercise for the reader or see
the Interface Definition Pattern in [4].

14.9.4 System Configuration View
The System Configuration View is used to show how a System is actually config-
ured based on its structure, together with the Interfaces between the System Ele-
ments. Two examples follow in Figures 14.62 and 14.63.

The System Configuration View is realised using an internal block diagram with
System Elements represented using parts connected together via interfaces (defined
on an Interface Definition View) and item flows. The connection points for the inter-
faces and item flows are shown using ports. Figure 14.62 shows the System Config-
uration View for the ‘Power Subsystem’ of the ‘Flying Saucer’ and is intended to show
how the various System Elements (the ‘Weapon Subsystem’, ‘Defence Subsystem’,
etc.) of the ‘Flying Saucer’ System are connected to the ‘Power Subsystem’.

SCV [System] Flying Saucer [Power Subsystem Interfaces - Typical Structure]

«system element»
: Power Subsystem[1]

Pwr demand

«system element»
: Weapon Subsystem[1]

powerIn: ~PowerPort

Pwr request

«system element»
: Atomic Pile

powerOut: PowerPort

«system element»
: Power Conduit

mainPowerIn:
~PowerPort

pOutWpns: PowerPort

pOutDef

pOutLnd

pOutNav

pOutComms

pOutEnv

pOutEng

pOutMat

All other
subsystems
connected in
same way

«ValueType» Power

«ValueType» Power

Power Interface

Figure 14.62 System Configuration View showing ‘Power Subsystem’ and its Interfaces
to other subsystems

562 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

In this example, an explicit Interface, the ‘Power Interface’ that is modelled on
the Interface Definition View in Figure 14.61, is used to model the control aspects
of the Interface between the ‘Weapon Subsystem’ and the ‘Power Subsystem’.
From the way that the connection has been modelled using a provided interface on
the ‘Power Subsystem’ and a required interface on the ‘Weapon Subsystem’, it can
be inferred from Figures 14.61 and 14.62 that the ‘Weapon Subsystem’ makes
requests of the ‘Power Subsystem’. The possible nature of such requests can be
seen by looking at the definition of ‘Power Interface’ on the Interface Definition
View in Figure 14.61. The way in which the Interface is used can be seen by
looking at the various System Interaction Views in their subsection below.

The transfer of ‘Power’ from the ‘Power Subsystem’ is also shown in Figure 14.62,
via the ‘Atomic Pile’ and ‘Power Conduit’, through the use of item flows. The direction
of the flow can be seen from the arrows on the various ports. A note attached to the
interface and item flow connections is used to remove clutter from the diagram and to

SCV [System] Flying Saucer [High-level Weapon Subsystem Configuration]

«system element»
: Defence Subsystem[1]

powerIn: ~PowerPort

Pwr request

Power Interface

«system element»
: Weapon Subsystem[1]

powerIn:
~PowerPort

Pwr request
Power Interface

«system element»
RS: Ray Shield[1]

Shield cntrl

FC cntrl

«system element»
FCS: Fire Control[1]

Wpn cntrlShield cntrl

FC Shield

Cannon1: Laser
Canon[1]

Wpn cntrl

Cannon2: Laser
Canon[1]

Wpn cntrl

Cannon3: Laser
Canon[1]

Wpn cntrl

Power subsystem
omitted for clarity

Same interfaces for
other Laser Canons

Fire Control
Shield Interface

Fire Control
Weapon
Interface

Shield Interface

Weapon
Interface

Figure 14.63 System Configuration View showing ‘Weapon Subsystem’
and Interfaces to the ‘Defence Subsystem’

The Case Study 563

avoid duplication of what would be essentially the same diagram, by stating that all the
various subsystems connect to the ‘Power Subsystem’ in that same way.

Note that in Figure 14.62, none of the System Elements are named and that the
type of most of the ports has been omitted from the diagram. Also note the use of
conjugated ports and the multiplicity on parts shown thus ‘[1]’.

The System Configuration View in Figure 14.63 does feature named System
Elements. For example, ‘Fire Control’ has the name ‘FCS’. Remember that these
names correspond to the role names used on the composition relationships in the
System Structure Views in Figures 14.59 and 14.60. This diagram also shows that a
port can have both required and provided interfaces attached, and attached multiple
times. Again, the System Configuration View in Figure 14.63 should be read in
conjunction with the Interface Definition View in Figure 14.61 and the various
System Interaction Views in their subsection below in order to understand the
nature of the connections shown.

14.9.5 System State View
The System State View is used to define state-based behaviour of a System and its
System Elements. A simple example for the ‘Ray Shield’ is shown in Figure 14.64.

SSV [StateMachine] Ray Shield Operating States [Ray Shield Operating States]

powering down

entry / lowerShield
do / powerDown

initialising

entry / selfTestOnStart
do / recalibrate

operating

shielding

entry / setPower(Max available power)
do / raiseShield

firing

do / lowerShield
exit / okayToFire

fireComplete
/recalibrate()

powerUp

prepareToFire

powerDown
/recalibrate()

Figure 14.64 System State View showing behaviour of ‘Ray Shield’

564 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The System State View is realised as a state machine diagram and will have
close links to the System Structure View, the Interface Definition View, the System
Configuration View and the System Interaction View. This can be seen in
Figure 14.64.

First, consider the events that trigger transitions between states. From the
diagram, it can be seen that a transition can be triggered by the following: ‘pow-
erUp’, ‘prepareToFire’, ‘fireComplete’, ‘powerDown’ and ‘selfDestruct’. These
correspond to the operations of the Interface ‘Shield Interface’ that is defined on
the Interface Definition View in Figure 14.61. But are they available to the ‘Ray
Shield’? Looking at the System Configuration View in Figure 14.63, it can be seen
that ‘Shield Interface’ is a provided interface of ‘Ray Shield’. Therefore, these
operations can be invoked to cause such transitions. Thus, we have consistency
between the System State View and the Interface Definition View and System
Configuration View.

Second, consider the System Functions that are executed on entry to or within
the states or as part of the transitions. From Figure 14.64, these can be seen to be
‘recalibrate’, ‘selfTestOnStart’, ‘raiseShield’, ‘setPower’, ‘lowerShield’ and
‘powerDown’. Where are these defined? They are the System Functions that are
provided directly by the ‘Ray Shield’, rather than via the ‘Shield Interface’, as can
be seen in the System Structure View in Figure 14.59. Thus, we have consistency
between the System State View and the System Structure View.

The only behaviour not so far considered is the invocation of the ‘okayToFire’
System Function on exit from the state ‘firing’. This again corresponds to an
operation defined on an interface block, in this case, that defined on the ‘Fire
Control Shield Interface’. This Interface is provided by ‘Fire Control’ and required
by ‘Ray Shield’ as can be seen on the System Configuration View in Figure 14.63.
It is defined on the Interface Definition View in Figure 14.61. Thus, we have
consistency again between the System State View and the Interface Definition
View and System Configuration View.

Finally, the System State View must be consistent with the Scenarios explored
through System Interaction Views. This can be checked by looking at the possible
transitions and their triggers and send events on a System State View and com-
paring these with the messages on a System Interaction View. For example, looking
at the System State View in Figure 14.64 and considering the transitions from the
initial state to the ‘shielding’ state, the following sequence of System Functions
should be invoked: ‘powerUp’, ‘selfTestOnStart’, ‘recalibrate’, ‘setPower’ and
‘raiseShield’. Comparing this sequence to the interactions with the ‘Ray Shield’ on
the System Interaction View in Figure 14.68, we do, indeed, see that they are
consistent. However, Figure 14.68 shows an additional message, ‘getAvailable-
Power’, between the ‘Ray Shield’ and the ‘Power Subsystem’. This is not an
inconsistency, but rather an interaction that is not directly part of the state-based
behaviour modelled on the System State View, but rather part of the internal
behaviour of the ‘recalibrate’ System Function and as such would be modelled on a
System Behaviour View. It is also worth noting here that such a check between the
System State Views and System Interaction Views should also be made in the

The Case Study 565

opposite direction: abstract the sequence of messages from a System Interaction
View and check that the correspond to the transitions on the relevant System
State View.

As a final comment on the example System State View shown in Figure 14.64,
note the use of a sequential composite state, ‘operating’, containing the states
‘shielding’ and ‘firing’. This was used as the ‘powerDown’ and ‘selfDestruct’
transitions apply to both these contained states. Using the composite state makes
the diagram and its intent clearer.

14.9.6 System Behaviour View
The System Behaviour View is used to define the behaviour of a System and its
System Elements. It is usually used to model the behaviour of a System Function.
An example, for the ‘fireOnTarget’ System Function of the ‘Laser Cannon’, as
provided through its provided interface ‘Weapon Interface’, is given in
Figure 16.65.

The System Behaviour View is realised using an activity diagram. In Fig-
ure 16.65, the parameters to the ‘fireOnTarget’ operation of the ‘Weapon Inter-
face’ are shown in the rectangles in the upper right of the diagram. After the initial
decision node, the two actions both invoke the ‘getAvailablePower’ System
Function that is defined in the ‘Power Interface’ provided by the ‘Power Sub-
system’ (see Figures 14.61 and 14.62). SysML does not define a format or notation
for the text inside an action, but that chosen and used in Figure 14.65 is in com-
mon use. It would also have been possible to use the signal notation here, rather
than actions, as the behaviour represents and invocation of external behaviour.
Again this is a matter of modelling style and preference, but must be used
consistently. The ‘getAvailablePower’ System Function would be expected to
have its own System Behaviour View, as indeed would all the System Functions in
the model.

A merge node is used following these initial actions simply to make it clear
graphically that there is a single flow of control through the rest of the diagram. The
invocation of the ‘fire’ System Function is not preceded by the name of its System
or System Element, as was done with the invocation of ‘getAvailablePower’, since
‘fire’ is a System Function provided by the same System Element (the ‘Laser
Cannon’) as the ‘fireOnTarget’ System Function that is being modelled on the
System Behaviour View.

The behaviour as modelled does not allow for any kind of interruption to the
behaviour. However, this is a very common requirement when modelling the
behaviour of a System and can be achieved through the use of an interruptible
region as shown in Figure 14.66.

The System Behaviour View in Figure 14.66 is the same as that in Figure 14.65
except for the addition of an interruptible region and a corresponding interrupting
event. Now, the ‘fireOnTarget’ System Function can be interrupted on receipt of the
‘Abort’ event which will immediately terminate any action in the interruptible
region and cause the System Function to terminate.

566 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Again, there are consistency checks that can be made. Does the behaviour
modelled on the System Behaviour View agree with that modelled on the System
Interaction Views, for example. From Figure 14.65, it can be seen that once the
‘fireOnTarget’ System Function is invoked on a ‘Laser Cannon’, it should invoke

SBV [Activity] fireOnTarget [High-level Behaviour]

Max available power = Power
Subsystem.getAvailablePower

(Max safe power)

Max available power = Power
Subsystem.getAvailablePower

(demandedPower)

overload : Boolean

demandedPower : Power

rateOfFre = k1 * exp(-k2 * Max
available power)

fire(Max available power, rateOfFire)

[else]

[overload = TRUE OR (overload = FALSE AND
demandedPower <= Max safe power)]

Figure 16.65 System Behaviour View showing high-level behaviour of
‘fireOnTarget’ System Function

The Case Study 567

SBV [Activity] fireOnTarget [High-level Behaviour with Interrupt]

Max available power = Power
Subsystem.getAvailablePower

(Max safe power)

Max available power = Power
Subsystem.getAvailablePower

(demandedPower)

overload : Boolean

demandedPower : Power

rateOfFre = k1 * exp(-k2 * Max
available power)

fire(Max available power, rateOfFire)

Abort

[else]
[overload = TRUE OR (overload = FALSE AND
demandedPower <= Max safe power)]

Figure 14.66 System Behaviour View showing high-level behaviour of
‘fireOnTarget’ System Function with interrupt

568 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

the ‘getAvailablePower’ System Function on the ‘Power Subsystem’ and then
invoke ‘fire’ on its owning ‘Laser Cannon’. According to the System Interaction
View in Figures 14.67, 14.69 and 14.70, this is exactly what happens.

14.9.7 System Interaction View
The System Interaction View is used to define interactions between Systems and
between System Elements within a System. They are typically used to explore
operational Scenarios for the System during analysis and design and can also be used
as Validation Views (System Scenario Views – see Chapter 9) as part of the MBRE
work on a System. An example System Interaction View is shown in Figure 14.67.

The System Interaction View is realised as a sequence diagram as shown in
Figure 14.67, and is used to explore Scenarios by considering the interactions
between Systems and System Elements. As discussed previously in the sections
covering the System State View and the System Behaviour View, the System
Interaction View does not exist in isolation but is deeply related to these other
behavioural Views. In order to reinforce the understanding of the relationship
between these Views (and indeed of the underlying SysML diagrams used to realise
them), the reader is encouraged to check for themselves how the different aspects of
the System’s behaviour are modelled using these Views.

There are two things worthy of note in Figure 14.67, the use of an interaction
use and a parallel combined fragment. The interaction use is represented by the
first rectangle overlaying the life lines, containing the keyword ‘ref’. This tells the
reader that the rectangle represents another System Interaction View (actually
another SysML sequence diagram) that is identified by the name in the main part of
the rectangle. Such an interaction use enables common behaviour that would
otherwise appear identically on multiple diagrams, to be abstracted and referenced
indirectly in the manner shown. The diagram represented by this interaction use
can be seen in Figure 14.68. The parallel combined fragment is used to represent
possibly parallel behaviour. The example above it shows that ‘Fire Control’ can
send the ‘prepareToFire’ message to the ‘Ray Shield’ (i.e. invoke the ‘prepareTo-
Fire’ System Function provided by the ‘Ray Shield’) in parallel with sending the
‘acquireTarget’ message to the ‘Laser Cannon’ with name ‘Cannon1’.

The diagram referenced by the interaction use is shown in Figure 14.68. Here,
two nested parallel combined fragments are used. The outer parallel combined
fragment could have been drawn with four compartments and the nested parallel
combined fragment expanded into the additional compartments with no real change
in meaning. Nested parallel combined fragments were used here for two reasons:
first, purely to illustrate that combined fragments can be nested in this way and
second, to emphasise that the powering up of all three ‘Laser Cannon’ is con-
ceptually a single piece of behaviour that takes place in parallel with the powering
up of the ‘Ray Shield’.

Typically when producing System Interaction Views, a number of related
scenarios will be created. For example, the diagram in Figure 14.69 is closely
related to that in Figure 14.67. The latter models a ‘‘normal’’ Scenario and the
former a related ‘‘failure’’ Scenario.

The Case Study 569

SInV [Package] System Interactions [Normal Single-cycle Weapon Firing from Cold]

FCS: Fire Control RS: Ray Shield Cannon1: Laser
Canon

:Power Subsystem

par

ref
Weapon & Defence Subsystems Initialisation

acquireTarget(position, track)

recalibrate()

fireComplete()

weaponFired(Cannon1)

prepareToFire()

raiseShield()

acquireTarget= :TRUE

Max available power= getAvailablePower(Max safe power)

lowerShield()

fire(Max power available, rateOfFire)

Max available power=
getAvailablePower(Max safe power)

fireOnTarget(Max safe power, FALSE)

setPower(Max available power)

okayToFire()

Figure 14.67 System Interaction View showing normal weapon firing
with initialisation

570 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

In the System Interaction View in Figure 14.69, the bulk of the modelled Scenario
is the same. However, in this Scenario, the ‘Laser Cannon’ is fired in ‘‘overload’’
mode, resulting in its destruction. This is explicitly shown in the diagram through the
truncated life line for the ‘Laser Cannon’ which is marked with the large X to signify its
destruction. From this point on the rest of the Scenario is the same.

When two (or more Scenarios) are so closely related, it is possible to combine
them on a single System Interaction View, this time using the alternative combined
fragment. This has been done for the Scenarios in Figures 14.67 and 14.69. The
resulting diagram is shown in Figure 14.70.

The Scenario in the System Interaction View shown in Figure 14.70 combines
the two previous Scenarios through the alternative combined fragment. The two start
and end in the same way, differing only in the behaviour when the ‘Laser Cannon’ is
fired, as shown by the behaviour in the two compartments in the combined fragment.

While showing multiple Scenarios on a single System Interaction View is
tempting, modellers are advised to use caution. Diagrams showing multiple

SInV [Package] System Interactions [Weapon & Defence Subsystems Initialisation]

:Power SubsystemCannon3: Laser
Canon

Cannon1: Laser
Canon

Cannon2: Laser
Canon

FCS: Fire Control RS: Ray Shield

par
par

recalibrate()

selfTestOnStart()

powerUp()

powerUp()

powerUp()

powerUp()

Max available power= getAvailablePower
(Max safe power)

initialise()

setPower(Max available power)

powerUp()

raiseShield()

Figure 14.68 System Interaction View showing weapon and defence
subsystem initialisation

The Case Study 571

SInV [Package] System Interactions [Overload Single-cycle Weapon Firing from Cold]

FCS: Fire Control RS: Ray Shield Cannon1: Laser
Canon

:Power Subsystem

par

ref
Weapon & Defence Subsystems Initialisation

Max power available=
getAvailablePower(3 * Max safe power)

fireOnTarget(3 * Max safe power, TRUE)

prepareToFire()

okayToFire()

raiseShield()

fire(Max power available, rateOfFire)

setPower(Max available power)

fireComplete()

acquireTarget= :TRUE

weaponFired(Cannon1)

acquireTarget(position, track)

recalibrate()
Max available power= getAvailablePower(Max safe power)

lowerShield()

Figure 14.69 System Interaction View showing overload weapon firing
with initialisation

572 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

SInV [Package] System Interactions [Normnal & Overload Single-cycle Weapon Firing from Cold]

FCS: Fire Control RS: Ray Shield Cannon1: Laser
Canon

:Power Subsystem

par

ref
Weapon & Defence Subsystems Initialisation

alt

[Overload operation]

raiseShield()

acquireTarget= :TRUE

Max power available=
getAvailablePower(3 * Max safe power)

okayToFire()

recalibrate()

prepareToFire()

fireComplete()

fire(Max power available, rateOfFire)

Max power available=
getAvailablePower(Max safe power)

setPower(Max available power)

weaponFired(Cannon1)

fireOnTarget(Max safe power, FALSE): Boolean

lowerShield()

Max available power= getAvailablePower(Max safe power)

fire(Max power available, rateOfFire)

acquireTarget(position, track)

fireOnTarget(3 * Max safe power, TRUE)

[Normal operation]

Figure 14.70 System Interaction View showing normal and overload weapon
firing with initialisation

The Case Study 573

Scenarios lessen the number of diagrams needed but can result in diagrams that are
very hard to read. Remember, one of the key aims of modelling is to aid commu-
nication. Sometimes multiple, simple diagrams are easier to work with than one
very complex diagram that makes sophisticated use of the available notation but
which is impenetrable to all except the person who drew it. As a rule of thumb, the
authors never create Scenarios with more than two or three alternative paths and
then only do so when each alternative differs only by a small amount. They never
combine radically different Scenarios on a single diagram.

14.9.8 System Parametric View
The System Parametric View is used to define parametric behaviour of a System and
its System Elements. That is, it is used to define behaviour that is best expressed by a
network of mathematical and logical constraints between the System Properties of a
System and its System Elements. The System Parametric View actually consists of
two parts, examples of which are given in Figures 14.71 and 14.72.

The first part of a System Parametric View that has to be created is a definition
of the constraints that will be used in the definition of the constraining network. An
example of such a diagram is shown in Figure 14.71. This is a block definition
diagram that uses constraint blocks to define the appropriate constraints.

SPV [Package] System Constraints [Definition of Constraints]

«constraint»
Travel Time

constraints
{Time - Distance/Velocity}

parameters
 Distance : m
 Time : s
 Velocity : m/sec

«constraint»
Atmos Available per Crew

constraints
{Atmos available = (Ship volume + Reserve volume) / Number of troops}

parameters
 Number of troops : Integer
 Atmos available : cubic metres
 Reserve volume : cubic metres
 Ship volume : cubic metres

«constraint»
Atmos Required per Crew

constraints
{Atmos required = Rate * Time}

parameters
 Rate : m^3/sec
 Atmos required : cubic metres
 Time : s

«constraint»
Environment Decision

constraints
{IF Atmos available >= Atmos required THEN Decision = TRUE ELSE Decision = FALSE}

parameters
 Atmos available : cubic metres
 Atmos required : cubic metres
 Decision : Boolean

Figure 14.71 System Parametric View showing definition of parametric
constraint blocks

574 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Typically on all but the smallest of Projects, a number of such diagrams would
be needed. Also, the types of constraint defined typically fall into one of two types:
either generic constraints that can apply across multiple Projects and Systems, such
as mathematical or physical laws, or specific constraint that only apply to that
particular Project and System. Figure 14.71 contains a single example of the former
(the ‘Travel Time’ constraint) and three examples of the latter. Normally, the two
types would be captured on separate diagrams, one for generic constraints and one
for specific. In order to save space, this has not been done here. The generic con-
straints would eventually form a defined ‘‘library’’ of such constraints that can be
reused on multiple Projects and Systems.

Defining such constraints is an essential first step, but the definitions have to be
used for them to be of value. This is the second part of a System Parametric View that
has to be created, showing a particular network of such constraints connected to each
other and to System Properties. An example of such a diagram is shown in Figure 14.72.

SPV [Package] Constraint Usage [Flight Decision Based on Environmental Needs]

From Flying Saucer

From Martian

From Flying Saucer

: Atmos Available per Crew

Ship volume : cubic metres

Number of troops : Integer

Atmos available : cubic
metres

Reserve volume : cubic metres

: Environment Decision

Decision : Boolean

Atmos available : cubic metres

Atmos required : cubic metres

: Atmos Required per Crew

Rate : m^3/sec

Atmos required : cubic metres

Time : s

: Travel Time

Distance : m Time : s

Velocity : m/sec

Possible range

Velocity

Crew carried

Air supply

Reserve supply

Breathing rate

Okay to launch

Figure 14.72 System Parametric View showing use of parametric constraint
blocks (constraint properties) for determining flight decision
based on ship air supply

The Case Study 575

In order to show how the constraints can be used to constrain System Proper-
ties, a System Parametric View is defined using a parametric diagram. Each such
diagram is created for a specific purpose, and the defined constraints can be used
multiple times on a single diagram and also on multiple diagrams. The diagram in
Figure 14.72 shows a System Parametric View created specifically to explore the
‘‘go/no go’’ launch design for one of the Martian spaceships based on its velocity,
the distance to travel, amount of air on board and number of crew carried.

The System Parametric View is closely related to the System Identification and
System Structure Views since it connects the defined constraints to System Prop-
erties that are defined on these Views. Indeed, often when creating a System
Parametric View, new System Properties will be identified that are needed in order
to define the network, so it is very common to find that the creation of a System
Parametric View also involves an iteration through a number of System Identifi-
cation Views and System Structure Views until all are consistent.

As a final comment on this View, it would be perfectly reasonable to define
two separate Viewpoints given the difference in nature of the two kinds of diagram
needed. Perhaps a System Parametric Definition Viewpoint and a System Para-
metric Usage Viewpoint could be defined. This has been done in this book in the
ACRE Framework discussed in Chapter 9 and used to define the Views in Sec-
tion 14.2 of the current chapter. In ACRE, parametrics can be used in the definition
of Validation Views, and for this purpose, a Constraint Definition Viewpoint and a
Constraint Usage Viewpoint are defined.

14.10 Chapter Summary

This chapter has provided an extended example in which all of the concepts cov-
ered in the book have been exercised and discussed. It has been presented as
extracts from a System Architecture that is based on a defined Architectural Fra-
mework, the MBSEAF, that is defined in Chapter 13. Although the System mod-
elled is fictional, it is rich enough to provide examples for all of the Views from
every Perspective of MBSEAF.

References

[1] Burton T. (director). ‘Mars Attacks! Film’. Warner Bros. Pictures; 1996.
[2] Hill J.C. ‘Invasion from Outer Space. Game’. Flying Frog Productions; 2010.
[3] Saunders, Z. and The Topps Company & Brown, L. ‘Mars Attacks: 50th

Anniversary Collection’. Abrams ComicArts; 2012.
[4] Holt J., Perry S. and Brownsword M. ‘Foundations for Model-based Systems

Engineering: From Patterns to Models’. Stevenage, UK: IET Press; 2016.

576 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Part 5 – Deploying MBSE

P5.1 Overview

This part of the book is structured according to the diagram in Figure P5.1.

Part 5 considers the practical issues involved with deploying MBSE into an
Organisation. There are three essential elements to deploying MBSE: ‘People,
Process and Tools’, each of which is discussed in the chapters that make up this part
of the book.

● ‘Chapter 15 – Benefits’. This chapters considers the benefits of MBSE and,
very importantly, how to sell the benefits of MBSE to various Stakeholder
Roles in your organisation.

● ‘Chapter 16 – The People’. This chapter considers how to ensure that the
people in your Organisation have the right skills for the Stakeholder’ Roles that

«block»
Part 5 - Deploying MBSE

«block»
Chapter 15 - Benefits

«block»
Chapter 16 - The People

«block»

«block»
Chapter 18 - The Tools

«block»
Chapter 19 - Model Structure

«block»
Chapter 20 - Model Maturity

«block»
Part 5 – Deploying MBSE

«block»
Chapter 15 – Benefits

«block»
Chapter 16 – The People

«block»
Chapter 17 – The Process

«block»
Chapter 18 – The Tools

«block»
Chapter 19 – Model Structure

«block»
Chapter 20 – Model Maturity

Figure P5.1 Structure of ‘Part 5 – Deploying MBSE’

they hold. This covers education and how to teach MBSE, how to define
Competencies for MBSE and how to perform Competency assessment.

● ‘Chapter 17 – The Process’. This chapter focuses on the underlying Process
that is necessary for a rigorous approach. The basic Needs for a Process are
discussed along with how to deploy such a process in a scalable manner, in
terms of the rigour and size of the Project.

● ‘Chapter 18 – The Tools’. This chapter looks at how Tools may be deployed on
Projects. This includes looking at how they will be deployed, different types of
Tool and Tool chains and how to perform a rigorous, repeatable evaluation of
Tools.

● ‘Chapter 19 – Model Structure’. This chapter looks at how to structure your
Model within a Tool. Various pieces of advice are provided to ensure that your
Model is structured logically and is easy to navigate.

● ‘Chapter 20 – Model Maturity’. This chapter considers how to know when your
Model is complete and ready to be implemented. This is achieved by con-
sidering how mature a particular Model is and provide a simple assessment
mechanism to determine the Model maturity.

This part of the book covers aspects of MBSE that are, arguably, the most difficult
to get right in any MBSE endeavour.

578 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Chapter 15

Benefits of MBSE

15.1 Introduction

One of the problems facing any person trying to implement MBSE into an orga-
nisation is one of the biggest issues that the authors have experienced. It is not the
technical side, nor is it having the tools in place, nor the training. Perhaps the single
biggest hurdle is one that can kill any initiative before it has even begun, and this is
selling MBSE or, to put it more accurately, conveying the benefits of MBSE to
relevant Stakeholders within the business.

A common pitfall at this point is to go to the Internet and to perform a search on
‘benefits of MBSE’ which seems both obvious and intuitive. The downside of this is
that, invariably, all of the first hits will be from tool vendors who will essentially
state the capabilities of their tools. There is nothing wrong with this per se, but these
capabilities will typically excite Systems Engineers, but may not necessarily excite
the people who have responsibility for budgets in the organisation.

The key thing to bear in mind here is that different Stakeholders will look for
different benefits from MBSE because, you have guessed it, they each have their
own context. It is essential to understand the ‘‘why’’ of each Stakeholder Role. If
we cannot understand their ‘‘why’’, then we have failed before we have begun.

In order to illustrate the benefits of MBSE, we shall be using a simple analogy of
‘‘the old lady who swallowed a fly’’ which is a traditional nursery rhyme in some parts
of the world. If you are not familiar with this children’s verse, then stop reading, get on
the Internet and search it out. The chapter will make a lot more sense if you do this!

15.2 ‘‘I know an Old Lady who swallowed a fly’’

This is the first line of the nursery rhyme but it is not as simple as it first appears.
There is a sinister undertone in the second half of the line, the full line actually
reads ‘‘I know an old lady who swallowed a fly, I don’t why she swallowed a fly,
perhaps she’ll die’’.

Why did the old lady swallow a fly? What was she trying to achieve? Unfortu-
nately, we never find out. The old lady goes further and further through an ever
increasing array of solutions to a problem that is never defined. By not understanding
why she swallowed the fly in the first place, all subsequent actions are doomed
to failure.

Imagine that the old lady represents the organisation that wants to implement
MBSE and that she is considering the question ‘‘why?’’ So the real question that we
need to answer is ‘‘why do you want to implement MBSE in your organisation?’’
Also, consider what will it be used for, and who will be using it?

Before we start to answer this question, let us re-visit the MBSE Mantra, as
described previously many times in this book.

The diagram in Figure 15.1 shows a variation on our now-classic MBSE
Mantra. The variation being that we have added the block ‘MBSE’ to the top of the
diagram, otherwise it is unchanged.

We now need to consider the ‘‘why?’’ question. Ultimately as with any
endeavour, the various Stakeholder Roles must realise some Benefits, otherwise it
is not worth doing.

«block»
Person

«block»
Process

«block»
MBSE

«block»
Tool

1..* 1..*

1..*
enables

1..* 1..*
drives

1..*

1..*

Figure 15.1 Variation on the MBSE Mantra

«block»
Person

«block»
Process

«block»
MBSE

«block»
Tool

«block»
Benefit

«block»
Stakeholder Role

1..* 1..*

1..*
enables

1..*

1..*
must realise

1..*

1..*
drives

1..*

1..*

Figure 15.2 Stakeholder Roles and Benefits

580 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 15.2 shows the MBSE Mantra, but this time we have
added two more blocks: ‘Stakeholder Role’ and ‘Benefit’. This diagram now reads:
one or more ‘Stakeholder Role’ must realise one or more ‘Benefit’ via MBSE. This
diagram, therefore, represents the overall goal of our endeavour.

If we can accept that Stakeholder Roles need to realise Benefits, then the
logical next step is to identify exactly what Stakeholder Roles exist in our business
that are relevant to our MBSE initiative.

The diagram in Figure 15.3 shows an example set of typical Stakeholder Roles
that may be interested in an MBSE initiative. This is an exercise that it is strongly
recommended that you carry out for yourself as your business will be unique. The
information on this diagram will be relevant, but the actual Stakeholder Roles will
differ depending on the nature of your business and how you work.

These Stakeholder Roles are split into the classic three major categories which
are ‘Customer’, ‘External’ and ‘Supplier’.

The ‘Customer’ Stakeholder Roles are:

● ‘User’, that represents the end users of the Systems that will be developed as a
result of our MBSE initiatives.

● ‘Operator’, that represents the people, groups and organisations that will be
operating the Systems that will be developed as a result of our MBSE initiatives.

● ‘System Sponsor’, that represents whoever will be ultimately paying for the
Systems that will be developed as a result of our MBSE initiatives.

bdd [package] Benefits Stakeholder View [Benefits Stakeholder View]

«ontology element»
Stakeholder Role

«stakeholder role»
Customer

«stakeholder role»
External

«stakeholder role»
Supplier

«stakeholder role»
User

«stakeholder role»
Operator

«stakeholder role»
System Sponsor

«stakeholder role»
Standard

«stakeholder role»
Systems Engineering

Manager

«stakeholder role»
Systems Engineer

«stakeholder role»
MBSE Sponsor

«block»
Benefit

1..*

must realise

1..*

Figure 15.3 Typical Stakeholder Roles associated with an MBSE initiative

Benefits of MBSE 581

The ‘External’ Stakeholder Role is:

● ‘Standard’, that represents the best practice sources, such as standards and
legislation, that our Systems and our MBSE approach must comply with.

The ‘Supplier’ Stakeholder Roles are:

● ‘Manager’, that represents all the various management roles within the orga-
nisation that is delivering the Systems and applying the MBSE initiative.

● ‘MBSE Sponsor’, that represents the person or group in the organisation who
will be responsible for paying for the MBSE initiative.

● ‘Engineer’, that represents the all of the various engineering roles within the
organisation that is delivering the Systems and applying the MBSE initiative.

In order to sell MBSE into the business, each of these Stakeholder Roles must be
satisfied that there are Benefits that will be realised by the MBSE initiative that will
have a positive impact on them.

In order to understand the Needs of each Stakeholder Role, it is important that
we understand the Context for each. Fortunately, by this point in the book, readers
should be more than familiar with the concept of creating a Context and it should
come as no surprise that we shall be constructing a use case diagram to visualise
each Context.

The first Context that we shall consider will be that of the ‘Engineer’.

uc [package] Benefits Context View [BCV - Engineer Context]

Engineer Context

Improve system
development

Improve consistency

Improve automation

Make approach more
efficient

Manage complexity

Increase understanding

Improve communication

... for testing

... for artefact
generation

... for model checking

improve tool
interoperability

MBSE Sponsor

Manager

«include» «include»

«constrain»

«constrain»

«include»

«constrain»

«constrain»

Figure 15.4 Context for the ‘Engineer’ Stakeholder Role

582 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 15.4 shows the Context for the ‘Engineer’ Stakeholder
Role. It should be stressed that this is a generic Context and that a similar Context
should be constructed that represents the ‘‘why’’ for the ‘Engineer’ in your orga-
nisation who needs MBSE.

The main Use Case here states that the Engineer wants to ‘Improve system
development’ and that the ‘MBSE Sponsor’ will also have an interest in this.

There are three Use Cases that make up the main one, which are:

● ‘Improve consistency’ across the approach, the System and all of the System
Elements that make up the System.

● ‘Make approach more efficient’ that refers to the general approach that is
already in place and that will be of interest to the ‘Manager’.

● ‘Improve automation’ so that various aspects of the approach will be improved,
represented by ‘ . . . for testing’, ‘ . . . for artefact generation’ and ‘ . . . for model
checking’. This list is by no means complete, as indicated by the {incomplete}
label. This will also be constrained by ‘Improve tool interoperability’ as
incompatible Tools will hinder the automation.

There are also three main constraints on the main Use Case, which are:

● ‘Manage complexity’ which relates to one of the classic ‘‘three evils’’.
● ‘Increase understanding’ which also relates to another one of the classic ‘‘three

evils’’.
● ‘Improve communication’ which represents the final of the ‘‘three evils’’.

This Context, therefore, helps us to understand the ‘‘why?’’ for the Engineer and it is
also possible to construct a Context for each of the other Stakeholder Roles. For reasons
of brevity, we shall only discuss two of these Stakeholder Roles which are the ‘Engi-
neer’ which we have just seen and the ‘MBSE Sponsor’ which we shall consider next.

uc [package] Benefits Context View [BCV - MBSE Sponsor Context]

MBSE Sponsor Context

Increase value of
business

Increase sales Increase quality

Invest in MBSE

Demonstrate ROI

Operator

User

Engineer
«include»

«constrain»

«constrain»

«include»

Figure 15.5 Context for the ‘MBSE Sponsor’ Stakeholder Role

Benefits of MBSE 583

The diagram in Figure 15.5 represents the Context for the ‘MBSE Sponsor’
Stakeholder Role. We construct this in the usual way, trying the answer the ques-
tion ‘‘why’’ does the MBSE Sponsor want MBSE?

The single main reason for the MBSE Sponsor to want MBSE is to ‘Increase
value of business’. This includes two other Use Cases which are:

● ‘Increase sales’ and, therefore, revenue, profits, etc.
● ‘Increase quality’ so that better Systems that are fit-for-purpose are developed.

The main constraint here is to ‘Invest in MBSE’ because, if this is not done, then
the value of the business may not be increased. There is a second constraint on this
constraint which is to ‘Demonstrate return on investment (ROI)’ as if an ROI
cannot be demonstrated that the initiative fails.

Again, it should be stressed that this is a generic Context and that a similar
Context should be constructed that represents the ‘‘why’’ the ‘MBSE Sponsor’ in
your organisation needs MBSE.

If we consider both of these Contexts together, there is one thing that stands out
immediately, they both look completely different. In fact, none of the Use Cases
even look remotely similar, which tells us that the ‘‘why’’ for each of these
Stakeholder Roles is very, very different.

If the ‘‘why’’ is different, then it follows that satisfying these two Contexts
will, potentially, be very different also.

The next step that should be carried out, based on the Contexts, is to identify a
set of potential Benefits that may be realised by each Stakeholder Role. These can
be captured quite easily from the two contexts. An example of some of the Benefits
that may exist is shown in the following diagram (Figure 15.6).

The diagram here shows a number of Benefits that have been identified, each of
which is shown by a block. These Benefits are very important but, crucially for our
exercise, so are the relationships between the blocks. In this diagram, we have chosen
to use dependencies between the blocks to show how one Benefit may depend on
another. In this way, it is possible to identify traceability paths between the Benefits.

In this case, the right-hand side of the diagram shows some of the Benefits that
we would normally associate with MBSE, which we have shown with a simple
boundary, that would be of immediate interest to a typical Engineer. Each of these
Benefits will now be familiar as we have discussed each of them, in various forms,
throughout this book. It should also be clear how these Benefits have been captured
based on the Engineer Context that we saw in Figure 15.4.

The centre portion of the diagram shows four main Benefits, which are:

● ‘Time’, as in the time spent on development activities in the project.
● ‘Resource’ which will apply to People, location costs, equipment costs and so on.
● ‘Money’ which refers to the financial side of things and reflects that fact that

we want to generate lots of it but spend as little as possible.
● ‘Quality Attribute’ which reflects certain properties that relate to quality that

are seen as essential or desirable. A short list of examples is shown here using a
generalisation which includes ‘Safety’, ‘Security’ and ‘Compliance’. Note that
this list is by no means complete, as indicated by the {incomplete}.

The left-hand side of the diagram has a single Benefit, that is ‘ROI’.

584 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

This is a very important View to create as it will aid us when trying to sell the
Benefits to any Stakeholder Role from our Stakeholder View. For example, when
dealing with senior management or someone at board level (e.g. the ‘Sponsor’
Stakeholder Role), the Benefits that should be sold are towards the left side of the
diagram, so an opening statement may be ‘‘MBSE can contribute towards ROI
and improving Safety and Security’’. This reflects the language and expectations
of this Stakeholder Role. Once you have their interest and they respond with
‘‘how?’’, it is then time to follow the dependencies back to the next level of
Benefits and so on.

By the same token, when dealing the ‘Management’ Stakeholder Role, begin
with talking about the centre of the diagram – ‘Time’, ‘Resource’ and ‘Money’ – to
pique their interest, then move across the dependencies to the more traditional
MBSE Benefits.

Remember, when you do this exercise for yourselves, it will yield different
Contexts and a different Benefit set, but the same principle applies.

In summary, therefore, knowing ‘‘why’’ is fundamental to everything that we
do. Do not be like the Old Lady, understand why.

bdd [package] Benefits Identification View [BIV - Benefits]

«block»
Time

«block»
Resource

«block»
Money

«block»
Quality Attribute

«block»
Safety

«block»
Security

«block»
Compliance

«block»
Return on Investment

«block»
Efficiency

«block»
Consistency

«block»
Complexity

Management

«block»
Communication

«block»
Re-use

«block»
Tool Interoperability

«block»
Automation

{incomplete}

MBSE

Figure 15.6 Example Benefits, derived from the Contexts

Benefits of MBSE 585

15.3 ‘‘I know an Old Lady who swallowed a spider’’

‘‘I know an old lady who swallowed a spider (that wriggled and jiggled about inside
her)’’. When confronted with a fly in the stomach, the temptation is to look for tried
and tested approaches to fly removal, such as spiders, but is this suitable?

When implementing MBSE, the temptation is to also look for best practice
approaches that people have followed before and that have a number of success
stories associated with them. Indeed, there are many best practice models and
standards that are readily available. However, each of these must be tailored for any
business and their suitability assessed. Just because a particular approach to MBSE
works for one organisation does not necessarily mean that it will work for another –
only when the context is the same will this be the case; therefore, the needs for
MBSE must be considered in an appropriate context before they can be assessed.

It is essential therefore, that we understand the ‘‘why’’ otherwise we cannot pos-
sibly choose any tried and tested solution with any degree of accuracy or confidence.

Tried and tested solutions for MBSE are not as easily recognisable as spiders-
for-flies, but an example list may include:

● Standards, the use of established norms is an important part of any MBSE
initiative and can provide confidence and transparency.

● Architecture frameworks, the use of Architecture Framework has already been
discussed as being essential to any MBSE initiative, and re-using existing
Framework is very tempting.

● Modelling notations, of course, we should all adopt a common notation, so let
us use an established one, such as SysML (see the next section for a discussion
on this point).

● Processes, we want everyone to work in the same way, so adopting a standard
set of Processes seems like an obvious thing to do. Indeed, many tools come
with their own Processes, so why not use them?

● Methodologies, again, many exist so why not use an existing one that other
Organisations have used successfully?

● More staff, if in doubt just throw more bodies at the problem.

Each of these points seems obvious, but it is essential that we relate all of these
back to the ‘‘why’’. In order to illustrate this, let us consider one item on the list, the
concept of re-using an existing Architecture Framework.

Consider the following examples of established existing Frameworks:

● MODAF/DoDAF/NAF (Ministry of Defence Architecture Framework/
Department of Defense Architecture Framework/NATO Architecture Frame-
work), which are the defence-related Frameworks.

● Zachman, which is arguably the original Architecture Framework.
● ISO 42010 (‘Systems and software Engineering – Architecture description’),

which is the ISO standard for describing Architecture Frameworks.

Let us now compare what these three Frameworks look like by comparing their
Ontologies on the following diagram (Figure 15.7).

586 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

«block»
Architectural Model

«block»
Aspect

«block»
System

«block»
Organisational structure

«block»
System of Systems

«block»
Business Process

«block»
MODAF

«block»
Entity

describes

«block»
What

«block»
How

«block»
When

«block»
Who

«block»
Where

«block»
Why

«block»
Environment

«block»
System

«block»
Concern

Identifies

Identifies

IdentifiesIdentifies established views of

applies to a specific group ofIs produced according to

1 1..* 1..*
1..*

1..*

1..*

1..*
1..*

11
1

1..* 1..*
1

Identifies

exhibits

expresses

1

1..* 1..*

1..*

1..*

1
1

1

addresses

has an interest in
1

1

1

Is situated in

«block»
Evolution Principle

«block»
Architecture Description

«block»
Architecture View

«block»
Architecture View point

governs

«block»
Architecture Framework

«block»
Stake holder

«block»
Design Principle

«block»
Principle

«block»
Concept

«block»
Element

«block»
Architecture

1

1

1..*1..* 1..*

«block»
Architecture

«block»
Matrix

«block»
Communication

Interrogative

«block»
Reification

Transformation

«block»
Descriptive Representation

describes
61

6

1

«block»
Zachman Framework

«block»
Identification

«block»
Definition

«block»
Representation

«block»
Specification

«block»
Configuration

«block»
Instantiation

is the basis for

is depicted as
1

1

«block»

1

1

7

Viewpoint

«block»
View

{in complete}

provides a specification of how to represent

1..* 1
1..* 1..* 1

1
1..*

1..*
1..6

1

Figure 15.7 Ontologies for three existing Architecture Frameworks

The diagram here shows high-level Ontologies for the defence-related Archi-
tecture Frameworks (shown in the top-left of the diagram), the Zachman Frame-
work (shown in the top-right of the diagram) and ISO 42010 (shown at the bottom
of the diagram). All of these Ontologies have been discussed previously in Chap-
ter 3 of this book, so do not worry too much about the detail of the diagram.

The first thing that leaps out of the diagram is that the three Frameworks all
look very, very different. The reason for this is that they are all fundamentally
different and serve different purposes.

So, first of all, ask yourself the question: ‘‘What are you trying to do?’’
If the answer is ‘‘Development’’ then none of the defence Frameworks are

suitable, as they are intended for the acquisition of (usually large) Systems. Also,
Zachman is aimed at Enterprise Architecture and, therefore, probably not
suitable for you without extensive tailoring.

In the same way, if the answer is ‘‘acquisition’’, then the defence-related Fra-
meworks are probably most suitable and if the answer is ‘‘enterprise architecture’’
then plump for Zachman.

Each Framework has a different purpose and, therefore, will answer a different
‘‘why’’ so not all will be suitable for you. If you do not understand why, then it is
highly doubtful that you will be in a position to choose an appropriate Framework.

In summary, when looking at tried and tested solutions, you must base the
choice on your understanding of ‘‘why’’.

15.4 ‘‘I know an old lady who swallowed a bird/cat/dog’’.

‘‘I know an old lady who swallowed a bird – how absurd, she swallowed a bird’’, ‘‘I
know an old lady who swallowed a cat – well fancy that, she swallowed a cat’’ and
‘‘I know an old lady who swallowed a dog – what a hog, she swallowed a dog’’.

Spiders in the stomach bring their own problems. There may be a clearly
understood and logical progression of eating slightly larger animals to solve the
problem, but does the old lady actually understand the nature of her problem or, for
that matter, her own physiology? Alongside the ‘‘why’’ of MBSE, it is essential to
be able to relate this to the system being developed. Key to this understanding is
having a common understanding of the key terms and concepts that relate to the
domain for which the architecture is being developed. Before we can realise People,
Process and Tools, we need to talk a common language.

There is a clear need for common language but, as was discussed in Chapter 2,
there are two different aspects of the common language that we must understand:

● The spoken language (e.g. SysML)
● The domain-specific language (e.g. an Ontology)

One of the single biggest mistakes that Organisations make is to confuse these two.
This is not assuming that they are one and the same but is usually a case of Orga-
nisations simply not understanding the need, nor the power of the domain-specific
language, or Ontology. Let us revisit the foundations of MBSE diagram that we
first encountered in Chapter 2 (Figure 15.8).

588 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram here shows the three fundamental aspects of MBSE relating to
‘Approach’, ‘Goal’ and ‘Visualisation’. Both the ‘Notation’ (e.g. SysML) and the
‘Ontology’ both feature on this diagram, but note how they both live in completely
different parts of the diagram. One without the other is simply not good enough and
means that the probability of your MBSE initiative succeeding is very low indeed.

The SysML (or whatever notation you choose) gives us a set of diagrams that
can be used in order to provide a basic communication mechanism.

The Ontology gives us the domain specific language that enables us to com-
municate successful in a specific project, organisation or relating to a specific
System.

The Ontology depends on having a notation, but the notation by itself is simply
not good enough.

An Ontology is essential for our MBSE endeavour and, without it, there is no
point applying yet more and more perceived solutions at a problem.

15.5 ‘‘I know an old lady who swallowed a goat/cow’’

‘‘I know an old lady who swallowed a goat – it went right down her throat, she
swallowed a goat’’ and ‘‘I know an old lady who swallowed a cow – I do not know
how she swallowed a cow’’.

Approach Goal Visualisation

«ontology elements»
Notation

«ontology elements»
Diagram

«ontology elements»
View

Visualises
0..*1..*

1..* 1..*

1..*

«ontology elements»
Viewpoint

«ontology elements»
Model

«ontology elements»
System

«ontology elements»
Ontology

«ontology element»
MBSE Framework

«ontology element»
Process set

shows how to implement
abstracts

1

1..*

1..*

1..*

uses elements from
1

1 1..*

1..* 1
conforms to

Figure 15.8 MBSE Foundations – recap

Benefits of MBSE 589

Goats are renowned for eating anything – but would a goat eat a dog? Cows are
herbivores, so the eating of goats is simply not consistent with a cow’s normal
behaviour. By focusing too much on identifying larger and larger mammals, is the
old lady losing sight of her goals and losing touch with reality?

Again, throwing progressively more solutions at the MBSE problem does not
work. We need to know ‘‘why’’, we need to understand the nature of the potential
solutions and we need an underlying Ontology with which to bring all these toge-
ther. The Ontology is essential for a number of reasons:

● The Ontology is the basis for Framework and associated Views. The visual
manifestation of MBSE is through describing a number of Viewpoints and
realising these as Views that make up the model. Views are actually very easy
to generate, but there must be a reason why the Views are needed. It is all too
easy to generate a set of random Views that are not contributing to meeting the
underlying needs. Also, all these Views must be consistent with one another or
the result is a set of pictures rather than a true model.

● The Ontology defines how views may be visualised (informs notation). We may
also use the Ontology to specify how a specific View may be visualised. In
many cases, there may be multiple visualisations that are possible using different
notations. These visualisation will relate directly back to the Ontology.

● It provides the basis for traceability. If MBSE is done properly, then trace-
ability comes for free, and it is the Ontology, specifically the relationships on
the Ontology, that enable this.

● It provides the basis for defining Rues for the Framework. The Rules for a
Framework are based directly on the Ontology and its relationships.

● It provides the basis for tool implementation. When profiles are used, which is
strongly encouraged, then an Ontology is essential as it will define the basic set
of stereotypes on which the whole profile is based.

● It allows understanding and definition of associated Processes. When defining
a set of Processes, it is important to relate the Artefacts and the Activities back
to the Ontology, as the Process Set shows how to implement the MBSE
Framework.

● It allows understanding and definition of associated competence. Level 1
Competence, for example the ‘Awareness’ Level may be based directly on the
Ontology. If a Person understands the Ontology, then this means that they have
an awareness of concepts and terminology associated with that area.

In summary, therefore, the Ontology is essential for the successful implementation
of MBSE.

15.6 ‘‘I know an old lady who swallowed a horse’’

‘‘I know an old lady who swallowed a horse – She’s dead of course!’’
It should come as no surprise that swallowing horses will result in: at worse

death, at best hurting your throat (feeling a little hoarse, as it were!). The same is
true of embarking on an MBSE initiative.

590 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

One of the main themes presented in this book for the successful imple-
mentation of MBSE is undoubtedly the need to know ‘‘why’’. This comes down to
understanding the fundamental needs for each aspect of MBSE. In order to deliver
any system successfully, it is essential to understand the initial needs. Likewise, in
order to know whether one has achieved what one has set out to achieve, it is
essential to understand these needs.

● Understanding why – understand the fundamental needs for MBSE from dif-
ferent points of view by considering contexts.

● Speak a common language – understanding the terms and concepts is essential –
generate an ontology.

● Views must have a purpose – do you understand which of the needs that they
are satisfying?

● Views must be consistent – they must form part of a model and not be just a set
of pictures.

People, Process and Tools are essential for realising MBSE, but bear in mind that
each of these may bring its own problems. Simply applying more, or bigger, Peo-
ple, Process and Tools at a problem (fly, spider, bird, cat, dog, goat, cow and horse)
is not the best approach.

It is all too easy to end up with a house full of dead bodies, hay and horse dung.

Benefits of MBSE 591

This page intentionally left blank

Chapter 16

The ‘People’

16.1 Introduction

This chapter looks at the pragmatic issues involved when trying to realise the
model-based Systems Engineering (MBSE) approach in this book in any Organi-
sation or business. In particular, this chapter looks at how it is possible to ensure
that the right people are in the right place, doing the right job – in other words,
competent people.

By way of a recap, the diagram in Figure 16.1 shows the three main elements
that must be in place in order to realise successful MBSE, in particular:

● The ‘Person’, by which we mean competent people, rather than just any
people.

● The ‘Process’, which is in place in order to realise the approach.
● The ‘Tool’, which may range from a whiteboard or log book, to standard office

tools, to a full-blown automated tool set, to any combination of these.

In order to understand the basic needs for providing competent people, the ‘People
Context’ shown in Figure 16.2 was generated.

The diagram in Figure 16.2 shows the Context for the people aspect of
MBSE. An essential element of having competent people is ‘Provide resource’ that
is needed to carry out the MBSE activities, which may cover their ‘ . . . for knowl-
edge’, ‘ . . . for skills’ and ‘ . . . for attitude’. This chapter, therefore, contains a
teaching guide that may be used to develop a bespoke teaching or training course
based around many of the ideas in this book. It must be appreciated that MBSE is a
very large subject; therefore, the ideas presented here should be seen as a good
starting point for course development, rather than covering every aspect of the
subject.

Being competent, however, involves far more than just training people to give
them the right skill-set as it must also be ascertained what the Person’s role will be
(‘Define role’), which will depend on the processes that describe the capability of
the Organisation. Therefore, it is essential that the Stakeholder Roles define map
onto (‘Ensure mapping to process’) whatever source Process (‘Standard’) is
required. This section also contains, therefore, a set of Competency Scopes
(‘Define competency needs’) that reflect current best practice (‘Ensure mapping to
frameworks’) for the MBSE Stakeholder Roles identified in this book. These

«ontology element»
Process

«ontology element»
Person

«ontology element»
Tool

1..*

enables

1..*

1..*

drives

1..*

Figure 16.1 Pragmatic issues with implementing MBSE

People Context

«concern»

Provide competence

«concern»

Define role

«concern»
Define competency

needs

«concern»

Assess competency

«concern»
Ensure mapping to

process

«concern»
Ensure mapping to

frameworks

«concern»

Provide resource

«concern»

... for knowledge

«concern»

... for skills

«concern»

... for attitude

«stakeholder role»
Assessee

«stakeholder role»
Systems Engineering

Manager

«stakeholder role»
MBSE trainer

«stakeholder role»
Standard

«stakeholder role»
Source Framework

«include»

«constrain»

«constrain»

«include»

«include»

«include»

Figure 16.2 People Context

594 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Competency Scopes may then be used as a basis for assessing the Competence
(‘Assess competency’) of people who are required to work in MBSE. In order to
assess Competence, a set of Processes will be introduced that can be used to carry
out assessments.

In order to satisfy these Needs, it is first necessary to revisit the people aspects
of the MBSE Ontology.

16.2 The MBSE Ontology (revisited)

The diagram in Figure 16.3 shows the subset of the MBSE Ontology that focuses on
people-related concepts.

«ontology element»
Evidence Type

«ontology element»
Lead

«ontology element»
Level

«ontology element»
Awareness

«ontology element»
Support

«ontology element»
Expert

«ontology element»
Indicator

«ontology element»
Competence

«ontology element»
Competency

«ontology element»
Competency Area

«ontology element»
Competency Scope

«ontology element»
Competency Profile

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Person

1

exhibits

1

1..*

describes measured

1

1

describes measured
abilities of

1

1

1

is held at

1

1

requires

1

1

defines admissable evidence for

1..*

1..*

describes
desired

1

1

classifies

1..*

1..*
1

1..*

holds

1..*

1

is assessed against

1

1..*

1

Figure 16.3 Subset of the MBSE Ontology focused on people-related concepts

The ‘People’ 595

The diagram here shows the MBSE Ontology for the main concepts that are
related to Competence. These are defined as follows:

● ‘Person’ – a special type of ‘Resource’, an individual human, who exhibits
‘Competence’ that is represented by their ‘Competency Profile’. A ‘Person’
also holds one or more ‘Stakeholder Role’.

● ‘Competence’ – the ability exhibited by a ‘Person’ that is made up of a set of
one or more individual ‘Competency’, held at a specific ‘Level’.

● ‘Competency’ – the representation of a single skill that contributes towards
making up ‘Competence’. Each ‘Competency’ is held at a ‘Level’ that
describes the maturity of that ‘Competency’. There are four ‘Level’ defined for
the MBSE Ontology. One or more ‘Competency’ is collected together into a
‘Competency Area’.

● ‘Indicator’ – the measurable unit that represents a single skill, one or more
of which make up a ‘Competency’. Indicators are assessed by comparing
evidence provided by the person under assessment with predefined criteria,
known as evidence types – see Chapter 8 for a full discussion.

● ‘Competency Profile’ – a representation of the actual measured ‘Competence’
of a ‘Person’ and that is defined by one or more ‘Competencies’. An indivi-
dual’s ‘competence’ will usually be represented by one or more ‘Competency
Profiles’. A ‘Competency Profile’ is the result of performing a competence
assessment against a ‘Competence Scope’.

● ‘Competency Scope’ – representation of the desired ‘Competence’ required for a
specific ‘Stakeholder Role’ and that is defined by one or more ‘Competencies’.

● ‘Stakeholder Role’ – the role of anything that has an interest in a ‘System’.

The Competence-related concepts are strongly related to the Process-related concepts.

16.3 Teaching guide

One of the main concerns that arise when presenting information regarding MBSE
is that of how to teach or train people. There is no single correct way to do this, so
this chapter provides a discussion on communicating the modelling approach in this
book to people using teaching and training techniques. The information contained
in this chapter is intended for guidance only and is based on the authors’ years of
experience teaching at both undergraduate and postgraduate levels as well as
developing and delivering professional training courses for major industries.

This chapter also suggests a course structure for teaching at university level
that is fully referenced back to in this book.

The main aim of this section is not to provide a full course that can simply be
lifted out of the book and taught, and therefore no slides are provided. The intention
is that this chapter, along with supporting CASE tools and models, can be used as a
tool kit for someone to create an MBSE course, based on the contents of this book.
Therefore, it is intended that this book is used as the recommended course text that
provides lots of additional information and many more fully worked examples.

596 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

So, please feel free to use this chapter and the models as the start point of your
own course – make the course your own!

16.3.1 Different types of teaching
There is no definitive way to teach MBSE, so this chapter provides a few examples
of how teaching may be approached, depending on the audience. One key part of
any teaching or training is to know and understand the audience and by this what
we really mean is understanding the Needs of each Stakeholder Role. The point
here is that teaching MBSE will differ depending on who the target audience is, and
this will be discussed in some detail.

The diagram in Figure 16.4 shows a generic ‘Teaching context’ that will be
used as a basis for discussion. It should be borne in mind, however, that this context
will need to be tailored, or even started again from scratch, to fit the reader’s Needs.
It is strongly recommended that if you are interested in teaching or training, then
this short Needs modelling exercise is carried out, as it will really improve your
own understanding of the teaching and help to ensure that the course that is
developed actually satisfies the Context. This will clearly result in a better course
and, hopefully, a better learning experience for the teaching subjects. This exercise

Teaching Context

«capability»
Deliver course

«requirement»
Teach new skills

«requirement»
Meet timing
constraints

«requirement»
Ensure quality

«requirement»
Organise course

«requirement»
Improve course

«stakeholder role»
Attendee

«stakeholder role»
Organiser

«stakeholder role»
Sponsor

«stakeholder role»
Tutor

«stakeholder role»
Demonstrator

«constrain»

«constrain»

«include»

«constrain»

«include»

Figure 16.4 Generic Teaching Context

The ‘People’ 597

should be treated as a regular Needs modelling exercise and it is recommended to
follow the approach defined in Chapter 9.

The diagram shown in Figure 16.4 shows the generic Teaching Context for deli-
vering training or teaching courses. The use cases are described in more detail below,
along with a few suggestions for each as to how the basic needs may be tailored.

● ‘Deliver course’. This is the overall use case that sets the scene for the Context.
This could be tailored by adding different ‘types of’ (specialisation) relation-
ships to the diagram to show Needs for different types of courses.

● ‘Teach new skills’. Note that this is the only inclusion in the overall use case of
‘Deliver course’ and hence will form the basis of the course. This could be
expanded upon by adding in more included use cases. For example, there may
be a need to provide examples or to set course work – these could be added in
as new use cases.

● ‘Organise course’. This use case could mean almost anything, depending on
the nature of the course being taught. For example, it may be as simple as
making sure that a room is booked, to something as complex as making travel
arrangements, renting facilities, hiring equipment, etc.

● ‘Ensure quality’. This is a constraint on delivering the course and may include
issues such as making sure that the course material is printed out and bound
nicely, making sure that the facilities for the course are suitable and so on. This
may also be extended to include other concerns, such as making sure that the
presenters wear suits and appear smart before the course or whatever else is
deemed important.

● ‘Improve course’. It is always important to continuously improve everything
that we do in our work and, therefore, this should be a use case that is always
present in the Context. This may include collecting feedback from the course,
making notes of any corrections or enhancements that could be made to the
course afterwards, and so on.

● ‘Meet timing constraints’. This use case is very important as this will limit
what can be delivered and when. Understanding the timing constraints can
often be the difference between a successful and an unsuccessful course and its
importance cannot be stressed strongly enough. For example, if a course is to
be taught for 10 sessions, each of 1 h duration, then the course will have a
different structure from a course that will be taught over 8 h on a single day.

Due to the space limitation of this book, the emphasis for the example provided in
this chapter will focus mainly on providing a course as part of a university syllabus.

The Stakeholder Roles that are shown on the diagram will differ significantly,
depending on the type of teaching or training and will be discussed in more detail in
the following two sections.

16.3.2 Professional training
This section looks at the whole area of professional training. The term ‘professional
training’ is used here to refer to training that is provided commercially within
industry as opposed to being aimed at academia.

598 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Interestingly, the basic Context for teaching remains the same as for academic
teaching; however, as the next section will discuss, the instances of the Stakeholder
Roles and use cases that make up the Context are very different.

16.3.2.1 Teaching Context – Stakeholder Roles
When considering a professional training course, the core use cases are still those
shown in Figure 16.2. With regard to the Stakeholder Roles that have been iden-
tified, the following shows a typical list of names that may be associated with each:

● ‘Attendee’, this Stakeholder Role represents the actual delegates on a training
course. It may be useful for the case of professional courses to record infor-
mation such as name, organisation, position and contact details.

● ‘Organiser’, this may be the training company or the client company,
depending on how the training is set up. This is a very important Stakeholder
Role to consider as the possible scenarios for each will differ significantly.

● ‘Tutor’, this will be the primary trainer for the course.
● ‘Demonstrator’, this will be the demonstrator or secondary trainer of the

course. In some cases, the Stakeholder Role of the tutor and the demonstrator
may be taken on by single person.

● ‘Sponsor’, this is the Stakeholder Role representing whoever is paying the bill
and may be a company or a number of individuals, depending on the nature of
the course.

● In terms of the Needs for the course, there are some Use Cases that must be
considered.

● ‘Organise course’. This Use Case can vary massively, depending on who is
taking on the Stakeholder Role of the Organiser, as discussed previously. One of
the big differences will be dependent on whether the Organiser is part of the
training or the client Organisation. For example, if the course is being organised
by the client company, then the onus on the training provider may be to simply
turn up and deliver the course. If the organisation of the course is, on the other
hand, being managed by the training organisation, then a number of logistical
Processes will start to become necessary, such as arranging the event venue,
refreshments and meals, and accommodation. This is a good example of where a
Project will vary depending on the nature of the people or Organisations that
map onto the generic Stakeholder Roles from the Requirement Context View.

● ‘Teach new skills’. This represents the main core Use Case for any training or
teaching. In the case of a professional course, this may be related directly back
to staff assessments, Competency Profiles or Standards of some description.

● ‘Ensure quality’. When considering a professional training Organisation, the
quality of the course may be driven by an external source, such as an inde-
pendent or industry-driven endorsement from a recognised body. Another
aspect of quality here relates to mapping the course content to recognised
Competency Frameworks.

● ‘Improve quality’. This will entail capturing any problems or mistakes on the
course notes, capturing and addressing any comments that are made by the

The ‘People’ 599

Attendees of the course, updating course materials, ensuring that best practice
is being adhered to with regard to the course content, etc.

● ‘Meet timing constraints’. The timing constraints for a professional training
course will usually be concerned with making sure that the course is delivered
over the duration of perhaps 2 or 3 working days. There may also be some
client-specific constraints that come into play here. For example, some Orga-
nisations allow training only on particular days of the week or it may be
desirable to avoid school holidays.

There are a lot of considerations to bear in mind with regard to professional train-
ing. Interestingly, depending on which of the above Use Cases and Stakeholder
Roles apply to your Organisation, the diagram itself will change. For example, new
Stakeholder Roles may be introduced that represent, say, a professional body that
accredits trainers.

16.4 Teaching as part of an undergraduate or postgraduate
course

This section considers the situation where MBSE needs to be taught as part of a
university or college course. The generic Use Cases will be revisited and discussed
in more detail within the Context of an educational establishment. It is interesting to
note that the Teaching Context for this section is the same one that was used in the
previous section for professional training. The instances of the Use Cases and the
Stakeholder Roles will differ significantly, but the fundamental Need is the same.

16.4.1 Teaching Context – Stakeholder Roles and Use Cases
The generic Stakeholder Roles remain the same as discussed previously, but the
following points need to be borne in mind.

● ‘Attendee’, this Stakeholder Role represents the actual students who are
enrolled in the course.

● ‘Organiser’, this will be the department who offers the course.
● ‘Tutor’, this will be the actual lecturer for the course.
● ‘Demonstrator’, this may be the lecturer or any assistants who may supervise

example classes and laboratory sessions.
● ‘Sponsor’, this will be whoever pays the university fees for the students.
● In terms of the Use Cases for the course, there are some specific needs that

must be considered.
● ‘Organise course’. This will involve ensuring that the rooms are booked and

available and that any necessary Resources are available. In the case of a
college or university, however, this will also include ensuring that the infor-
mation regarding the course is disseminated to students, such as the time and
location of the course.

● ‘Teach new skills’. In the case of a university environment, there may be a
specific set of skills that is required to be taught.

600 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● ‘Ensure quality’. This will involve making sure that the course maps onto any
generic teaching Need, such as Bloom’s taxonomy that is often used in the
United Kingdom [1–3] or any Competency Frameworks.

● ‘Improve quality’. This will entail capturing any problems or mistakes on the
course notes, capturing and addressing any comments that are made by the stu-
dents of the course, updating course materials, ensuring that best practice is
being adhered to with regard to the course content, etc. In fact, most universities
will have an established means of student feedback that will apply to all courses.

● ‘Meet timing constraints’. The timing constraints for a university course are
very strict and will rely on the number of teaching and access hours with
students, the structure of the timetable, holidays, etc. For example, some
courses may be taught in intensive 2-week modules, whereas another course
may be 1 h/week over a 20-week duration.

Based on the Context presented here, it is possible to generate a generic course
structure that may be used as a start point for defining MBSE courses.

16.4.2 A generic course structure
It is possible to identify several key elements that should be considered when
defining a course structure. The structure provided here is intended as a guide only
and should be used as a starting point for developing a full course and its associated
resources. The structure presented here is based primarily on the experience of the
authors in presenting material to students in a university environment.

The diagram in Figure 16.5 shows a generic structure for a university-type course
and each of the main elements are explained in more detail in the following sections.

«block»
MBSE Course Content

«block»
Course Work

«block»
Introduction

«block»
Background

«block»
Aims and Objectives

«block»
Course Structure

«block»
Modelling Notation

«block»
Concepts

«block»
Ontology

«block»
Approach

«block»
Example

«block»
Application

«block»
Ontology Subset

«block»
Framework

«block»
View

1..*1

1

1..*

1..*
supports

1

1

1

1

1

1

1

1

1 1

Figure 16.5 Generic course structure for a university-type course

The ‘People’ 601

16.4.2.1 The ‘Introduction’ section
The introduction section of the course contains three main elements, as detailed
below:

● ‘Background’. It is important to put the course into context and to get the
students to understand where the course has come from and why it is necessary.
For example, the course may form part of a whole module in a larger course.
This may be, for example, a part of a larger Systems Engineering course, or an
engineering course or IT course.

● ‘Aims and Objectives’. It is important that the teaching aims of the course are
identified early on. A good way to think about this is to generate a Context in
the form of a use case diagram that will have the teaching aims and objectives
represented as the Use Cases (represented as use cases) and the main Stake-
holder Roles (represented as the actors). One important consideration here is to
identify any constraints that may come into play with regard to source Stan-
dards or information. For example, it may be that the course needs to map onto
the teaching objectives of Bloom, in which case the Standard (realised by the
actual Bloom taxonomy) would be represented as an actor and there would be
an associated use case, named something along the lines of ‘Meet source
standards’ or similar. Of course, the use cases will also reflect the more
functional aims and goals. In fact there is an almost endless set of aims for a
course such as this, but it is crucial to identify what they are and then to ensure
that course content addresses these aims.

● Course Structure. This section is relatively straightforward as it simply states
the major elements of the course and the relationships between them. In the
case of using the information in this chapter, the course structure is simply the
diagram in Figure 16.5 along with some explanatory notes.

It is important to use this section to make the course your own and to make sure that
it meets all the Needs of the Stakeholder Roles.

This section can use some of the material from Chapter 1, but really should be
bespoke to the specific course being taught.

16.4.2.2 The ‘Modelling Notation’ section
When introducing the modelling notation, it should be stressed that any notation
deemed suitable for systems modelling may be used here. In the context of this
book, the notation that is chosen is the SysML for reasons that have been discussed
previously. It is also worth considering that the notation chosen should not rely on
any specific tool or application and that students should be able to work out as
much as possible, in the first instance, using a pen and paper system tool. This is for
very pragmatic reasons. When attending a course, students will potentially be
learning about a number of new ideas and concepts simultaneously. For example,
they will be learning about Systems Engineering, modelling and, in this case,
SysML for the first time. It is important to try to isolate each of these initially when
communicating the information to the students and then bring them together to
form a complete knowledge. If any tool is introduced too early, then students will

602 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

immediately dive into trying to use the tool, which adds another layer of complexity
and shifts the students’ focus away from understanding to trying to do.

It is suggested that the actual notation is underplayed and to concentrate on
examples and emphasise the consistency checks that are contained in the various
Frameworks that are presented here, rather than the individual parts of the notation.
The notation should be correct and should also be kept to a minimum.

The use of summary sheets is also highly recommended, such as the ones
found in the Appendix B of this book. This forms an excellent quick-reference
guide for all students. See Part 2 for a full description of the SysML notation and
Appendix B for notation summary information.

16.4.2.3 The ‘Concepts’ section
There are two main conceptual areas that need to be introduced here, the MBSE
Ontology and the approach.

● The MBSE Ontology should provide a clear indication of exactly what the
concepts and definitions that will be used in the world of MBSE are. These will
form the basis for the rest of the course. These concepts relate directly to the
information in Chapter 3.

● The approach will describe the basic ‘Ontology, Framework and Views’
approach adopted throughout this book. It should be stressed that the Frame-
work will elaborate on all the concepts introduced in the MBSE Ontology.
Simple examples of each View should be provided along with a clear defini-
tion of why the View is required. This basic approach is described fully in
Chapter 2. Also, a Framework for modelling Architectural Frameworks is
defined in Chapter 11.

Of course, the Ontology referred to in this book is the MBSE Ontology and it may
be necessary to adopt this to meet your own requirements. Naturally, this will have
an impact of referencing Chapter 3.

In terms of teaching people the concepts of the MBSE Ontology, full definitions
are provided in Chapter 3, with expanded discussions being presented throughout the
book. With regard to remembering the terms in the MBSE Ontology, there is a
‘‘memory palace’’ provided in Appendix H, which provides a memorable story that
can be used to recall any of the terms in the MBSE Ontology.

16.4.2.4 The ‘Example’ section
Examples are best worked out as a group, rather than just providing detailed case
studies. Another approach is to provide partial models and then get the students to
fill in the gaps in the model. This is a good way to emphasise the consistency
between the Views and, if used sensibly, can be an excellent way to show how the
SysML model may be navigated by asking the right questions at the right time.

The best types of examples are ones that are based on either real-life situations or
situations that most people would have some knowledge of, such as films and books.
There are two excellent examples provided in this book that should be considered:
the Coffin Escape Stunt application that is discussed in Chapter 5 and the Martian

The ‘People’ 603

Invasion example discussed in the case study in Part 4. Students should be encour-
aged to look how they can make the model their own, and see how small changes to
any aspect of the model may result in quite large changes to the System as a whole.

The subject of specific examples is left to readers to decide which are most
appropriate to the course being taught.

16.4.2.5 The ‘Application’ section
This section covers the actual application of MBSE to particular work activities.
There are a number of such areas covered in Part 3.

All applications should adopt the same style of the basic approach that was
introduced in the Approach section and that was described in Chapter 2.

16.4.2.6 Developing ‘Course Work’
It is suggested that any course work that is given out is phrased using the termi-
nology of the MBSE Ontology. An example of a generic Project description that is
aimed at Requirements modelling with MBSE and uses the Approach to Context-
based Requirements Engineering (ACRE) approach that is defined in Chapter 9 is
provided in the following box.

Project description:
Choose any example project, such as the development of a robot, and

produce the following information, in line with the ACRE process:

● Requirement Description Views (RDV). These should use SysML
requirement diagrams to describe a set of individual requirement.

● Context Definition View (CDV). This should take the form of a SysML
block definition diagram to show a taxonomy of stakeholder roles.

● Requirements Context Views (RCV). These should be SysML use case
diagrams that relate back to the stakeholder roles that were identified in
the context definition view.

● Validation Views (VV). These should be generated using SysML
sequence diagrams and relate directly back to the use cases from the
requirement context views.

● Traceability Views (TV). These should show the traceability relation-
ships that can be derived from the ACRE ontology.

Each diagram should be accompanied with a short textual description, no
more than half a page.

Please note that marks will only be awarded for the information
requested above. Any missing views will lose marks and any additional dia-
grams will not warrant extra marks. Most of the marks will be awarded for
consistency of the diagrams as discussed in the lectures and shown on the
summary sheet. Also, do not choose: a cash point machine (ATM), any library
system (or variations thereof) or a petrol pump.

604 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

This Project description should be treated purely as a guide. For example, this
example asks for some of the ACRE Views (described in Chapter 9) but not others.
It is also worth putting some constraints on the solutions, such as not allowing
ATMs or library systems, as these are standard examples used in many, many text
books. If you do not want 30 copies of a petrol pump submitted, then please con-
sider these constraints seriously!

16.4.2.7 Marking schedules
Due to the rigorous nature of the Project description, it is possible to have an equally
rigorous marking schedule. The bulk of the marks should be awarded based directly
on the Views that were asked for in the Project description, which will include both
the Views and the relationships between the Views and their various elements.

In fact, if a true MBSE approach is applied to the teaching of the course, then it
would be possible to automate many of the mundane aspects of the marks, such as
consistency checking, by using appropriate tools. This could be achieved by having
the students submit their models and then having a bespoke set of rules that
represent the marking in the tool. Students could also be asked to submit a written
report that must be generated from the tool.

16.4.3 Summary
This section has provided a start point for developing teaching courses and mate-
rial, whether it is for professional training or university-based teaching. Much of
teaching is subjective and will depend upon the nature of the person who is
teaching, the format of the courses, the type of Attendees or students, etc. Carrying
out a proper Requirements modelling exercise is deemed, therefore, an essential
part of ensuring that a quality course is delivered. The information contained in this
section is based on many years’ experience of teaching and training at many levels
and is offered to promote thought, rather than to be prescriptive.

16.5 Competence

When considering individuals for a specific Stakeholder Role, it is essential that
they have the right knowledge, skills and attitude required to perform the activities
required for the Stakeholder Role. Before their suitability can be assessed, it is
important that the knowledge domain and Processes that they will be involved in, in
particular the Activities that they will be responsible for and contributing towards,
have been identified and are well understood. Once this domain and these Process
Activities have been identified, it is then possible to consider which Competencies
are necessary for the Stakeholder Role.

Before progressing any further, it is worth defining and differentiating between
a few terms that will be used when discussing Competence. These are shown gra-
phically in the diagram in Figure 16.6, which is the same as that in Figure 16.3 but
which is worth revisiting to emphasise some of the definitions and differences
between terms.

The ‘People’ 605

The diagram here shows that a ‘Person’ exhibits ‘Competence’. The measured
ability of a ‘Person’ is defined as their ‘Competency Profile’, and the required ability
for a specific ‘Stakeholder Role’ is defined by its ‘Competency Scope’.

These terms can be quite confusing, so the following observations should be noted:

● The term ‘Competence’ is used to refer to the total ability of an individual
(Person), rather than a single element. Therefore, each Person in an Organi-
sation has an overall Competence.

● The term ‘Competency’ refers to a single element of Competence that can be
measured and, hence, assessed. The totality of a person’s Competencies forms
their Competence.

● The term ‘Competency Scope’ refers to the defined set of Competencies that
are required for a specific Stakeholder Role. This Competency scope forms one
of the major inputs to a Competency assessment exercise.

«ontology element»
Evidence Type

«ontology element»
Lead

«ontology element»
Level

«ontology element»
Awareness

«ontology element»
Support

«ontology element»
Expert

«ontology element»
Indicator

«ontology element»
Competence

«ontology element»
Competency

«ontology element»
Competency Area

«ontology element»
Competency Scope

«ontology element»
Competency Profile

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Person

1

exhibits

1

1..*

describes measured

1

1

describes measured
abilities of

1

1

1

is held at

1

1

requires

1

1

defines admissable evidence for

1..*

1..*

describes
desired

1

1

classifies

1..*

1..*
1

1..*

holds

1..*

1

is assessed against

1

1..*

1

Figure 16.6 Subset of the MBSE Ontology focused on Competence

606 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● The term ‘Competency Profile’ refers to a defined set of Competencies that is
held by a Person and that relates directly to the Competencies required for a
Stakeholder Role, as defined in the Competency Scope. The Competency
Profile forms the main outcome of a Competency assessment exercise.

In order to illustrate how Competencies can be used to assess the suitability of a
Person, some examples of Competency scopes will be presented in the following
sections. It should be stressed that these are shown here for illustrative purposes
and, although they may suit your assessment needs exactly; in many cases, they will
need to be tailored to meet your specific needs.

Competencies may exist on different levels. For example, it is possible to define a
set of competencies that are based on an accepted industrial best practice or standard
that can be used at a generic level. Competencies may also be defined at a very specific
level. Section 16.7 will discuss the former, generic competencies, while the section
following will discuss the latter, more specific competencies. Each approach has its
own set of advantages and disadvantages that will be presented as part of the discussion.

16.6 The MBSE Stakeholder Roles

There are a number of key stakeholder roles that may be identified for MBSE. In
the context of this book, a suggested start point for looking at the ‘Supplier’ roles
may be based on the diagram in Figure 16.7.

The diagram here shows a Stakeholder View for MBSE using a block defini-
tion diagram. The Stakeholder Roles are shown in the form of a simple taxonomy
used as part of the Processes that are defined and used in Part 3, and that are
summarised in Appendix F.

It was shown previously that there are three main types of ‘Stakeholder Roles’:
‘Customer’, ‘External’ and ‘Supplier’. As we are looking at the Stakeholder Roles
involved with implementing MBSE, the emphasis here is on the ‘Supplier’ roles
rather than the ‘Customer’ and ‘External’ roles. There are several examples in
previous chapters where such roles have been discussed in some detail.

The main ‘Supplier’ roles fall into three sub-categories, ‘Systems Engineering
Manager’, ‘Assessor’ and ‘Systems Engineer’, plus a single role of ‘MBSE
Champion’.

The ‘Systems Engineer’ roles represent the Stakeholder Roles of people who
are involved with the engineering activities associated with MBSE and are descri-
bed below:

● ‘Requirement Engineer’. The area of Requirements engineering is one that is
fundamental to Systems Engineering and, hence, MBSE. The Stakeholder Role
here has an emphasis on the understanding of the modelling of Requirements
and, therefore, will include Competencies that relate to Context modelling, Use
Cases, Scenarios, validation and traceability. Unlike a traditional Requirements
engineering Stakeholder Role, there is a strong need for modelling skills as
well as understanding the fundamentals of Requirements engineering.

The ‘People’ 607

SV [Package] Stakeholder Roles [Stakeholder View for MBSE Roles]

«ontology element»
Stakeholder Role

«stakeholder role»
Supplier

«stakeholder role»
External

«stakeholder role»
Customer

«stakeholder role»
System Sponsor

«stakeholder role»
User

«stakeholder role»
Operator

«stakeholder role»
Standard

«stakeholder role»
Systems Engineer

«stakeholder role»
Systems Engineering

Manager
«stakeholder role»

Assessee

«stakeholder role»
MBSE Mentor

«stakeholder role»
Source Framework

«stakeholder role»
Tool

«stakeholder role»
Standard Enforcer

«stakeholder role»
Tool Vendor

«stakeholder role»
MBSE Trainer

«stakeholder role»
Configuration Manager

«stakeholder role»
Assessment Manager

«stakeholder role»
Requirement Manager

«stakeholder role»
Process Manager

«stakeholder role»
Project Manager

«stakeholder role»
MBSE Champion

«stakeholder role»
Requirement Engineer

«stakeholder role»
Systems Modeller

«stakeholder role»
Tester

«stakeholder role»
Reviewer

«stakeholder role»
Author

«stakeholder role»
Process Modeller

«stakeholder role»
Builder

«stakeholder role»
SoS Engineer

«stakeholder role»
Assessor

«stakeholder role»
Primary Assessor

«stakeholder role»
Secondary Assessor

Figure 16.7 Stakeholder view for MBSE Stakeholder Roles

● ‘Systems Modeller’. This Stakeholder Role covers a multitude of activities and
will, in reality, usually be split into a number of sub-types. Areas of expertise that
must be covered here include understanding: Architectures, interfaces, specifica-
tion, design, testing, traceability, etc. This is perhaps the most loosely defined of
all the Stakeholder Roles here as the scope is so large. Having said this, however, it
should be pointed out that the Systems Modeller requires very strong modelling
skills and these skills may be applied to any of the aforementioned activities.
Therefore, it is possible for the Systems Modeller to require a high level of
Competence in almost any area, depending on the nature of the work.

● ‘Process Modeller’. Having a well-defined Process is crucial when defining
any approach to work and, in keeping with the MBSE philosophy, this Stake-
holder Role requires good modelling skills as well as an understanding of
Process concepts and the business. The Stakeholder Role of the Process
Modeller will also require a good understanding of any areas in which the
Processes will be either defined or applied; therefore, it is possible for the
Process Modeller to require a large number of Competencies.

● ‘SoS Engineer’. The Stakeholder Role of the SoS Engineer is one that may be used
in conjunction with any of the other Systems Engineering Stakeholder Roles in
order to elevate it to the level of Systems of Systems. Key skills here will include
integration, understanding of Requirements and verification and validation.

● ‘Reviewer’. This Stakeholder Role is essential for all aspects of MBSE.
Interestingly, there are two main variations on this Stakeholder Role (not
shown in the diagram) that cover ‘‘mechanical reviews’’ and ‘‘human
reviews’’. A mechanical review is a straightforward verification review that
does not require any real human input but simply executes a predefined rule.
Examples of these include SysML syntactical checks and checks based on a
Process. These mechanical reviews tend to be quantitative in that they can be
measured in terms of numbers or values and, very importantly, they may be
automated. This is essential for MBSE as it is one of the benefits that was
discussed in Chapter 1. The human reviews require reasoning and will tend to
be qualitative and are typically very difficult, if not impossible, to automate
using a tool. The Reviewer Stakeholder Role will require a good understanding
of any area in which they are involved with reviewing.

● ‘Tester’. This Stakeholder Role is primarily involved with the verification and
validation activities that are applied throughout the Life Cycle. Again, the
Competencies necessary for this Stakeholder Role may differ depending on the
type of testing activities required.

● ‘Author’. This Stakeholder Role is concerned with taking models and turning
them into beautiful text. Caution needs to be exercised however, as the vast
majority of the text generated by the Author will form part of the model;
therefore, good modelling skills will be necessary for this Stakeholder Role.

● ‘Builder’. This Stakeholder Role is concerned with taking the model and
turning it into a real System. This will include building System Elements,
integrating them into the System itself, installation and so on. Of course, this is
another Stakeholder Role that on real Projects may be broken down into a set

The ‘People’ 609

of lower level Stakeholder Roles with different skill-sets and, hence, different
Competency Scopes.

The ‘Systems Engineering Manager’ is a generic type of Supplier Stakeholder Role
that may be defined as:

● ‘Requirements Manager’. This Stakeholder Role will require good management
skills but also an understanding of the Requirements engineering activities that
are being used on Projects. The manager need not be an expert in this field but
certainly needs to understand the fundamentals of the work being carried out.
This may seem quite obvious but, in real life, it is worryingly common to find
managers who understand very little of what they are managing.

● ‘Configuration Manager’. This Stakeholder Role is responsible for ensuring
that the model and all the other System Artefacts are correctly controlled,
managed and configured. This will require a basic understanding of modelling,
as it is the model itself as well as the Artefacts that are generated from it that
will be held under configuration control. These artefacts may take on many
different forms, such as models, documents, hardware, and software.

● ‘Process Manager’. This Stakeholder Role is responsible for the definition,
creation and consistency of Processes. This will involve understanding the Need
for the Processes and, where necessary, setting up Processes, for example.

● ‘Assessment Manager’. This Stakeholder Role describes the role of the
Person who is responsible for defining, setting up and managing Competency
Assessments.

● ‘Project Manager’. This Stakeholder Role describes the role of the Person who
will be in charge of the Project as a whole. Note that this Stakeholder Role
requires, quite obviously, good management skills, but will also require that
they have a basic understanding of any areas that they will be managing. For
example, if the Project Manager is overseeing a Project where an Architecture
is being generated, then it is essential that the Person playing this Stakeholder
Role has an understanding of what Architecture is.

The third general category of the Supplier Stakeholder Role is the ‘Assessor’
group that has two variations:

● ‘Primary Assessor’, this is the Stakeholder Role of the Person who will be
leading the Competency Assessment, and therefore will require very good
inter-personal skills in order to make the assessment flow in a comfortable and
consistent fashion. The Primary Assessor must also have very good working
knowledge of all of the Competencies that are being assessed. This is for very
pragmatic reasons as anyone who is leading the assessments needs to be able to
make judgement calls about whether the Assessee truly understands the subject
matter and their interpretation of it.

● ‘Secondary Assessor’, this Stakeholder Role is a Support role associated with
the Primary Assessor. A basic knowledge of the Competencies being assessed
is required, although not to the level of the Primary Assessor. Good commu-
nication skills are also required for this Stakeholder Role, especially good
writing skills.

610 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● The final Supplier Stakeholder Role that will be discussed is that of the ‘MBSE
Champion’. Unlike all of the other Stakeholder Roles that are described here, this
one may not be immediately familiar to most readers. Nonetheless, it is a crucial
Stakeholder Role for the successful implementation of MBSE in an Organisation.

● ‘MBSE Champion’. This Stakeholder Role is essential when it comes to
implementing MBSE into an Organisation. The MBSE Champion needs to
have strong modelling skills but need not be an expert. The MBSE Champion
must be visible in the business, have good communication skills and be able to
address any MBSE-related queries that arise. The key word here is ‘‘address’’
as it is not the role of the MBSE Champion to solve all the problems. In many
instances, it may be that the MBSE Champion can solve issues, in which case
all is well and good. The MBSE Champion, however, does need to know who
the people holding the appropriate Stakeholder Roles are so that they can help
to solve the particular problem. For example, if a tool-related issue arises, then
the MBSE Champion may not have the specific expertise to solve the problem
outright. On the other hand, they must be able to understand the nature of the
problem and then relate this to an expert who can solve it. The Stakeholder
Role of MBSE Champion, therefore, will often be one of a go-to Person for all
MBSE-related things. The effective use of an MBSE Champion is also one way
to ensure that the MBSE knowledge and experience within a business is cap-
tured, controlled and used so that the same mistakes are not always repeated.

Example Competency Scopes for all of these Supplier Stakeholder Roles are
provided in Appendix G.

The diagram in Figure 16.8 focuses on the ‘External’ Stakeholder Roles.

SV [Package] Stakeholder Roles [Stakeholder View for MBSE Roles]

«stakeholder role»
External

«stakeholder role»
Standard

«stakeholder role»
MBSE Mentor

«stakeholder role»
Source Framework

«stakeholder role»
Tool

«stakeholder role»
Standard Enforcer

«stakeholder role»
Tool Vendor

«stakeholder role»
MBSE Trainer

Figure 16.8 The ‘External’ Stakeholder Roles

The ‘People’ 611

The diagram shows the ‘External’ Stakeholder Roles that have been identified.
Many of these are self-explanatory and so will only have brief descriptions, as
follows:

● ‘Standard’, which refers to any commonly accepted reference, such as Stan-
dards, best practice models, and Processes, that may be used as part of an
MBSE activity.

● ‘Standard Enforcer’, which refers to the role of ensuring that a Standard has
been complied with auditors, etc.

● ‘Source Framework’, which refers to any accepted Framework, such as Com-
petency Framework and Architectural Framework, that may be used as part of
an MBSE activity.

● ‘Tool’, which refers to any Tool, such as CASE tool, mathematical tool and
management tool, that may be used as part of the MBSE activity.

● ‘Tool Vendor’, which refers to the provider of such a ‘Tool’.

Two of the Stakeholder Roles shown on this diagram are very important for
implementing MBSE – the ‘MBSE Trainer’ and the ‘MBSE Mentor’. It may seem
at first glance that these roles may be able to be filled on the Supplier side of the
business but, as will be discussed later, there are some very important reasons why
they are defined here as external to the business.

● ‘MBSE Mentor’. The MBSE Mentor must be an expert in the field of MBSE or
the specific area of MBSE as necessary. The MBSE Mentor, unlike the MBSE
Trainer, must build up an excellent working relationship with the Organisation.
This will involve getting to know and understand the nature of the Organisa-
tion, getting to know and understand specific issues and getting involved with
Projects. Indeed, the MBSE Mentor should be a valuable member of any
Project team where they are contributing to a Project. This does not mean that
they need to work full-time on the Project, but they must be known to the team
and able to be called upon by the team or the MBSE Champion at any point.
Continuity is a key to being a good MBSE Mentor, so it should not be the case
that every time there is an issue that a different person turns up as the MBSE
Mentor. Continuity is essential for a good working relationship.

● ‘MBSE Trainer’. The MBSE Trainer must be an established and recognised
expert in the field of MBSE. They must possess excellent theoretical knowl-
edge of the subject but also have practical experience of applying MBSE on
real projects. Unlike the MBSE Mentor, the MBSE trainer does not need an in-
depth understanding of the Organisation nor necessarily need to form an
ongoing relationship with the Organisation.

In reality, it may often be the case that the two roles of MBSE Trainer and MBSE
Mentor are filled by the same Person. This is perfectly acceptable and, in some
cases, often desirable to establish continuity. It should be remembered, however,
that there are two separate Organisations involved here.

These two Organisations are deliberately defined as External Stakeholder
Roles rather than Supplier Stakeholder Roles, and this is mainly for pragmatic

612 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

reasons. Even if the skills exist within the Organisation, it is often a good idea to
have these Stakeholder Roles filled by external people for the following reasons:

● Credibility. Having an established and recognised Person associated with a
business lends instant credibility to it.

● Acceptability. People will accept the opinions and advice of an established
‘‘name’’ far more readily than someone internal to the Organisation. This is
even the case when the advice being given is the same!

● Confidence. Having someone from the outside world coming into a Project and
advising, assessing and encouraging the workers provides a tremendous boost
to Project team confidence and morale. It provides reassurance that the work is
being carried out in the right way and also that the maturity of the business and
the individuals (Capability and Competence) is progressing.

Now that the basis for the Stakeholder Roles has been established, it is time to look
at the Competencies that are required for each Stakeholder Role. This will be done
by looking at the generic Competencies that are related to international Standards
and specific Competencies that are related to this book.

16.7 Generic Competencies

This section looks at generic Competencies that are based on industrial best prac-
tice. There are many sources available when it comes to defining Competencies,
most of which may be described as Competency Frameworks. The concept of a
Competency Framework is shown on the MBSE Ontology and can be seen in
Figure 16.3. A Competency Framework defines a set of Competencies that is
usually specific to a particular industry or technology. In the example presented
here, the Framework chosen is a Systems Engineering best practice model that is
known as the ‘‘INCOSE Systems Engineering Competencies Framework’’ (see [4]).
The International Council on Systems Engineering (INCOSE) is an international
body that is committed to furthering the discipline of Systems Engineering. This
Framework has been chosen as INCOSE has defined a set of Competencies that is
associated with the world of Systems Engineering, so this is a good choice for a
generic Framework to be used as a basis for Competency assessment.

The focus of the Framework is concerned with the concept of ‘Systems Engi-
neering Ability’, which is described in the diagram in Figure 16.9.

The INCOSE Competencies Framework has a concept of ‘Systems Engineer-
ing Ability’ that may be broken down into four main areas:

● ‘Supporting Technique’. A Supporting Technique is a specific technique that is
used to support the main Competencies. For example: failure analysis, decision
analysis, the use of specific notations and languages, etc. These techniques are
very important but are not much of value by themselves as it is when they are used
to support and enable Competencies that they start to add true benefits. These
supporting techniques tend to be of a more technical nature and, therefore, easier to
teach and measure. Due to the sheer number of these different techniques, the

The ‘People’ 613

INCOSE Framework does not go into any detail in this area, but simply provides a
checklist that one may want to refer to when considering such techniques.

● ‘Basic Skills and Behaviour’. These represent the soft skills that are required in
order to be a systems engineer. This includes skills such as: abstract thinking and
communication (verbal/non-verbal, listening, writing, etc.). These softer skills tend
to be less easy to teach or, indeed, to measure and can often rely on the objectivity
of an Assessor. Again, the INCOSE Framework does not enter into much detail in
this area and only provides a simple list of suggested areas that may be considered.

● ‘Domain Knowledge’. This knowledge is related directly to the domain in
which the Person is working. As Systems Engineering is a multi-disciplinary
subject it can cover, potentially, any domain. As the scope of ‘‘any domain’’ is
so wide, it is not covered in any detail in this framework.

ODV [Package] ODV - INCOSE Competencies Framework [ODV - INCOSE Competencies Framework]

«ontology element»
Systems Engineering

Ability

«ontology element»
Competency

«ontology element»
Supporting Technique

«ontology element»
Basic Skills and Behaviour

«ontology element»
Domain Knowledge

«ontology element»
Theme

«ontology element»
Indicator

«ontology element»
Level

«ontology element»
Awareness

«ontology element»
Supervised Practitioner

«ontology element»
Practitioner

«ontology element»
Expert

1..*

1

is held at

1

1..*

1..*

1..* 1..* 1..*

Figure 16.9 High-level view of the INCOSE Competencies Framework

614 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● ‘Competency’. The INCOSE Framework has managed to side-step all three of
the areas covered so far, but the focus of the Framework is very much what is
referred to as ‘Competency’ that refers to the core skills required for a systems
engineer. These will be discussed in more detail in the remainder of this section.

Any Competency may be held at a particular Level. The INCOSE Framework
identifies four levels of Competency:

● Level 1, ‘Awareness’. The Awareness Level indicates that the Person is able to
understand basic concepts, to understand how the System fits into their enter-
prise and to be able to ask relevant questions associated with each Compe-
tency. It may be that the Person has no actual experience of the Competency
but does display some theoretical knowledge and understanding of it.

● Level 2, ‘Supervised Practitioner’. An individual who has Competencies held
at the Supervised Practitioner Level will have some real experience of the
Competency. They will be able to display true understanding through the
application of systems techniques and concepts as part of their work. Also, as
the name would imply all this work is carried out under supervision.

● Level 3, ‘Practitioner’. An individual who has Competencies held at the
Practitioner Level will provide guidance and lead activity in this area. They
will be able to supervise people at lower Levels of Competency and may very
well lead teams or groups of people.

● Level 4, ‘Expert’. The Expert Level represents those rare individuals who truly
lead the field in a particular area. They are able to display what they experience
by defining best practice, policy or Process within an organisation or industry.

Each Competency may be held at any of these four Levels. At each of the Levels and
for each Competency, there are a number of Indicators defined, and it is these Indi-
cators that are actually assessed. Each Indicator is a simple statement of what must be
demonstrated to contribute towards meeting a Competency. The Indicator should be
measurable in some accepted form. The way that these Indicators are measured is by
looking for evidence that is provided by the Assessee. The evidence that may be
accepted as valid is defined by Evidence Types. Examples of such Evidence Types
are provided later in this chapter when bespoke Competency Scopes are discussed.

16.7.1 Example Competency Scope
The MBSE Ontology states that each Stakeholder Role has its desired abilities
defined by a Competency Scope. Therefore, there will a Competency Scope for each
of the Stakeholder Roles that has been described so far in this chapter. An example
Competency Scope for the Requirements Engineer is shown in Figure 16.10, based
on the INCOSE Systems Engineering Competencies Framework.

The chart here shows the Competency Scope for the Requirements Engineer
Stakeholder Role. The relevant Levels for each of the Competencies are shown by
shading the relevant cells.

There are some interesting features to this Competency Scope when the shape
itself is considered. First of all, notice that it is not a ‘‘flat’’ shape but has highs and
lows. The highest Level on this Competency Scope is ‘Level 3 – Practitioner’, which
is typical for most engineers. The areas in which the requirement for Level 3 is

The ‘People’ 615

present are related to the Stakeholder Role name. Anyone who is involved in
Requirements engineering would be expected to have good appreciation of Systems
Engineering generally (the Systems Thinking-themed Competencies) and would be
expected to be at the same level for Requirements-related Life Cycle Competencies.
This includes ‘Determining and managing stakeholder requirements’, which is the
obvious Competency, but also two other Competencies that require this high Level
are closely related: ‘Functional analysis’ and ‘Modelling and simulation’.

Looking at the ‘Systems Engineering Management’ theme, there is an interesting
pattern there also. Both ‘Life cycle process definition’ and ‘Planning monitoring and
controlling’ are required Competencies, but only at ‘Level 1 – Awareness’. This is
quite typical as the scope is asking that the individual understands management
(Level 1) but is not expecting any relevant experience in this area.

16.7.2 Generic Competency Scope – Evidence Types
When dealing with a standard Framework, such as the INCOSE Systems Engi-
neering Competencies Framework, it is almost impossible to define any Evidence

Level 4-
expert

Level 1-
awareness

Level 2-
supervised
practitioner

Level 3-
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure 16.10 The Competency Scope for the Requirements Engineer Stakeholder Role

616 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Types as this is far too prescriptive. The best that can be achieved is for some
guidelines to be available for defining Evidence Types, an example of which is
presented later in this chapter.

16.8 Bespoke Competencies

This section is very similar to the previous one. However, rather than using a
standard Framework, a bespoke MBSE Competency Framework will be intro-
duced, based on the contents of this book.

The main concepts associated with the MBSE Competency Framework are based
on those of the MBSE Ontology that was discussed previously in this chapter. The
concept of the Competency Area from the MBSE Ontology is now expanded to show a
taxonomy of Competency Areas and can be seen in the diagram in Figure 16.11.

The diagram here shows an example set of ‘Competency Area’ that forms the
basis for the Competencies that will make up the MBSE Competency Framework,
which is defined below. This high-level view of the MBSE Competency Frame-
work is intended to be used as a start point for people to define their own Com-
petency Framework, and there are a few generic pointers that apply to all
Frameworks, which are:

● The ‘MBSE Concepts Competency Area’. This Competency Area applies to
generic concepts and its equivalent can be found in many source Frameworks –
for example in the INCOSE Competencies Framework, this is known as
‘System Concepts’. When following the MBSE approach defined in this book,
this becomes quite simple, as this Competency area is based directly on the

ODV [Package] Framework Views [FV - Competence Areas]

«ontology element»
Systems Knowledge

Competency Area

«competency area»
MBSE Concepts Competency

Area

«competency area»
Life Cycle Process
Competency Area

«ontology element»
Domain Knowledge
Competency Area

«ontology element»
Skill Competency Area

«competency area»
Soft Skill Competency Area

«competency area»
Technical Skill Competency

Area

«ontology element»
Competency Area

Figure 16.11 Taxonomy of Competency Area types

The ‘People’ 617

MBSE Ontology. The MBSE Ontology defines all the concepts for MBSE;
therefore, it makes sense that this should be used as a basis for assessing
people’s understanding of MBSE concepts.

● The ‘Life Cycle Process Competency Area’. This Competency Area applies to
the Life Cycle Processes that are used within an Organisation and, again,
examples of this can be found in many source Frameworks. For example, in the
INCOSE Framework, this is known as ‘Holistic Life Cycle Activities’. Again,
these Competencies will be based on the MBSE Model, especially the MBSE
Ontology, the MBSE meta-model and the Processes.

● The ‘Technical Skill Competency Area’. This Competency Area applies to
specific techniques that are necessary to carry out the MBSE activities in the
business. In the context of this book, many of these skills are described in their
own chapters or sections, such as ACRE, ‘‘seven views’’, and Modelling Tool
Evaluation. When following the MBSE approach defined in this book, this
becomes quite straightforward, as the Competencies are based directly on the
Processes that are summarised in Appendix F.

● The ‘Soft Skill Competency Area’. This is a Competency Area that is absolutely
essential for all systems engineers, yet the one that is covered the least in the source
Frameworks. This Competency Area will often be covered by in-house human-
resource Processes and Frameworks rather than stemming from technical areas.

● ‘Domain Knowledge Competency Area’. This Competency Area is directly
related to the field in which the business operates and will usually be an
in-house Framework that maps onto some industry-specific source.

The MBSE Ontology identifies four Levels of Competence at which individual Com-
petencies may be held. These levels will be discussed in more detail later in this chapter
but for the sake of the following Competency Scope, these levels are: ‘Level 1 –
Awareness’, ‘Level 2 – Support’, ‘Level 3 – Lead’ and ‘Level 4 – Expert’.

16.8.1 Example Competency Scope
The MBSE Ontology states that each Stakeholder Role has its desired abilities
defined by a Competency Scope. Therefore, there will be a Competency Scope for
each of the Stakeholder Roles that have been described so far in this chapter. An
example of a Competency Scope for the Requirements Engineer Stakeholder Role
is shown in Figure 16.12, based on the MBSE Competency Framework.

The Stakeholder Role of Requirements Engineer needs a strong, practical
background in all three of the bespoke Competency Areas. In an ideal world, these
should all be held at ‘Level 3 – Lead’, as shown here. However, if there is a team of
Requirements Engineers, then it may be possible to have one Stakeholder Role held
at ‘Level 3 – Lead’ supported by a number of people who hold ‘Level 2 – Support’
so that their combined profiles match the Competency Scope shown here. Notice
also how this Stakeholder Role requires a basic, Level 1 understanding of many of
the other Competencies.

This Competency Scope may be compared to the one described in Figure 16.8
that shows the Competency Scope for the same role based on the generic Compe-
tencies from the INCOSE Competencies Framework.

618 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

16.8.2 Bespoke Competency Scope – Evidence Types
One of the advantages of a bespoke Framework is that it is indeed possible to define
Evidence Types that relate to the Competencies in the Framework. These Evidence
Types will reflect the individual business and the way that they work. An example of
these for the MBSE Competency Framework will be presented later in this chapter.

16.9 Generic vs. specific Competencies

Each of the two approaches described in the previous sections has its own set of
advantages and disadvantages. One of the main advantages of using the generic
Framework is acceptance. One of the main reasons to use an industry best practice
model or Standard is that they will be recognised in the industry and, in the case of
some, at an international level. Of course, this can be very advantageous as it
provides a common way that a Person’s Competence can be assessed that will be
recognised in more than one Organisation. This has a lot of attraction from an
individual’s point of view as it provides a mechanism to demonstrate one’s own
Competence that may be used in a number of Organisations and, hence, it will
make moving between Organisations simpler. From a company’s point of view this
is also good because it makes the whole area of recruitment far simpler. Indeed,
when recruitment is based (either wholly or partly) on Competency assessments, it
is possible to define a set of Competency Scopes that represent the Stakeholder
Roles that make up the post and issue them to potential employees.

The downside of using the generic approach is that, because the Competencies
are defined at a high level, the definitions may not map onto the way that an

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4-
Expert

Level 1-
Awareness

Level 2-
Support

Level 3-
Lead

Figure 16.12 Example Competency Scope for a Requirements Engineer based on the bespoke Framework

The ‘People’ 619

Organisation does their business. Nor will they reflect any specific techniques,
Processes or Tools that may be required by the company. Indeed, this is one of
the main strengths of the bespoke approach described in the MBSE Competency
Framework. When defining specific Competencies it is possible to get an exact
match on the skills required by the Organisation. This also relates to the ability to
be able to define Evidence Types that are specific to the business, whereas this is
impossible for the generic Framework.

Therefore, in summary:

● The generic approach is good for establishing a common baseline for Com-
petencies that are recognised by different Organisations.

● The specific approach is weak in terms of recognition, as it is tailored to a
particular Organisation.

● The generic approach is weak when it comes to specific Tools, techniques and
methodologies, as it is, by its nature, aimed at the high level.

● The specific approach is strong in meeting the exact requirements of an
Organisation.

● The specific approach enables the definition of explicit Evidence Types.

The use of Competencies is very important when it comes to getting the right
Person for a Stakeholder Role – for a far more detailed discussion, see [5].

16.10 Defining a bespoke Competency Framework

This section looks at some of the practical issues involved with defining a bespoke
set of Competencies, in the form of a Framework, and how to define the individual
Competencies along with their associated Indicators.

The approach to defining a bespoke Competency Framework is to use the MBSE
approach that has been introduced and discussed within this book. It is possible and,
indeed, desirable to use as much as the model as possible when defining the Com-
petencies. In particular, the following parts of the model will be used:

● The MBSE Meta-model, which defines the fundamental building blocks that
make up the MBSE model.

● The MBSE Ontology, to identify and define the concepts and terms. The
Competency activity should be part of a wider MBSE activity and, if so, then
this should build upon the existing MBSE Ontology.

● The various frameworks, which define the Views that are required in the form
of Viewpoints. An example of this was provided in Chapter 8 that was con-
cerned with expanded Process modelling.

● Views, which define the key Artefacts required to carry out Competency
assessment, such as Competency Scope (the ‘Competency Scope View’) and
its resulting Competency Profiles (the ‘Competency Profile View’).

● A set of Processes will also be required if you want to actually perform
assessments. Again, this should be part of a wider MBSE activity and form part
of the overall Process library. An example set of Competency assessment
Processes, known as the Universal Competency Assessment Model (UCAM),
is provided in Appendix F.

620 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

When it comes to defining the Competencies and their associated Indicators, then
the MBSE approach can be of great help and can significantly shorten the time
taken to define the content of the Framework.

The set of Processes provided in this book relates to the field of competence, in
particular Competency assessment, and this approach is known as UCAM. This set
of Processes also contains two Processes that relate to pre-assessment activities, in
particular to creating a bespoke Competency Framework. These two Processes are
shown in the diagram in Figure 16.13.

The diagram in Figure 16.13 shows the two ‘Pre-assessment Process’ Pro-
cesses that are the ‘Bespoke Competency Definition’ Process and the ‘Bespoke
Framework Definition’ Process. Each of these is described in more detail in the
following sections.

PCV [Package] PCV - UCAM [PCV - UCAM]

«process»
Pre-assessment Process

«process»
Bespoke Competency Definition

«artefact»
Bespoke framework: Bespoke Framework
Competency: Competency
Competency area: Competency Area
Indicator: Indicator
MBSE ontology: MBSE Ontology
Process: Process
Source framework: Source Framework

«activity»
define competency area()
define concept-related competencies()
define process-related competencies()
define skill-related competencies()
identify competencies()
identify ontology()
identify source framework()
review()

«process»
Bespoke Framework Definition

«artefact»
Bespoke framework: Bespoke Framework
Evidence type: Evidence Type
Level: Level

«activity»
analyse bespoke framework()
define evidence types()
define levels()
review()

Figure 16.13 Process Context View for the ‘Pre-assessment Process’

The ‘People’ 621

16.10.1 The ‘Bespoke Competency Definition’ Process
This Process is concerned with identifying and defining the Competency Areas,
Competencies and Indicators associated with a bespoke Framework. The Activities
in the Process are described in the following sub-sections.

16.10.1.1 The ‘identify ontology’ Activity
This Activity is relatively straightforward and consists of identifying the Ontology
that will underlie the bespoke Framework. In this example, this will be the MBSE
Ontology.

16.10.1.2 The ‘identify source framework’ Activity
The main aim of this Activity is to identify any source Competency Frameworks
that may be used as an input to create the bespoke Competency Framework. An
example of this would be the INCOSE Competencies Framework that has been
used elsewhere in this book.

16.10.1.3 The ‘identify competencies’ Activity
The MBSE Competency Framework that was introduced previously in this chapter
has a number of Competency Areas that have been defined and that allow the
individual Competencies to be classified into groups. These Competency Areas are
shown in the diagram in Figure 16.14.

The diagram in Figure 16.14 shows the taxonomy of the various types of
‘Competency Area’ that was introduced previously in this chapter and that is
recapped here mainly for consistency.

Each Competency Area was identified based on the overall MBSE Model.

ODV [Package] Framework Views [FV - Competence Areas]

«ontology element»
Systems Knowledge

Competency Area

«competency area»
MBSE Concepts Competency

Area

«competency area»
Life Cycle Process
Competency Area

«ontology element»
Domain Knowledge
Competency Area

«ontology element»
Skill Competency Area

«competency area»
Soft Skill Competency Area

«competency area»
Technical Skill Competency

Area

«ontology element»
Competency Area

Figure 16.14 Defining ‘Competency Area’

622 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The next step is to define a set of Competencies that will make up the Fra-
mework and form the basis of any Competency Assessment Activities.

In a typical Framework there will be groupings of Competencies. When the
source Frameworks are considered, there are a number of standard classifications
that can be identified. The terminology used here is based on the MBSE Ontology
and its associated Competency Framework (described in more detail in Appendix
G). These standard groupings, represented in the MBSE Competency Framework
by the ‘Competency Area’ concept, are:

● General or specific concepts, represented in the MBSE Competency Frame-
work as the ‘MBSE Concepts Competency Area’.

● Process- and Life Cycle-related concepts, represented in the MBSE Compe-
tency Framework as the ‘Life Cycle Process Competency Area’.

● Technical skill-related concepts, represented in the MBSE Competency Fra-
mework as the ‘Technical Skill Competency Area’.

● Soft skill-related concepts, represented in the MBSE Competency Framework
as the ‘Soft Skill Competency Area’.

In all of these areas, with the exception of the ‘Soft Skill Competency Area’, the
information required to define the Competencies is already known and exists
already within the model. The MBSE model (including the MBSE Ontology, Fra-
mework and Views) could be expanded to include the soft skills, but this is beyond
the scope of this book.

16.10.1.4 The ‘define concept-related competencies’ Activity
This competency area is based on the MBSE Ontology and is defined in order to
determine if the Assessee holds sufficient knowledge concerning the key concepts
that make up the Ontology. For example, consider the ‘Systems Concepts’ compe-
tency that forms part of the ‘MBSE Concepts Competency Area’, and then determine
which areas of the ontology apply. In the MBSE Ontology, the concepts shown in
Figure 16.15, as a subset of the MBSE Ontology, were identified as being relevant.

Each of the Ontology Elements shown here has been identified as relevant to
the Systems Concepts Competency. The very fact that they exist on the MBSE
Ontology means that they must be important concepts that must be understood by
any Person who holds a Stakeholder Role that requires this Competency. The
Indicators in the Competency, therefore, should identify areas that the Assessee
must understand.

An example of what the Systems Concepts Competency looks like is shown in
Table 16.1.

Table 16.1 shows the name of the Competency along with a high-level
description of that Competency. Alongside this is a set of Indicators that have been
identified and that are based directly on the MBSE Ontology.

16.10.1.5 The ‘define process-related competencies’ Activity
The competencies that exist in the Life Cycle Process Competency Area are, again,
quite straightforward to define, as the information concerning the Processes is

The ‘People’ 623

already part of the MBSE model. The information for the general Processes will
relate to both the Ontology and the need for that particular Process.

The example in Table 16.2 shows the Competency definition for the Process
Modelling Competency.

Table 16.2 has the same structure as the one shown in Table 16.1 but this time,
rather than all of the Indicator descriptions deriving from the MBSE Ontology, the wider
MBSE model is plundered for information. In general terms, the MBSE Ontology, the
meta-model and the need for the Process will be prime sources. Table 16.3 shows which
parts of the MBSE model the definitions of the Indicators are derived from.

As can be seen in this table, several parts of the MBSE model are used in order
to define the Process-related concepts.

«ontology element»
Enabling System

«ontology element»
Constituent System

«ontology element»
System Element

«ontology element»
System Context

«ontology element»
System of Interest

«ontology element»
System of Systems

«ontology element»
Architecture

«ontology element»
System

«ontology element»
Virtual System

«ontology element»
Collaborative System

«ontology element»
Directed System

«ontology element»
Acknowledged System

«ontology element»
Product

«ontology element»
Service

1

interacts
with

1..*

1..* 1

1

represents the need for

1

1..*

1

1

interacts
with

1..*

1..*

interacts
with

1

1

is realised as

1..*

1..*

describes 1..*

Figure 16.15 Subset of the MBSE Ontology focused on concepts relevant to the ‘Systems Concepts’ competency

624 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Table 16.1 Indicators for the ‘Systems Concepts’ Competency

Systems
Concepts

This Competency relates
to the concept of a
‘System’ and the rela-
ted concepts that are
necessary to demon-
strate understanding of
this concept

Understands the concept of a ‘System’

● Understands the concept of a ‘System
Context’ and its relationship to a
‘System’

● Understands the concepts of ‘System of
Interest’ and ‘Enabling System’ and the
relationships between them

● Understands the concepts of ‘System of
Systems’ and ‘Constituent Systems’ and
the relationships between them

● Understands that there are different
classifications of ‘System of Systems’

● Understands the concepts of ‘System
Element’ and its relationship to ‘Con-
stituent System’

● Understands that a ‘System’ is realised
by one or more ‘Product’

● Understands the concepts of a ‘Product’
and a ‘Service’ and the relationship
between them

Table 16.2 Definition for the Process Modelling Competency

Process
Modelling

This Competency reflects
the ability to model
Processes

Understands the need for Process

● Understands what a Stakeholder Role is
● Understands the drivers behind Process

modelling (complexity, communication,
lack of understanding)

● Can define what a Process is, in terms of
Activities, Artefacts and Stakeholder
Roles

● Is aware of different approaches or
techniques to Process modelling

● Is aware of the importance of Views
● Understands how a good Process model

may be used (assessment, audits, Process
improvement, etc.)

The ‘People’ 625

16.10.1.6 The ‘define skill-related competencies’ Activity
When defining skill-related Competencies, then the Process model within the
MBSE model is used as the main source. This is true for both Technical and Soft-
Skill areas, but, as was stated previously, this book is focusing mainly on the
Technical Skills, although examples of Soft-Skill-related Competencies are
provided in Appendix G.

Table 16.3 Origin of Indicator descriptions on the MBSE model

Indicator Origin

Understands the need for Process Framework view – ‘Requirement
Context View’ for the Process

Understands what a Stakeholder Role is MBSE Ontology for Process concepts
Understands the drivers behind Process modelling

(complexity, communication, lack of
understanding)

Framework view – ‘Requirement
Context View’ for the Process

Can define what a Process is, in terms of Activities,
Artefacts and Stakeholder Roles

MBSE Ontology for Process concepts

Is aware of different approaches or techniques to
Process modelling

MBSE Process Model

Is aware of the importance of Views MBSE Meta-model
Understands how a good Process model may

be used (assessment, audits, process
improvement, etc.)

Framework View – ‘Process Content
View’ for the Process

Table 16.4 Definition of a Technical Skill-related Competency

Seven Views This Competency
reflects the
ability to use the
‘‘Seven Views’’
approach to
Process
modelling

Must hold the ‘Process Modelling’ Competency

● Must understand ‘‘seven views’’ Framework
and each of the Views

● Must understand the need for each View
● Must understand the consistency relationships

between the Views
● Must understand how each View may be used
● Must appreciate different Tools and techni-

ques that can be used to realise the Views
● Must understand that the Framework is

tailorable
● Must understand that Views may be created

and developed in different orders depending
on the application of Process modelling

● Must understand how the Framework fits into
the wider enterprise (such as Life Cycles and
enterprise architecture)

626 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Table 16.4 shows an example of a Technical Skill-related Competency, in par-
ticular, the ‘‘Seven Views’’ Process modelling skill, that defines a specific technique.

The table here shows how the various Indicators of the ‘‘Seven Views
Approach’’ Competency are described.

16.10.1.7 The ‘review’ Activity
Finally, the partial ‘Bespoke Framework’ that has been generated so far is reviewed
and is then used as the main input to the next Process – the ‘Bespoke Competency
Framework Definition’ Process.

16.10.2 The ‘Bespoke Framework Definition’ Process
This Process is concerned with identifying and defining the Levels and Evidence
Types associated with a bespoke Framework. The Activities in the Process are
briefly described in the following sub-sections.

16.10.2.1 The ‘analyse bespoke framework’ Activity
The main aim of this Activity is to take the partial Bespoke Framework from the
previous Process and to consider different Competencies and their associated
Indicators that will form a basis of the Levels and Evidence Types.

16.10.2.2 The ‘define levels’ Activity
The main aim of this Activity is to define one or more Levels that each Competency
may be held at. These may be based directly on one of the source Frameworks, such as
the INCOSE Competencies Framework, or may be created specifically for the bespoke
Framework, as defined in the MBSE Competency Framework that is used in this book.

These four Levels that form part of the MBSE Competency Framework are
described in more detail below.

● ‘Level 1 – Awareness’. The main aim of this Level is for the Assessee to
demonstrate that they possess the ability to ‘speak knowledgeably about a
particular aspect of the competency. The main aim is for the Assessee to
demonstrate that they understand each indicator fully, and back this up with
examples – either theoretical or real-life.’

● ‘Level 2 – Support’. The main goal of this Level is for the Assessee to
demonstrate that they can ‘reflect the ability to implement the concepts that
were discussed at level 1 for this competency’.

● ‘Level 3 – Lead’. The aim of this Level is for the Assessee to demonstrate that
they can ‘reflect the ability to be able to lead the activity that was described at
level 1 and implemented at level 2’.

● ‘Level 4 – Expert’. The aim of Level 4 is for the Assessee to demonstrate that
they can ‘reflect the ability to be a true, recognised expert in the field that is
described by this competency’.

The MBSE Ontology shows that each Competency is made up of one or more
Indicators and they form the basis of assessing the Competency. Each Indicator
states an aspect of the Competency that the Assessee must be able to demonstrate

The ‘People’ 627

that they have met. This is achieved through the Assessee providing evidence and
this being compared against one or more predefined Evidence Type.

In terms of what each Indicator looks like, this differs depending on the Level
that the Competency is held at:

● Each Indicator at ‘Level 1 – Awareness’ will be a unique description of some
aspect of knowledge, skill or attitude that must be met by the Assessee.
Therefore, the Indicators will differ depending on the Competency.

● Each Indicator at ‘Level 2 – Support’ is the same for each Competency.
● Each Indicator at ‘Level 3 – Lead’ is the same for each Competency.
● Each Indicator at ‘Level 4 – Expert’ is the same for each Competency.

This approach of a unique set of Indicators at Level 1 and then generic (in that they
are the same for each Level, regardless of the Competency) ones for each of the
other Levels is one that is widely adopted in the world of Process maturity
assessment – see [6,8] for examples of this.

16.10.2.3 The ‘define evidence types’ Activity
For each Level that was defined in the previous Activity, it is now necessary to identify
and define a number of acceptable Evidence Types. These Evidence Types will be
entirely dependent on the Organisation and the way that they work. For example, Evi-
dence Types that are suitable for a large multinational Organisation will not necessarily
be the same as those defined for a small company with just a few employees.

The Evidence Types should also be considered alongside the rest of the MBSE
Ontology and the MBSE Process Model, as Artefacts, Activities, the MBSE
Ontology, etc., are excellent sources for the definition of Evidence Types.

In the MBSE Competency Framework, these Evidence Types are summarised
as shown in Table 16.5.

Table 16.5 Summary of Evidence Types for the MBSE Competency Framework

Level Evidence type Examples of evidence

Level 1 –
Awareness

Tacit knowledge
Informal training course

Ability to discuss terms and concepts
Course attendance certificate

Level 2 –
Support

Formal training course Activity Course attendance certificate
Contribution to artefact
Sworn statement from manager

Contributed Artefacts are formally
reviewed

Level 3 – Lead Educational qualification
Lead activity Reviewer

Certificate of award
Responsibility for Artefact
Reviewed Artefacts

Level 4 – Expert Professional qualification
Publications Public speaking
Activity definition

Certificate of award
Papers, books
Presentations, reviews of talk
Policy, Process, etc.

628 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Table 16.5 shows the Evidence Type that is acceptable at each of the four
Levels, along with some examples of typical evidence that may be acceptable. A
full definition of all of these terms can be found in Appendix G.

16.10.2.4 The ‘review’ Activity
Finally, the now-complete Bespoke Framework is now reviewed.

16.10.3 Competency assessment
In order to put these Competency Scopes into practice, it is necessary to carry out a
Competency assessment exercise. One approach to performing these assessments is
the (UCAM) that is described in Chapter 8 and is defined in Appendix E. By using
UCAM, it is possible to assess against any Competency Framework, as a model-
based approach is taken, which means that as long as a source Framework can be
modelled, it can be assessed.

16.11 Summary

One of the common themes of this book is that ‘People, Process and Tools’ are
essential for realising any Systems Engineering Capability. This chapter has looked
at how the People element of this may be addressed by discussing, in particular:

● The importance of teaching, training and education. This was achieved by dis-
cussing the requirements for education and providing a high-level teaching guide
for anyone involved with model-based requirements engineering education.

● The definition of Competency Scopes. Two Competency Frameworks were dis-
cussed – one generic and one specific – and an example set of Competency Scopes
is provided that may be used as a starting point for Competency assessment.

The issue of People is just one of the three main enablers, and Process and Tools
will be discussed in Chapters 15 and 16.

The complete MBSE Competency Framework, including a complete set of
Competency Scopes for the MBSE Stakeholder Roles, is presented in Appendix G.

References

[1] Holt J. ‘A Pragmatic Guide to Process Modelling’. 2nd edition. Swindon, UK:
BCS Publishing; 2009.

[2] Bloom B.S. (ed.). ‘Taxonomy of Educational Objectives: The Classification
of Educational Goals’. Colorado, USA: Susan Fauer Company, Inc; 1956. pp.
201–207.

[3] Anderson L.W., Krathwohl D.R., Airasian P.W., Cruikshank et al. (eds.).
‘A Taxonomy for Learning, Teaching, and Assessing — A Revision of
Bloom’s Taxonomy of Educational Objectives’. Boston, USA: Addison
Wesley Longman, Inc.; 2001.

The ‘People’ 629

[4] International Council on Systems Engineering (INCOSE). INCOSE Compe-
tencies Framework, Issue 2.0. INCOSE; November 2006.

[5] Holt J. and Perry S. ‘A Pragmatic Guide to Competency: Tools, Frameworks
and Assessment’. Swindon, UK: BCS Publishing; 2011.

[6] ISO/IEC 15504 Information Technology — Process Assessment, Parts 1–9.
ISO Publishing; 2006–2011.

630 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Chapter 17

The ‘Process’

17.1 Introduction

The current chapter looks at the pragmatic issues involved when trying to realise
the model-based systems engineering approach in this book in any Organisation or
business. In particular, this chapter looks at how it is possible to ensure that the
right approach is in place – in other words, the Process.

By way of a recap, the diagram in Figure 17.1 shows the three main elements
that must be in place in order to realise successful MBSE, in particular:

● The ‘Person’, by which we mean competent people, rather than just any
people.

● The ‘Process’, which is in place in order to realise the approach.
● The ‘Tool’, which may range from a whiteboard or log book, to standard office

tools, to a full-blown automated tool set, to any combination of these.

In order to understand the basic needs for providing competent people, the ‘Process
Context’ shown in Figure 17.2 was generated.

«ontology element»
Process

«ontology element»
Person

«ontology element»
Tool

1..*

drives

1..*

1..*

enables

1..*

Figure 17.1 Pragmatic issues with implementing the approach

The diagram in Figure 17.2 shows the Context for the Process aspect of MBSE.
Both systems engineering and MBSE describe an approach to realising successful Sys-
tems, and at the heart of this approach is the concept of the Process (‘Provide process’).

Any Process that is defined (‘Define process’) needs to be flexible in a number
of ways:

● The Process needs to be able to be realised using a number of different tech-
niques (‘Must be able to be implemented with different notations’). A good
Process should be independent of any specific techniques. Of course, when
considering model-based systems engineering, then there is an immediate
constraint that modelling techniques must be used, but the Process should be
flexible enough to allow the use of different modelling notations.

● The Process must be able to be realised using a number of different Tools
(‘Must be able to be implemented in different tools’). The Process should drive
the Tools and not the other way around. With this in mind, it is essential that
the Process may be implemented using any number of Tools.

● The Process must be scalable in terms of size and duration of Project (‘Must be
scalable’ ‘ . . . in size’). The Process must be able to be applied to very small
Projects lasting only a few days or weeks, right up to long-term Projects lasting
many years.

Process Deployment Context

«concern»

Provide process

«concern»
Must be able to be

implemented in
different tools

«concern»
Must be able to be

implemented in
different notations

«concern»

Demonstrate process

«concern»

Define process

«concern»
Comply with best

practice
«concern»

Must be scaleable

«concern»

.. in size

«concern»

.. in rigour

«concern»

Deploy process

«concern»

Disseminate process

«concern»

.. internally

«concern»

.. externally

«stakeholder role»
Tool Vendor

«stakeholder role»
Supplier

«stakeholder role»
Standard Enforcer

«stakeholder role»
Standard

«stakeholder role»
Customer

«include»

«constrain»

«constrain»

«include»

«constrain»

«include»

«include»

«constrain»

Figure 17.2 Process Context

632 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● The Process must be able to be applied at different levels of rigour (‘Must be
scalable’ ‘ . . . in rigour’). For example, it must be able to be applied to a System
where there are no safety concerns right up to a safety-critical or mission-
critical System.

It is also essential that any Process that is defined is able to be mapped onto best
practice (‘Comply with best practice’) and, related to this, it must be possible to
demonstrate the Process (‘Demonstrate process’) in terms of an audit or assessment.
Finally, it is crucial that the Process is deployed effectively. It does not matter how
well a Process is defined, if it is not deployed effectively (‘Deploy process’), and if
the people do not know about it (‘Disseminate process’), the Process is potentially
useless.

In order to satisfy these needs, it is first necessary to revisit the Process aspects
of the MBSE Ontology.

The diagram in Figure 17.3 shows the subset of the MBSE Ontology that
focuses on Process-related concepts.

The diagram here shows the MBSE Ontology for the main concepts that are
related to the Process. These are defined as follows:

● ‘Process’ – A description of an approach that is defined by one or more
‘Activity’, one or more ‘Artefact’ and one or more ‘Stakeholder Role’. One or
more ‘Process’ also defines a ‘Service’.

«ontology element»
Activity

«ontology element»
Artefact

«ontology element»
Process

«ontology element»
Process Context

«ontology element»
Process Execution

Group

«ontology element»
Service

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
Process Group

1..*

1..*

yields an observable
result to

1..*

1..*

is executed during

1

{incomplete}

1..*

1

represents the need for

1..*

1

is responsible for1..*

1..*

realises

1..*

1..*

1

1..*

satisfies

1..*

1..*

1

1

consumes1..*

1..*produces/consumes

1..*

1..*

Figure 17.3 MBSE Ontology focusing on Process-related concepts

The ‘Process’ 633

● ‘Artefact’ – Something that is produced or consumed by an ‘Activity’ in a ‘Process’.
Examples of an ‘Artefact’ include documentation, software, hardware and systems.

● ‘Activity’ – A set of actions that need to be performed in order to successfully
execute a ‘Process’. Each ‘Activity’ must have a responsible ‘Stakeholder
Role’ associated with it and utilises one or more ‘Resource’.

● ‘Stakeholder Role’ – The role of anything that has an interest in a ‘System’.
Examples of a ‘Stakeholder Role’ include the roles of a ‘Person’, an ‘Organi-
sational Unit’, a ‘Project’, a ‘Source Element’ and an ‘Enabling System’. Each
‘Stakeholder Role’ requires its own ‘Competency Scope’ and will be respon-
sible for one or more ‘Activity’.

● ‘Resource’ – Anything that is used or consumed by an ‘Activity’ within a
‘Process’. Examples of a ‘Resource’ include money, locations, fuel, raw
material, data and people.

● ‘Process Execution Group’ – A set of one or more ‘Process’ that are executed
for a specific purpose. For example, a ‘Process Execution Group’ may be
defined based on a team, function, etc.

The term ‘System’ has been defined previously and the link between Processes and
Life Cycles is realised by the concept of the ‘Process Execution Group’.

17.2 Defining the Process

The approach to Process modelling that is advocated in this book is the ‘‘seven
views’’ approach [1] that was introduced and described in Chapter 7. The aim of
this chapter is to discuss how Process may be realised effectively within an orga-
nisation, so it is assumed that the reader is familiar with the ‘‘seven views’’
approach. The example Process that is used in this chapter (and the next chapter
that covers Tools) is defined using this approach.

The Process chosen is the one that describes the approach for requirements
modelling (Approach for Content-based Requirements Engineering (ACRE)). A
partial model will be presented in this chapter for the sake of brevity, but the full
Process can be seen in detail in Chapter 9. For more information on the ‘‘seven
views’’ approach, see Chapters 7 and 8 and [2].

17.2.1 The ACRE Process
The Views that are presented here are the Process Content View (PCV) and the
Information View. The main reason for this is that the main discussion will focus
on how various Activities in the Process can be realised and how the Artefacts vary,
depending on the application of the Process.

17.2.2 The ACRE Process – the Process Content View (PCV)
The PCV defines the Processes that are available in an Organisation and may be
thought of as a ‘process library’. In the case of the ACRE, only a single Process will be
described here, but this is intended to be a start point for people to use when defining
their own bespoke Processes for model-based requirements engineering (Figure 17.4).

634 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The Artefacts in the Process must all be consistent with the ACRE Framework.
In this case, the Artefacts have been simplified and are defined as follows:

● ‘Source Element’. This is taken directly from the MBSE Ontology and represents
anything that is used as a source for the requirements engineering exercise.

● ‘Requirement View’. This represents the set of all the Views that are used as
part of ACRE, which are: the Source Element View, the Requirement
Description View, the Definition Rule Set View, the Requirement Context
View, the Context Definition View and the Validation View, which are sum-
marised in Figure 17.5. For a full description of each View, see Chapter 9 and
Appendix F.

● ‘Need’. Again, this is taken directly from the MBSE Ontology and represents
the fundamental Requirements behind the Process.

The Activities in the Process describe what actually needs to be done to execute the
ACRE Process. These Activities are described as follows:

● ‘Assemble source information’. The main aim of this Activity is to identify the
Source Elements and to create the Source Element View.

● ‘Elicit requirements’. The main aim of this Activity is to identify, gather and
define the Source Elements that will be used as a basis for the Requirements.

PCV [Package] PCV - ACRE [PCV - ACRE]

«process»
ACRE Process

«artefact»
Context definition view: Context Definition Viewpoint
Definition ruleset view: Definition Rule Set Viewpoint
Need: Need
Requirement description view: Requirement Description Viewpoint
Requirements context view: Requirement Context Viewpoint
Source element: Source Element
Source element view: Source Element Viewpoint
Traceability view: Traceability Viewpoint
Validation view: Validation Viewpoint

«activity»
analyse needs()
assemble source information()
define acceptance criteria()
elicit needs()
establish traceability()
identify context definitions()
review()

Figure 17.4 Process Content View for the ACRE Process

The ‘Process’ 635

In terms of the framework, this Activity will consume the Source Element View
(containing Source Elements) as an input and produce the Requirement Description
View (containing Requirement Descriptions).

● ‘Identify context definitions’. The main aim of this Activity is to identify and
define the Stakeholder Roles and System Elements that will be used as a basis
for the Context Definition Views. In terms of the framework, this Activity will
consume the Source Element View (containing Source Elements) as an input
and produce the Context Definition Views (the Stakeholder Context Definition
View and/or the System Context Definition View).

● ‘Analyse requirements’. The main aim of this activity is to understand the
Requirements of the System by looking at their Use Cases. Remembering that
a Use Case is a Need (in this case a Requirement in Context), this Activity is
mainly concerned with generating a number of Contexts, based on the Context
Definition Views in order to understand the Needs. In terms of the framework,
this activity will consume the Context Definition Views (the Stakeholder
Context Definition View and/or the System Context Definition View) and the
Requirement Description View as inputs and produce the Requirement Context
Views (containing Stakeholder and Use Cases, along with all their inter-
relationships).

● ‘Define acceptance criteria’. The main aim of this Activity is to consider how
each Use Case will be validated. In terms of the framework, this Activity will
consume the Requirement Context Views as an input and produce the Vali-
dation Views (a combination of Stakeholder Scenario Views, System Scenario
Views and Constraint Validation Views).

● ‘Establish traceability’. The main aim of this Activity is to ensure that trace-
ability between all the Views has been defined. In terms of the framework, this
Activity will consume, potentially, all of the Views and will produce the Tra-
ceability Views.

● ‘Review’. The main aim of this Activity is to assess, consider and provide an
indication of how fit for purpose the Process Artefacts are. In terms of the
framework, this Activity will consume all of the Views that have been gener-
ated and will produce commented forms of the Views.

The way that these Activities are executed will depend on the way that the Process
is being used, according to the type of Project that it is being applied to. The basic
Activities will remain the same, but the techniques and Tools that are used to realise
each Activity may differ enormously – this will be discussed later in this chapter
along with the consideration of the use of the Process and the use of Tools, which
will be covered in more detail in Chapter 16.

The Information View defines all of the Process Artefacts and the relationships
and dependencies between them. Fortunately, this has already been done in great
detail in this book in the form of the ACRE Framework. This is because the ACRE
process is an information-driven process.

636 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 17.5 shows that there are six different types of Needs
Viewpoint in the ACRE Process: the ‘Source Element Viewpoint’, the ‘Require-
ment Description Viewpoint’, the ‘Definition Rule Set Viewpoint’, the ‘Require-
ment Context Viewpoint’, the ‘Context Definition Viewpoint’ and the ‘Validation
View’. One or more ‘Traceability Viewpoint’ shows the traceability between one or
more ‘Requirement Viewpoint’.

Each of these Viewpoints is shown in more detail on the ACRE Framework, as
shown in Figure 17.6.

The diagram here shows the main ACRE Framework. This Framework will
form the basis of the Process implementation by highlighting different sets of the
Views that may be implemented, depending on the scale and rigour of the Project.

17.3 Using the Process

The Process presented here may be used in a flexible way, in terms of the size and
rigour of the Project. The Process may be used at any level of abstraction of the
System and be used in a number of different ways. This section looks at three
examples of how the Process may be implemented, although it can be implemented
in many more ways.

VRV [Package] Viewpoint Relationships View [VRV - ACRE]

«viewpoint»
Requirement Context

Viewpoint

«viewpoint»
Requirement Description

Viewpoint

«viewpoint»
Definition Rule Set

Viewpoint

«viewpoint»
Context Definition

Viewpoint

«viewpoint»
Source Element Viewpoint

«viewpoint»
Validation Viewpoint

1..*

validates use case on

1

1..*

identifies sources of needs on

1..*1

defines context for

1 1..*

defines needs in context from

1..*

1..*

defines constraints on descriptions of needs on

1..*

Figure 17.5 The different types of Viewpoint in the ACRE process

The ‘Process’ 637

When using the Process for different levels of rigour or for different scale
Projects, the fundamental Process stays the same, but it is the number of Views
produced that changes and the way in which they are realised. The way in which
each view is realised will be discussed in more detail in Chapter 16 that discusses
the Tool aspect of MBSE.

The complete set of Views needed to perform a complete requirement
modelling exercise has been introduced previously in Chapter 9, but the number of
Views produced may vary depending on the scale or rigour of the Project.

When referring to the ‘scale’ of a Project, we are really talking about the size of
the Project in terms of the Resources. For example, a small Project may only last for a
single week, which may only leave a morning, or even a few hours, to carry out all the
requirements Activities. At the other end of the spectrum are Projects that may last
many years, and the requirements Activities themselves may initially take months or
even years, and then they will also be re-iterated throughout the Project.

When referring to the level of rigour of the Project, we are really talking
about the criticality of the Project or System. For example, the Project may
develop a System where, if it fails, lives are put at risk. Such safety-critical
Systems will have a high level of rigour compared to, say, a System that allows
someone to edit documents. Other Systems that have a high level of rigour include
mission-critical Systems (where the failure of the System may result in the failure of
some critical activity (such as the navigations system on a missile or spaceship), real-
time Systems (where the correctness of a result depends not only on the logical value
but also on the timing characteristics of the System) and business-critical Systems
(where the failure of the System may result in the Organisation going out of busi-
ness). The general term ‘‘critical system’’ will be used in this book to refer to any of
the earlier described types of System.

For the purposes of the discussion in this chapter, three levels of scale (small,
medium and large) and three levels of criticality (non-critical, semi-critical and critical)
will be considered. For the purposes of the discussion, these are described further as

● Small-scale Project – A Project involving one or very few people, with a time-
scale that is measured in days or weeks and a very limited budget. Small Projects
will often have very few Needs that are often poorly defined. Examples include
proof-of-concept Projects, small proposals and small bench top demonstrators.

● Medium-scale Project – A Project involving one or a few small teams of
people, with a timescale that is measured in months and a limited budget.
Medium-scale Projects will often have a small, but quite well-defined set of
initial Needs. Examples include many pure software Projects, and some man-
ufacturing design Systems.

● Large-scale Projects – A Project involving many teams of people, with a
timescale measured in years and with a large and complex budget. Large-
scale projects have a high number of Needs that, while being understood
individually, have many complex relations between them. Examples of
large-scale Projects include large complex programmes, Systems of Systems
and enterprise Systems.

638 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● Non-critical level – A Project where the correctness of operation of the
developed System has no implication on the environment or human life.
Examples include typical apps, office-type software and library-type Systems.

● Semi-critical level – A Project where the correctness of operation of the
developed System may have implication on the environment or human life,
depending on circumstances. Examples include design tools and satellite
navigation Systems.

● Critical level – A Project where the correctness of operation of the developed
System has a large implication on the environment or human life. Examples
include weapons Systems, direct control Systems, flight control Systems and
health Systems.

This section discusses which Views will be produced for three different types of
application of the Process, but the emphasis is on the description of the Activities,
rather than how each will be implemented – this is covered later in Chapter 16 in
the Process deployment section.

In order to illustrate the flexibility of the Process, three different approaches to
implementing the Process on different types of Project will be discussed, which are:

● Quick and dirty Process implementation – The Process is implemented
very quickly and informally with few Artefacts and limited configuration control.

● Semi-formal Process – The Process requires more rigour in its implementation,
requires good management and configuration control and requires traceability
between Artefacts and audit trails.

● Formal Process – The Process must be implemented as rigorously as possible
with a high degree of control, configuration, traceability and mathematical rigour.

The next three sections relate these different approaches to different scales and
levels of rigour. It should be noted that these are all provided for guidance only but
will make a good start point for your own Process implementation.

17.3.1 Example use – quick and dirty Process
The quick and dirty Process is often used on Projects that have a small-scale level
and that have a non-critical level of rigour.

For example, consider a Project that has a timescale of single week for a proof-
of-concept Project.

The diagram in Figure 17.7 shows the subset of Views that are realised when
applying a quick and dirty Process. The Activities in the Process may be executed
as follows:

● ‘Elicit requirements’. In this case, the Needs or Requirements would come from
informal sources, indicated here by the lack of a Source Element View.

● ‘Identify context definition’. In this case, only the Stakeholder Roles are being
considered, so the ‘System Context Definition View’ is missing.

● ‘Analyse requirements’. This will form the main Activity in this Process and
will involve creating a Context for each of the Stakeholder Roles that have
been identified.

The ‘Process’ 639

● ‘Define acceptance criteria’. Not performed formally, indicated by the lack of
Validation Views. In reality, however, many people may be considering vali-
dation as they are defining the Use Cases even if they are not documented.

● ‘Establish traceability’. Not performed formally, indicated by the lack of Tra-
ceability Views.

● ‘Review’. This may take the form of a simple, non-documented review where
the model may be annotated with review comments.

As can be seen, we are still following the bones of the ACRE Process here, albeit in
an informal way. Despite this informality, the type of Tools used to implement the
Process will have a bearing on how rigorous these Artefacts are.

One of the main points that is being made here is that even when there not is
being much time or many Resources available, it is still possible to adopt a standard
approach. Of course, the approach here is not formal, and the tools that are being
used may very well be pens and paper (PAPS), but the same fundamental approach
is still being enforced.

17.3.2 Example use – semi-formal Process
The semi-formal Process is typically used on small-to-medium Projects of a non-
critical nature.

The diagram in Figure 17.8 shows the subset of Views that are realised when
applying a semi-formal Process. The Activities in the Process may be executed as
follows:

● ‘Elicit requirements’ – In this case, the Needs or Requirements would come
from sources that can be formally identified and represented as the Source
Elements in the Source Element View.

«viewpoint»
Requirement

Description Viewpoint

«ontology element»
Need Description

«ontology element»
Context

«viewpoint»
Stakeholder Context
Definition Viewpoint

«ontology element»
Stakeholder Role

«viewpoint»
Requirement Context

Viewpoint

«ontology element»
Use Case

«ontology element»
Boundary

«viewpoint»
Context Definition

Viewpoint

1..*

1

1..*

is within

1

1

1..*1

1

defines context for

1

1..*

gives contextual
description of

1

1

1

{incomplete}

1

is related to

0..*

1..*

1..*

1

1..*

is outside

1

1..*

defines needs in context from

1..*

1

defines point
of view of

1
1

interacts
with

0..*

1..*

yields an observable
result to

1..*

Figure 17.7 Example of a quick and dirty Process

640 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

«ontology element»
Source Element

«viewpoint»
Requirement

Description Viewpoint

«ontology element»
Need Description

«ontology element»
Context

«viewpoint»
Stakeholder Context
Definition Viewpoint

«ontology element»
Stakeholder Role

«viewpoint»
Requirement Context

Viewpoint

«ontology element»
Use Case

«ontology element»
Boundary

«ontology element»
Scenario

«viewpoint»
Traceability Viewpoint

«ontology element»
Traceability Element«ontology element»

Traceability
Relationship

«viewpoint»
Context Definition

Viewpoint

«viewpoint»
Source Element

Viewpoint

«viewpoint»
Validation Viewpoint

1..*

defines needs in context from

1..*

1..*

1

1..*

1

1

defines point
of view of

1

1

is related to

0..*

{incomplete}

1..*1

1

1..*

1..*

1

interacts
with

0..*1..*

1

1..*

validates use case on

1

1..*

yields an observable
result to

1..*

1..*

identifies sources of needs on

1..*

1..*

is within

1

1..*

validates

1..*

1

defines context for

1

1..*

is outside

1

1..*

1

1

1

1

is traceable to

1..*

1..*

traces to

1..*

1..*

gives contextual
description of

1

Figure 17.8 Example of a semi-formal Process

● ‘Identify context definition’ – In this case, only the Stakeholder Roles are
being considered, so the ‘System Context Definition View’ is missing.

● ‘Analyse requirements’. This will form a major Activity in this Process and
will involve creating a Context for each of the Stakeholder Roles that have
been identified.

● ‘Define acceptance criteria’ – For each of the Use Cases, a number of Validation
Views will be generated. At the semi-formal level, these will be the Stakeholder
Scenarios and will describe the Stakeholder Role interactions with the System.

● ‘Establish traceability’ – This Activity will generate the Traceability Views. If
the modelling is carried out properly, then this should be a straightforward
Activity as all the traceability paths have already been identified in the model.

● ‘Review’ – This may take the form of a formal review meeting where the
ACRE Views that have been generated are assessed and commented on.

The Process here is starting to look a lot more like the full ACRE Process, with
many of the Views being generated.

17.3.3 Example use – formal Process
The formal Process will be executed on Projects that are critical in some way, for
example, on safety-critical Systems and for mission-critical Systems. The formal
Process may also be used on long-term Projects and Projects that have a high cost
associated with them.

The diagram in Figure 17.9 shows the subset of Views that are realised when
applying a semi-formal Process. The Activities in the Process may be executed as
follows:

● ‘Elicit requirements’. In this case, this will be a major activity. All the Source
Elements for the Needs will be formally identified and captured in the Source
Element View. The Needs or Requirements themselves now have some limita-
tions on the way that they can be defined as there is now the Definition Rule Set
View to consider that will define Rules for how the Needs can be described.

● ‘Identify context definition’. In the formal Process, this will usually involve
looking at both the Stakeholder Context Definition View and the System
Context Definition View.

● ‘Analyse requirements’. There will be a large number of these Views gener-
ated, and, of course, the more Views that there are, the more analyse that will
be needed to be carried out.

● ‘Define acceptance criteria’. In this case, this will be a massive undertaking, as
all three levels of validation Scenarios will be considered.

● ‘Establish traceability’. This Activity will generate the Traceability Views. If
the modelling is carried out properly, this should be straightforward if a very
time-consuming Activity as all the traceability paths have already been iden-
tified in the model.

● ‘Review’. This will involve many formal reviews with different groups of
Stakeholder Roles.

642 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

«ontology element»
Source Element

«viewpoint»
Requirement

Description Viewpoint

«ontology element»
Need Description

«viewpoint»
Definition Rule Set

Viewpoint

«ontology element»
Rule

«ontology element»
Context

«viewpoint»
Stakeholder Context
Definition Viewpoint

«viewpoint»
System Context

Definition Viewpoint

«ontology element»
Stakeholder Role

«ontology element»
System Element

«viewpoint»
Requirement Context

Viewpoint

«ontology element»
Use Case

«ontology element»
Boundary

«ontology element»
Scenario

«viewpoint»
Traceability Viewpoint

«ontology element»
Traceability Element«ontology element»

Traceability
Relationship

«viewpoint»
Context Definition

Viewpoint

«viewpoint»
Source Element

Viewpoint

«viewpoint»
Validation Viewpoint

1..*1

1..*

is outside

1

{incomplete}

1

1

1..*

yields an observable
result to

1..*

1..*
1

1

is traceable to

1..*

1

is related to

0..*

1..*

1..*

1

1..*

traces to

1..*

1

interacts
with

0..* 1..*

1

1

interacts
with

1..*

1..*

defines needs in context from

1..*

1

defines point
of view of

1

1..*

1..*

1

1

defines context for

1

1..*

gives contextual
description of

1 1..*

constrains

1..*

1..*

identifies sources of needs on

1..*

1..*

is within

1

1..*

validates

1..*

1 1..*

1

1..*

validates use case on

1 1..*

defines constraints on descriptions of needs on

1..*

1..*

1

1

is related to

0..*

Figure 17.9 Example of a formal Process

The formal Process represents all of the Views that can be considered in the ACRE
Process.

17.3.4 Summary of process implementation
Table 17.1 summarises the discussions from the last few sections.

Again, it should be stressed that the information provided here is for guidance
only but can be used as an excellent start point for deciding the strategy and
planning your own Process implementation.

Chapter 15 is concerned with Tools and has a discussion that is very closely
related to this section, where Table 17.1 will be re-presented with examples of
which Tools can be used for different implementations.

17.4 Deploying the Process

So far, we have discussed the Process itself and how the Process can be instantiated,
depending on the level of scale or rigour required by the System. This is, of course,
essential, but all of this great work can still come to nothing if the Process is not
deployed effectively. Deployment is not just a matter of providing people with a
Process manual but is a complex area in itself where a number of Needs must be
considered. These Needs are summarised by the breakdown of the ‘Deploy process’
use case on the diagram in Figure 17.10.

Each of the use cases in Figure 17.10 provides an important discussion point
concerning the general issue of Process deployment. Each of these will now be
discussed in more detail.

17.4.1 ‘Make process available’
The Process must be made available to each Person who is to use the Process. In
the past, Process documentation and information has taken the form of large,

Table 17.1 Summary of Process implementation

Type of
implementation

Scale Rigour Typical views

Quick and dirty Small Non-critical Requirement Description View,
Requirements Context View,
Context Definition View

Semi-formal Small,
medium

Non-critical,
semi-critical

Source Element View, Requirement
Description View, Requirements
Context View, Context Definition
View, Validation View, Traceability
View

Formal Large Semi-critical,
critical

All views

644 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

printed and often very heavy documents, famous for gathering dust on shelves. In
today’s business, web-based approaches (whether they are intranets or the Inter-
net) are far more efficient ways to store, update and disseminate information
among workers.

There are other issues that come into play at this point, such as security issues and
who should be permitted to have availability of different Processes. Some Processes
may be proprietary or commercially sensitive, so it may be necessary to restrict avail-
ability. For example, it is a good idea, in principal, to make all of your Processes
publically available so that people can have confidence in your approach. However, for
many service-based companies, this can be a bad idea as it makes the Capability of the
business open to third parties who may steal or unscrupulously copy the Process.

Another example of not allowing widespread availability of a Process may
relate to security. For example, a lot of government Organisations may be con-
cerned with matters that apply to national security such as defence, intelligence and
counter-terrorism. In such cases, again, it may be necessary to restrict the avail-
ability of Process information.

This point also comes into play when it comes to audits and assessments as it is
impossible to perform either of these without having free access to the Process.

«concern»

Deploy process

«concern»

Ensure awareness of
process

«concern»

Contribute to wider
initiative

«concern»

Make process available

«concern»

Make process
accessible

«concern»

Provide feedback
mechanism

«concern»

Ensure appropriate
presentation

«concern»

Ensure consistency

«concern»

Ensure value of process

«include»

«include»

«constrain»

«constrain» «include»

«constrain»

«constrain»

«constrain»

Figure 17.10 Breakdown of the ‘Deploy process’ use case

The ‘Process’ 645

17.4.2 ‘Make process accessible’
The medium used to convey the information must be the one that is accessible to all
relevant users. Relating back to the previous point, the end users must be able to
access the information easily.

It is possible to have a Process that is ‘‘available’’ to Process users, yet at the
same time is not ‘‘accessible’’. It may seem quite a safe assumption that, for
example, everyone has access to a web browser, but not everybody has access to the
Internet. In many cases this may be because of security issues, such as no Internet
connection at all or that a limited-access intranet is being used. Another example of
Process users not having access to the Internet is for field engineers who may be
working in remote locations where there is simply no access to a network. In such
cases, it may be necessary to download Process information to portable devices,
such as tablets or laptops. In extreme cases, one may even be forced to use physical
media, such as paper, and maybe go to such lengths as providing laminated sheets!
(See Appendix B and fire up the laminator.)

Another issue to consider is that if a third-party product is being used as part of
the deployment, then licencing will become an issue. If the Processes are deployed
using a bespoke Process tool, then is it necessary to hold a licence for each end
user? If this is the case, the cost of purchasing the licences may rocket and there
may also be a danger of locking into a single Tool.

17.4.3 ‘Ensure awareness of process’
People must be aware that the Process exists. There is no point having the best
Process in the world if nobody knows anything about it.

The classic problem of having a printed manual that nobody knows about is
just as applicable in the digital age as it was decades ago. You may have a beau-
tifully defined Process that is available and accessible to all, but it is essential that
people are aware of the Process in the first place.

This is a problem that is particularly prevalent in large Organisations where
there are a multitude of Processes in many forms (Standards, procedures, work
instructions, etc.). Rather than people not being aware that a Process exists, the
same problem may manifest itself because there are simply too many Processes, or
there is too much Process information available to people.

It is essential that people know not only that a Process exists but also scope of
the Process and the Context that it is intended to be used in. This information will
exist if the Process has been modelled properly, but, again, this has to be conveyed
to the end users of the Process.

17.4.4 ‘Ensure appropriate presentation’
The format of the presentation of the Process must be one that people can under-
stand. This may not necessarily be the same as the SysML modelling that was used
to engineer the Process.

When developing any System, the techniques that are used to develop the
Processes are not necessarily what will be used to communicate the Process

646 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

information to the end users. Therefore, the Processes may be developed using a
structured approach (such as the ‘‘seven views’’) and using a standard modelling
notation (such as the SysML), but the final output may look very different.

Many people, especially non-technical folk, would be horrified to see the final
Process definition in SysML, and many prefer text descriptions and simplified flow
charts. The important point here is to ensure that the final format of the Process
deployment is one that the target audience is both familiar and comfortable with. If
this means text only, then so be it! If this means a less rigorous notation, such as
flow charts, then so be it! If this means drawing odd symbols and colouring them in,
then so be it! It is essential that the process information is communicated as effi-
ciently and effectively as possible.

A word of caution here, however, as any format may be chosen, but this must
be consistent with the Process model. Any alternate format or presentation must be
treated as another view on the model rather than a stand-alone interpretation.
Remember, it is the approach (‘‘seven views’’) and the notation (SysML) that
provide the rigour and confidence that the Process is correct, the medium of com-
munication is irrelevant, proving it forms part of the model.

17.4.5 ‘Ensure value of process’
The use of the Process should make people’s lives easier. This applies on two levels –
both in terms of the added value of the Process and in terms of the ease of use of
the Process.

One of the reasons why the whole area of Process gets a bad press is that on the
occasions when people have been exposed to Process, the whole activity gets failed.
One of the fundamental reasons behind this failure is not understanding the need for
the Process in the first place. Chapter 7 discusses this in more detail, but, essen-
tially, by ensuring that the Needs for the Process have been captured effectively,
this can be avoided.

It must be also very easy to access the information. In fact, it should involve
the minimum of effort and be less hassle than opening a book. The whole activity of
accessing and navigating the Process should involve as few ‘‘clicks’’ as possible
and be intuitive and quick. This may seem a little extreme, but if the information is
very easy to access, people will use it – if not, then they will not.

17.4.6 ‘Provide feedback mechanism’
The deployment should be a two-way activity in terms of information flow. Any
Process will constantly evolve as time goes on and an essential part of this is being
able to obtain feedback from the end users of the Process.

The application of Process modelling techniques and deployment techniques are
very important, but there will always be room for improvement in the Process. This
may not necessarily be caused by errors in the Process but may simply reflect changes
in the working environment, changes in Products or Services, changes in Tools,
software changes, etc. The key point here is that the world is apt to change, and
providing an effective feedback mechanism is one way to begin to address this issue.

The ‘Process’ 647

17.4.7 ‘Ensure consistency’
The deployment should be consistent with the underlying Processes. This could be
in terms of the Project management or other Processes that are being used.

In too many cases, it can be seen that an excellent job has been done of
defining a Process, but then this flies out of the window when the Process is
deployed. This may be due to complete ignorance of the underlying Process, mis-
interpretation of the Process model, lack of interoperability between Tools, etc.

The deployment of the Processes should be carried out in a structured and
consistent fashion – in other words by following a Process.

17.4.8 ‘Contribute to wider initiative’
The deployment should contribute to wider initiatives within the enterprise. Any
work involving Processes will be an ongoing activity if only for the simple fact that
the world turns and things change. Therefore, Processes will need to be checked on
an ongoing basis to ensure that they are fit for purpose. Any MBSE initiative will
inherently include a large element of Process, so it is essential that the Processes are
developed and deployed effectively.

The Process activity may involve contributing to a continuous Process
improvement, such as Capability Maturity Model Integrated (CMMI) and ISO 15504.
Of course, this should fall under the umbrella of MBSE, but in many organisations,
Process improvement activities will be seen as being separate from MBSE.

The use cases described here are not intended to be exhaustive but, rather, to
stimulate thought-about Process deployment. These use cases should be used as a
start point for defining your own needs for Process deployment.

17.5 Compliance mapping with best practice

One of the constraints that were identified as part of the approach in Figure 17.2 was
to ensure that the Process complies with best practice in the form of Standards, best
practice models, etc. This section provides a simple example of how traceability back
to source Standards, best practice models and other Processes may be defined.

The Standard that is used as a basis for this example is ISO 15288, ‘Systems
and software engineering – System life cycle processes’ [3].

The approach taken to establish this mapping is the one used in the ‘‘seven
views’’ approach to Process modelling as described in Chapter 7.

Before any of the Processes or Activities in the Process can be compared, it is
essential that we can ensure that the two Processes can ‘‘speak’’ to one another. This
requires making sure that the concepts and terms used in both the source Standard
(ISO 15288) and the target Process (ACRE) can be mapped together. When using the
‘‘seven views’’ approach, this entails comparing the Ontologies in the Process Struc-
ture Views (PSVs) for each Process. This can be seen in the diagram in Figure 17.11.

Figure 17.11 shows how the concepts and terms used in both Processes
compare with one another. This is achieved by comparing and contrasting the

648 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

«ontology element»
Process

«ontology element»
Process Purpose

«ontology element»
Outcome

«ontology element»
Activity

«ontology element»
Task

«ontology element»
Process Group

«ontology element»
ISO 15288:2015

«ontology element»
Resource 1..*utilises/consumes

1..*

1

describes goals of

1

1..*

contributes to

1..*

1..*

1..*

1..* 1..*

4

«ontology element»
Activity

«ontology element»
Artefact

«ontology element»
Process

«ontology element»
Process Execution

Group

«ontology element»
Service

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Process Group

1..*

1..*

is executed during

1

1..*

1

is responsible for1..*

1..*

realises

1..*

1..*

1

1

consumes1..*

1..*produces/consumes

1..*

1..*

Figure 17.11 Mapping between two Process Ontologies using Process Structure Views

«process»
Stakeholder Needs and Requirements Definition process

«outcome»
Any enabling systems or services needed for stakeholder needs and requirements are available
Constraints on a system are identified
Critical performance measures are defined
Required characteristics and context of use of capabilities and concepts in the life cycle stages, including
Stakeholder agreement that their needs and expectations are reflected adequately in the requirements is
Stakeholder needs are defined
Stakeholder needs are prioritized and transformed into clearly defined stakeholder requirements
Stakeholders of the system are identified
Traceability of stakeholder requirements to stakeholders and their needs is established

properties
 : Analyse stakeholder requirements
 : Define stakeholder needs
 : Develop the operational concept and other life cycle concepts
 : Prepare for stakeholder needs and requirements definition
 : Transform stakeholder needs into stakeholder requirements

«process»
ACRE Process

«artefact»
Context definition view: Context Definition Viewpoint
Definition ruleset view: Definition Rule Set Viewpoint
Need: Need
Requirement description view: Requirement Description Viewpoint
Requirements context view: Requirement Context Viewpoint
Source element: Source Element
Source element view: Source Element Viewpoint
Traceability view: Traceability Viewpoint
Validation view: Validation Viewpoint

«activity»
analyse needs()
assemble source information()
define acceptance criteria()
elicit needs()
establish traceability()
identify context definitions()
review()

Figure 17.12 Mapping between Processes

Ontologies, or PSVs, for each Process and drawing up a mapping between them.
This activity can then be repeated at a lower level by comparing the Processes, as
shown in the diagram in Figure 17.12.

The diagram in Figure 17.12 shows the PCVs for each Process and this then
becomes the basis for a mapping exercise between the two. Based on the compar-
ison of these two Views, it is now possible to draw up a table that maps between the
Activities and Tasks in ISO 15288 and the Activities in ACRE. The approach taken
to define the mapping is the same as that introduced in Chapter 7 and that has its
Process set defined in Appendix F.

The mapping shown in Table 17.2 shows not only the mapping for the Activities
but also the specific Views that are generated by each Activity. This is provided
purely to show how the mappings can be tailored to show indirect mappings, in this
case, from the Standard to the Process Artefacts, by simply adding a new column.

Table 17.2 Compliance mapping between ISO 15288 and ACRE

ISO 15288 ACRE

Stakeholder Requirements Definition Process ACRE Process ACRE View

Activity Task

Elicit stakeholder
requirements

Identify stakeholders Identify context
definitions

Stakeholder
Context
Definition View

Elicit stakeholder
requirements

Elicit requirements Requirements
Description
View

Define stakeholder
requirements

Define solution
constraints

Analyse
requirements

Process Context
View

Define activity sequences Define acceptance
criteria

Validation Views

Identify user–system
interactions

Define acceptance
criteria

Validation Views

Specify requirements as
functions relating to
critical qualities

Analyse
requirements

Process Context
View

Analyse and main-
tain stakeholder
requirements

Analyse elicited
requirements

Analyse
requirements

Process Context
View, Context
Definition Views

Resolve requirements
problem

Analyse
requirements

Process Context
View

Feedback analysed
requirements

Review All views

Confirm stakeholder
requirements

Review All views

Record stakeholder
requirements

Baseline All views

Maintain requirements
traceability

Baseline Traceability Views

The ‘Process’ 651

This can also be taken a step further as a mapping between Students Managing
Projects Intelligently (STUMPI) and ISO 15288 already exists (see Chapter 7).
Therefore, we can very easily map between the three sources: STUMPI, ISO15288
and ACRE. These two sets of mapping may now be brought together, as shown in
Table 17.3.

It is often desirable to demonstrate compliance to more than one source Stan-
dard that can add a large amount of complexity to the problem. This complexity,
however, can be minimised by effectively developing new models of Standards or,
even more preferable, reusing existing models for the source Standards. Indeed,
part of the attraction of employing an MBSE approach is the idea of being able to
reuse models or their parts. Therefore, all that is required is a set of source

Table 17.3 Compliance mapping with ACRE Views

ISO 15288 ACRE

Stakeholder Requirements Definition Process ACRE Process STUMPI Process

Activity Task

Elicit stakeholder
requirements

Identify stakeholders Identify context
definitions

Identify
stakeholders

Elicit stakeholder
requirements

Elicit requirements Elicit requirements

Define stakeholder
requirements

Define solution constraints Analyse
requirements

Analyse
requirements

Define activity sequences Define acceptance
criteria

Define acceptance
criteria

Identify user–system
interactions

Define acceptance
criteria

Define acceptance
criteria

Specify requirements as
functions relating to
critical qualities

Analyse
requirements

Analyse
requirements

Analyse and main-
tain stakeholder
requirements

Analyse elicited
requirements

Analyse
requirements

Analyse
requirements

Resolve requirements
problem

Analyse
requirements

Analyse
requirements

Feedback analysed
requirements

Review Review

Confirm stakeholder
requirements

Review Review

Record stakeholder
requirements

Baseline Produce stake-
holder require-
ments document

Maintain requirements
traceability

Baseline Produce stake-
holder require-
ments document

652 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Standards or references that are related to MBSE that can be used to show further
compliance. By sheer non-coincidence, this book already contains a rich source of
models that represent these sources. In Chapter 3, the MBSE Ontology was
developed, and this was done partly by modelling existing sources of information
and then abstracting the MBSE Ontology from them; therefore, we already have a
ready store of source models. Indeed, it is possible to map between any or all of the
information sources that were introduced and referenced in Chapter 3, which is
exactly the approach that was taken to define the MBSE Ontology.

17.5.1 Automated compliance
When a true MBSE approach is taken to Process modelling that is then imple-
mented using sharp Tools, then it is possible to automate the demonstration of
compliance between Processes.

This actually becomes a relatively simple matter, provided that Traceability
Views can be set up and then automated in the tool. To realise this, Traceability
Views are set up between the MBSE Process model and any source Process
models. In the example presented here, we mapped between ISO 15288 and the
ACRE Process; therefore, a set of Traceability Views would be set up between
the two that is based on the compliance exercise that was presented in the
example.

On real Projects, all Artefacts that are produced can be easily shown to trace
back to the Process, and then compliance tables, charts, matrices, etc. can be
automatically produced by the Tool that can be used as evidence for part of an audit
or assessment.

This is another example of a true benefit of MBSE, but one that requires
People, Process and Tools.

17.6 Summary

This section has shown how the ACRE Process can be used for real-life Projects
and situations. This entailed the following:

● The use of the Process. It is important that the Process is flexible in terms of its
scale and rigour and three examples of how the ACRE Process may be used
were shown, along with which Views would be necessary. Again, these three
Views are for information only based on previous experience and do not feel
limited to them.

● The deployment of the Process. The Process may be very well defined, but if it
is not deployed correctly, then the Process will fail. A number of key char-
acteristics for Process deployment were discussed.

So far, the People and Process aspects of the ACRE have been discussed, which
leaves the Tool aspect, which will be discussed in Chapter 16.

The ‘Process’ 653

References

[1] Holt J. ‘A Pragmatic Guide to Process Modelling’. 2nd edition. Swindon, UK:
BCS Publishing; 2009.

[2] International Council on Systems Engineering (INCOSE). ‘INCOSE Com-
petencies Framework, Issue 2.0’. Ilminster, UK: International Council on
Systems Engineering (INCOSE); 2006.

[3] ISO/IEC. ‘ISO/IEC 15288:2008 Systems and Software Engineering – System
Life Cycle Processes’. 2nd edition. Geneva, Switzerland: International Orga-
nisation for Standardisation; 2008.

654 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Chapter 18

The ‘Tool’

18.1 Introduction

This chapter looks at the pragmatic issues involved when trying to realise the
model-based Systems Engineering (MBSE) approach in this book in any organi-
sation or business. In particular this chapter looks at how it is possible to ensure that
effective Tools are in place.

This chapter is clearly heavily related to Chapters 14 and 15 and, as such, should
not be read in isolation, but should bear in mind the totality of this part of the book.

By way of a recap, the diagram in Figure 18.1 shows the three main elements
that must be in place in order to realise successful MBSE, in particular:

● The ‘Person’, by which we mean competent people, rather than just any
people.

● The ‘Process’, which is in place in order to realise the approach.
● The ‘Tool’, which may range from a whiteboard or log book, to standard office

tools, to a full-blown automated toolset, to any combination of these.

«ontology element»
Process

«ontology element»
Person

«ontology element»
Tool

1..*

drives

1..*

1..*

enables

1..*

Figure 18.1 Pragmatic issues with implementing the approach

In order to understand the basic needs for providing effective Tools, the ‘Tool
Context’ shown in Figure 18.2 was generated.

In order to realise the full benefits of MBSE, ‘‘sharp’’ tools are essential
(‘Provide tools’). There are four main issues that will be discussed in this section:

● Considering the types of Tools available (‘Identify tool’). Before any sort of
Tool selection may be performed, it is important to identify the types of Tools
that may be applicable to MBSE whether these are individual Tools (‘ . . . for
individual tool’) or Tool chains (‘ . . . for tool chains’).

● Understanding the need for the Tool (‘Understand need for tool’). This
includes considering how the Tools will be used (‘Understand use’) and what
the major constraints on its use will be (‘Understand constraints’).

● Using Tools with existing processes (‘Ensure compatibility with process’).
This involves looking at which main Views in the Process each Tool will be
used for, as well as how the Tools will be used in conjunction with one another.

● Considering Tool selection (‘Select tool’). When the Tools have been identi-
fied and their usage is understood, then it is important to carry out a Tool
selection exercise that will look at various aspects of each Tool, measure them
and then use the results as a basis for deciding between Tools.

Each of these four issues will be discussed in detail in the following sections.

Tool Context

«capability»
Provide tools

«requirement»
Identify tool

«requirement»
.. for individual

tools

«requirement»
.. for tool chains

«requirement»
Understand need for

tools

«requirement»
Understand use

«requirement»
Understand
constraints

«requirement»
Ensure compatibility

with process

«requirement»
Select tool

«stakeholder role»
Tool Vendor

«stakeholder role»
Standard

«stakeholder role»
Supplier

«constrain»

«include»

«include»

«include»

«include»

«include»

Figure 18.2 Tool Context

656 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

18.2 Considering the types of Tools available

There are many different types of Tools that can be used for MBSE that must be
considered when performing any Tool selection. It is impossible to look at specific
Tools within the context of a book like this, so general types of Tools will be
considered. It should also be borne in mind that for successful MBSE, we are not
just looking at modelling Tools, but must also consider any Tool that may con-
tribute to or support the MBSE activities.

A taxonomy of basic Tool types is shown in the diagram in Figure 18.3.
The diagram in Figure 18.3 shows a basic taxonomy of different types of

‘Tool’ and their related capabilities, shown by ‘Tool Capability’. This is by no
means intended to be exhaustive, nor is it intended to restrict the scope of Tools that
may be used for MBSE, but it reflects Tools that may be used to support activities
that are discussed in this book.

The concept of a ‘Tool’ has two basic types: ‘Tool Chain’ and ‘Individual
Tool’, which will be discussed in more detail in the following sections.

«block»
Tool

«block»
Tool Chain

«block»
Individual Tool

«block»
Tool Capability

«block»
PAPS

«block»
Automated

«block»
Closed

«block»
Open

«block»
Heterogeneous

«block»
Integrated

«block»
Office Capability

«block»
Word Processor

«block»
Spreadsheet

«block»
Drawing

«block»
Modelling Capability

«block»
Visual Modelling

«block»
Mathematical

Modelling

«block»
Support Capability

«block»
Requirement
Management

«block»
Configuration
Management

«block»
Document Generation

«block»
Project Management

«block»
Data Transformation

1

exhibits

1..*

Figure 18.3 Taxonomy of types of ‘Tool’ and related capabilities

The ‘Tool’ 657

18.2.1 The ‘Individual Tool’
This section discusses the two basic types of individual Tools that are considered in
this book – the Pen And Paper System (PAPS) Tools and the automated Tools.

18.2.1.1 The ‘PAPS’ Tool
The PAPS is the oldest and most widely used Tool and still one that is used by
almost every modeller today and the only Tool that is compatible with every other
Tool on the market. The so-called PAPS Tools are available to anyone and every-
one, have the advantage of being free (if you own a writing instrument and writing
surface), are eminently portable and run on a number of different platforms –
mainly paper and whiteboards.

The PAPS Tools are often overlooked or dismissed by many people, but they
form a very important and necessary part of any professional systems engineer’s
toolkit. Regardless of the automated Tools available, the use of PAPS should be the
first of the Tools touched by anyone until they have thrashed out their basic ideas
and concepts.

With the advances in technology over the last few years, the PAPS tools are
now no longer confined to their original pads of paper or whiteboards. The ubiquity
of smartphones, smart boards and automated pen and paper pads means that PAPS
Tools can truly form part of an MBSE toolset. One of the problems with a PAPS
system has always been the reliance on pieces of paper, but this is no longer the
case because as long as whatever is written can be captured digitally, and then it can
become a configurable item. These configurable items may then be imported into
automated tools and form part of a formal audit trail.

The PAPS Tools may be used to realise any or all of the Views required by any
approach to MBSE.

Having said all this, it should also be borne in mind that in all but the simplest of
Projects (see small-scale and non-critical Projects discussed in Chapter 15) a PAPS
Tool alone is not sufficient. For any real-life Projects of any size, the PAPS Tools are
perfect, and indeed recommended, for early brainstorming sessions; however, they
fall down heavily when it comes to model management and automation.

Just to emphasise this last point – automated Tools are essential, but so is the
PAPS Tool and its use should not be dismissed.

18.2.1.2 The ‘Automated Tool’
When the term ‘Automated Tool’ is used, it is referring to software-based Tools
that are intended to increase the productivity of the users. However, depending on
the type of automated Tools used, the benefits will vary enormously. This will be
discussed in more detail when Tool capabilities are considered.

18.2.2 The ‘Tool Chain’
A ‘Tool Chain’, in the context of this book, may be thought of as a set of one or
more ‘Individual Tool’. There are four types of Tool Chain that have been identi-
fied in Figure 18.3, which are discussed in the following sections.

658 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

18.2.2.1 The ‘Closed’ Tool Chain
This term is used to refer to a set of Tools that can only be used in conjunction with a
limited set of other Tools, usually from the same Tool provider. Closed Tool Chains
comprise Tools that have bespoke or proprietary interfaces that cannot be accessed
by all Tools, only a limited set. An advantage of the Closed Tool Chain that is often
cited is that the Tools will integrate in a seamless fashion as they are produced by the
same developer. In reality, however, this is often not the case. Increasingly it can be
seen that the number of Tool providers is shrinking, which is typically not due to
companies going out of business, but more usually because of company acquisition.
What must be considered is that if one Tool vendor buys another, can it be assumed
that these Tools will be compatible? In some cases, these are Tools that have his-
torically been competitors, which, suddenly, become ‘‘seamlessly’’ integrated. Also,
just because Tools are produced by a single vendor, it does not mean that the Tools
have been developed by the same teams or even following the same Processes. It is
quite common to outsource development activities to other companies; so again, the
claim of seamless integration must be questioned.

18.2.2.2 The ‘Open’ Tool Chain
This Tool Chain is used to refer to a set of Tools that can be used, potentially, with
any other Tool. Open Tool Chains comprise Tools that have open interfaces that are
defined according to some sort of accepted norm or open Standard, and that may be
accessed by any other Tool that complies with this Standard. This is a very inter-
esting area and is surprisingly complex. One obvious way to achieve this integra-
tion is through the use of data exchange Standards but one has to consider only the
number of these Standards and their history, which is often long and complex, to
see that this can be a potential minefield.

Another factor that needs to be considered is the underlying technology. There
are two main technological approaches that are adopted by most Tool vendors,
either heterogeneous or integrated approaches (discussed in the next two subsec-
tions), so the question becomes pertinent as to which to choose. Are you going to
end up being limited by the choice of Tools by this technology?

18.2.2.3 The ‘Heterogeneous’ Tool Chains
This term is used to refer to Tools that exist separately and are not able to com-
municate with other Tools without external help. Heterogeneous Tool Chains
comprise Tools that may be from different or the same manufacturers but that
cannot be easily integrated when they first come ‘‘out of the box’’.

18.2.2.4 The ‘Integrated’ Tool Chains
This term is used to refer to a set of Tools that exist separately but that can work
together with no external help. Integrated Tools Chains comprise Tools that may be
from different or the same Tool providers, but that will work together when fresh
‘‘out of the box’’.

Just to further complicate matters, these different types of Tool Chain may be
mixed. For example, it may be possible that a Tool Chain exists that is both closed

The ‘Tool’ 659

and integrated, another that is open and integrated, another that is open and het-
erogeneous and so on. This often results in data transformation Tools being
necessary to enable the integration of Tools in these Tool Chains.

Now that the different types of Tools have been discussed, it is still not pos-
sible to choose between them, as it is first necessary to look at what capabilities
may be offered by the various tools.

18.2.3 ‘Tool Capability’
This section looks at the different types of ‘Tool Capability’ that are exhibited by
Tools. The concept of the Tool Capability has been split from the tool as many
Tools are now very complex and offer many different types of capability. It would
be difficult to classify types of Tool based on their capabilities as the mixture is so
large and varied.

18.2.3.1 ‘Office Capability’
This capability is provided by standard office-based software that is available for
free (or as good as free) in most Organisations. Office tools, such as word pro-
cessors, spread sheets and drawing packages (even within other packages, such as
presentation Tools) may be used to realise any or all of the Views required by any
approach to MBSE. In an ideal world, people would use true modelling Tools but
the reality is that many people rely on office-based Tools. Depending on the type of
Project, this may be adequate. Like any Tool, it is important to understand the use
that the Tool will be put to, but in some cases these somewhat primitive Tools
(from a modelling point of view) may be perfectly adequate.

Word processors may be used for just about any View but, in particular,
descriptive Views. A good example of this would be the Requirement Description
View in the Approach for Content-based Requirements Engineering (ACRE) Pro-
cess. Spread sheets are often used for management and Views related to trace-
ability. An example of this would be the Traceability View in the ACRE Process.

Caution must be exercised when considering drawing capability as it can often
be mistaken for modelling capability. Most people will have access to a basic
drawing package, which may be a specific drawing Tool or may be an integral part
of a presentation program or word processing application. When using established
notations for modelling (such as SysML) it actually means that just about any Tool
that offers basic shape-drawing capability and that can display ASCII text char-
acters can visualise any diagram in the notation. Many dedicated drawing packages
will come out-of-the-box with a set of SysML templates, but this does not mean
that it is capable of SysML modelling. In order to realise many of the benefits of
MBSE (automation, checking, etc.) any modelling capability must have an
‘‘understanding’’ of the notation in the form of an underlying meta-model that can
be used as a basis for MBSE activities.

Drawing capability may be used to visualise any graphical Views in MBSE
but remember that what comes out of a drawing package will be pictures rather than
a model.

660 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

18.2.3.2 ‘Support Capability’
This category of capability contains many, many types. Only a few are discussed
here, but this should be enough to provide a general idea of the sort of capability
that may be used for MBSE.

One of the most widely used support Tools is one that provides the ‘Requirements
Management’ capability. This is a capability that is usually quite simple in what can be
done, yet very powerful in terms of its use and benefits. What this capability allows is
the management and description of the Requirements in a System and the definition of
relationships between them. This capability does not allow the modelling of the
Requirements in a System. This is a simple yet much misunderstood belief about what
this capability offers. Requirements management is often seen as a silver bullet for
requirements engineering, so caution must be exercised that such Tools are being used
properly. It is a myth that good requirements management promotes the understanding
of Requirements – it does not. Many such capabilities that relate to Requirements are
limited to requirements management, which is an essential part of MBSE but does not
account for all Requirements activities.

Another type ‘Support Capability’ is that of ‘Document Generation’. Such
capability is often offered as part of, or as a bolt-on, to modelling Tools but may
also be seen as stand-alone. One of the benefits of MBSE is that it is an approach
that can increase productivity and save vast amounts of time. One of the ways that
these savings can be realised is through effective use of document generation.
When any MBSE Process is understood, then it is possible to define templates for
various Artefacts, all of which can be derived from the model. Document genera-
tion allows the user-friendly face of MBSE (text!) to be generated from any model.
Interestingly, it is often the document generation capability that grabs the attention
of senior management as it can be demonstrated to show an immediate and often
quite striking example of automation and, hence, time saving. In order to sell
MBSE to systems engineers, the benefits of automated consistency checks, con-
fidence, integration, etc., are attractive. For many people who hold the purse
strings, the fast generation of documents is very attractive.

While on the subject of managers, the next type of capability to be considered
is ‘Project Management’. There are only a few points to make here as most people
are familiar (for better or worse) with Tools that offer Project scheduling and
monitoring capabilities. Perhaps the most important point from an MBSE point of
view is the compatibility with the Processes that exist in the business. In Chapter 8,
we discussed how the Process should relate directly to the Project schedule and this
point cannot be emphasised enough – for effective Project management, the Pro-
cesses must form an inherent part of any schedules or plans. Following on from
this, of course, comes the issue of Tool integration, which brings us rather neatly to
the next type of Tool on the list.

The availability of the ‘Data Transformation’ capability is essential for any
MBSE activity that uses multiple Tools from multiple vendors. It should be clear
from looking at the plethora of capabilities that may be required that Tools inte-
gration may very well be an issue for many people. This is because, in reality, most
Organisations will use a toolset that is made up of different Tools. As a result of

The ‘Tool’ 661

this, there is often a need to be able to use data in more than one Tool that will,
typically, require the use of a Tool to transform data from a format used in one Tool
to a format used in another one. This may take the form of a dedicated Tool or, in
some cases, a Tool may provide technology to allow data transformation with
another Tool, such as an application programming interface.

The final type of capability under the umbrella of support Tools is ‘Config-
uration Management’. In terms of MBSE, the capability made available by a good
configuration management Tool is essential. One of the challenges of implementing
MBSE in any business is that of controlling and managing the model and this is
why the configuration management Tool is so important. Any model will evolve
over time and may very well have multiple points where the model diverges down
different paths. On larger Projects there will be a need for multiple users, multiple
teams and the ability to work in different locations. A good configuration man-
agement capability will address these issues.

18.2.3.3 ‘Modelling Capability’
The capabilities associated with modelling Tools differ enormously and these will
often be the deciding factors when deciding between Tools. Indeed, it will come as
no surprise that modelling capability is arguably the most important capability of an
MBSE tool. The modelling capability is divided into two types – visual and
mathematical modelling.

When we refer to ‘Visual Modelling’ we are really concerned with capability
that allows a diagrammatic representation of a View. There is often some confusion
between modelling and drawing, but the distinction is quite clear and simple.
Modelling Tools produce models, and drawing Tools produce pictures. The dif-
ferences between modelling and drawing pictures are discussed elsewhere in this
book. When we refer to ‘Mathematical Modelling’ we are really concerned with
Tools that allow formal specifications (such as formal methods) or mathematical
analysis or reasoning to be performed. A mathematical modelling capability is
really very important when considering critical Systems. Many Tools will focus on
offering either visual modelling or mathematical modelling. Generally speaking,
visual modelling tools are not good at mathematical modelling and, likewise,
mathematical modelling Tools are not very good as visual modelling, so, in many
cases, different Tools may be required to allow both capabilities.

18.2.4 Summary
This section has presented an overview of different types of Tools in two broad
categories: Individual Tools and Tool Chains. The two main implementations of
these Tools were discussed as being Automated Tools, which is what most people
think of, and also the idea of the PAPS Tool was introduced, which is still judged as
essential to successful MBSE.

A number of different Tool Capabilities were discussed that may be exhibited
by Tools.

The next section looks at how the type of Tools introduced in this section may
be used to realise different Views in a Process.

662 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

18.3 Understanding the Need for the Tool

This section presents some examples of how the various types of Tools and Tool
Chains may be used to realise an MBSE Process. The example Process chosen is
the ACRE Process that was used in the previous chapter and is fully defined in
Chapter 9 and Appendix F.

The example Tool usage focuses on the three generic types of Process imple-
mentation that were discussed in the previous chapter and investigates what types
of Tool may be used for each. By way of a recap, these three generic types of
Process implementation were:

● Quick and dirty Process implementation – the Process is implemented very
quickly and informally with few Artefacts and limited configuration control.

● Semi-formal Process – Process requires more rigour in its implementation,
requires good management and configuration control, and requires traceability
between Artefacts and audit trails.

● Formal Process – the Process must be implemented as rigorously as possible with
a high degree of control, configuration, traceability and mathematical rigour.

The focus in the discussion will not be so much on which Tools are possible to be
used for each example, but for which Tools are the most appropriate to be used for
each example.

18.3.1 Pemberton’s cooking analogy
The use of Tools may be considered as being analogous to the use of cooking
equipment, in what is colloquially known as ‘‘Pemberton’s Cooking Analogy’’.
This analogy equates the maturity of a Person’s cooking requirements to those of an
Organisation’s modelling.

Consider the first example, where a young student has just made the brave step
of moving away from home and must, possibly for the first time, start to fend for
themselves and cook their own meals. It is not difficult to imagine that a student
may meet all of their dietary requirements with a toaster, a microwave oven and a
kettle. This is perfectly adequate for them and the situation that they find them-
selves in. Indeed, to provide the student with a full range of pots, pans and cooking
utensils would be a waste of time and effort as not only would the student not use
them properly, but also they would have no appreciation whatsoever for what
sophisticated and impressive cuisine they could create with such a fine set of Tools.
Also, there is the potential danger of accidentally burning down the house. This is
analogous to an Organisation that is just starting to implement MBSE and does not
yet know how they will use the Tools, or what their Needs are for their use. For
them, it is fine to simply make use of existing office-based Tools.

Consider now the same student who has graduated, started a career and now
shares a flat or first house with a new partner. The classic ‘‘beans on toast’’ will no
longer be sufficient for this new, more-mature life style and it will be necessary to
expand the set of kitchen tools to include some basic pots, pans and utensils. They
will probably be cheap and of sufficient quality to get by in day-to-day cooking. This

The ‘Tool’ 663

situation is analogous to the situation where an Organisation has reached the limits of
office-based Tools and will now be looking for more specific modelling Tools.

Consider again the same student who has now matured into a world-class chef
who understands many nuances of the culinary world and can truly appreciate the
difference that having a good set of Tools can make. The chef now sees the benefit
of the high-quality Tools and the price now seems almost irrelevant as excellent
result requires excellent Tools. This is the situation where an Organisation has a
high maturity of modelling and can see the value in sophisticated Tools.

The point to remember here is that different Tools suit different people. A lot
of this comes down to how mature the modelling in your Organisation is and how
close you are to achieving MBSE.

18.4 Using Tools with existing Processes

This section looks at how the Tools that were discussed in the previous sections may
be used in conjunction with an existing Process. The example Process what is used is
the same as in the previous chapter – the ACRE Framework applied over a number of
different implementations. By way of a recap, three levels of scale (small, medium
and large) and three levels of criticality (non-critical, semi-critical and critical) will
be considered. For the purposes of the discussion, these are described further as:

● Small-scale Project – a Project involving one or very few people, with a time-
scale that is measured in days or weeks and a very limited budget. Small Projects
will often have very few Needs that are often poorly defined. Examples include
proof-of-concept Projects, small proposals, and small bench top demonstrators.

● Medium-scale Project – a Project involving one or a few small teams of people,
with a timescale that is measured in months and a limited budget. Medium-
scale projects will often have a small, but quite well-defined set of initial
Needs. Examples include many pure software Projects, and some manu-
facturing design systems.

● Large-scale Project – a Project involving many teams of people, with a timescale
measured in years and with a large and complex budget. Large-scale projects have
a high number of Needs that, while being understood individually, have many
complex relations between them. Examples of large-scale Projects include large
complex Programmes, Systems of Systems and enterprise Systems.

● Non-critical level – a Project where the correctness of operation of the devel-
oped System has no implication on the environment or human life. Examples
include typical Apps, office-type software and library-type Systems.

● Semi-critical level – a Project where the correctness of operation of the developed
System may have implication on the environment or human life, depending on
circumstances. Examples include design tools and satellite navigation Systems.

● Critical level – a Project where the correctness of operation of the developed
System has a large implication on the environment or human life. Examples
include weapons Systems, direct control Systems, flight control Systems and
health Systems.

664 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

In order to illustrate the flexibility of the Process, three different approaches to
implementing the Process on different types of Project will be discussed, which are:

● Quick and dirty Process implementation – the Process is implemented very
quickly and informally with few Artefacts and limited configuration control.

● Semi-formal Process – this Process requires more rigour in its implementation,
requires good management and configuration control and requires traceability
between Artefacts and audit trails.

● Formal Process – the Process must be implemented as rigorously as possible with
a high degree of control, configuration, traceability and mathematical rigour.

The next three sections (Sections 18.4.1–18.4.3) relate these different approaches to
the different scales and levels of rigour and discuss the types of Tools that may be
used for each approach. It should be noted that these are all provided for guidance
only, but will make a good start point for your own Process implementation.

18.4.1 Example Tool realisation – quick and dirty Process
The quick and dirty Process was used when the system either is very simple or has a
very limited set of timescales associated with it. Clearly, almost all of the Tools
discussed previously may be used to realise this approach but, when time is against
you on a Project, it may be that the quickest and (what is perceived as) the easiest-
to-use Tools are more suitable than tools that may actually be far more powerful.

Two examples will be considered, the use of a PAPS Tool and the use of
office-based Tools.

«viewpoint»
Requirement

Description Viewpoint

«ontology element»
Need Description

«ontology element»
Context

«viewpoint»
Stakeholder Context
Definition Viewpoint

«ontology element»
Stakeholder Role

«viewpoint»
Requirement Context

Viewpoint

«ontology element»
Use Case

«ontology element»
Boundary

«viewpoint»
Context Definition

Viewpoint

1..*

1

1..*

is within

1

1

1..*1

1

defines context for

1

1..*

gives contextual
description of

1

1

1

{incomplete}

1

is related to

0..*

1..*

1..*

1

1..*

is outside

1

1..*

defines needs in context from

1..*

1

defines point
of view of

1
1

interacts
with

0..*

1..*

yields an observable
result to

1..*

PAPS Tool

Figure 18.4 Quick and dirty Process implementation example – PAPS tools
in a Heterogeneous Tool Chain

The ‘Tool’ 665

The diagram in Figure 18.4 shows that a PAPS Tool may be used to realise all
of the Views that have been identified as essential for this Project. Note that this
comes under the broad banner of a Heterogeneous Tool Chain, although, in reality
the interface issue is an artificial one, due to the nature of a PAPS Tool.

In some cases, all of these Views may be created in a log book, for example:

● The ‘Requirement Description View’ may be a simple handwritten list of high-
level descriptions for the Needs.

● The ‘Requirements Context View’ (RCV) may be a set of use case diagrams
that have been drawn in a log book.

● The ‘Context Definition View’ may be a block definition diagram that has
been written into a log book.

These Views may either then stay in the log book, be transcribed into documents
(see the next example) or make use of digital photography, or smart pen and pad to
get the information into an electronic format that may be more easily commu-
nicated with the rest of the Project Stakeholder Roles.

The most immediate advantage to the PAPS approach is that it is free and can
be done almost anywhere. Also, provided that the Person doing the work is com-
petent in the approach and the modelling, there is no need for them to be competent
in the use of a specific Tool. This approach is also very well suited to brainstorming
sessions, far more suitable than using a sophisticated Tool, and it should be con-
sidered as being used before any Tools are used.

Of course, the downside of the PAPS approach is quite steep, as there will be
no automation and hence, very few of the benefits of the MBSE approach in terms
of time-saving activities. For example, all consistency-checking must be carried out
manually and all documents must be generated by hand.

Bearing all of these constraints in mind, however, it is always worth per-
forming the modelling, even if it is only on a whiteboard for half an hour or so. The
increased level of understanding that can be achieved in such a short space of time
should not be underestimated.

Bearing the limitations of the PAPS Tool in mind, let us now look at how the
same quick and dirty Process may be realised using the first set of Automated Tools –
those that only exhibit office-type capabilities.

The example in Figure 18.5 shows Tools that exhibit office-type capabilities may
be used to realise the Views required for this Project. Note that, depending on the
office Tools selected, this Tool Chain can potentially fit into any of the four categories
of Tool Chain described previously. The Views may be realised in the following ways:

● The ‘Requirement Description View’ may be defined as a word-processed
document that describes the Needs in a list or in a table. Another way would be
to represent the Needs in a table in a spread sheet.

● The ‘Requirement Context View’ may be realised using use case diagrams in a
simple drawing Tool in a word processor or even in a presentation application.

● The ‘Context Definition view’ may be realised using a block definition diagram
in a simple drawing Tool in a word processer or even a presentation application.

666 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

In many cases, the Tools here will be used to transcribe information that was
generated using a PAPS Tool in order to get the Views into easily manipulated
formats that can be communicated to other Stakeholder Roles on the Project.

The example shown here has the advantage of being quick and simple to
implement. However, the downside of this approach is that the model, as it stands,
is very difficult to manage and must be verified and validated entirely manually,
which, of course, is both time consuming and prone to error. This is a perfectly
valid approach, but not one that realises all the true benefits of MBSE as there is no
automation between the Views and everything is carried out manually.

18.4.2 Example Tool realisation – semi-formal process
The semi-formal variation of the Process was used where there was a need for a
certain amount of rigour on the Project, or where the Project had quite a long
timescale. Two realisations will be considered here, the first of which will be a Tool
that exhibits office-type capabilities and the second of which will be using Tools
that exhibit some modelling and support capabilities.

The diagram in Figure 18.6 shows a possible realisation of the semi-formal
Process implementation.

The example here shows how Tools that exhibit office capabilities may be used
to realise the Views required for this Project. Note that, depending on the office
Tools selected, this Tool Chain can potentially fit into any of the four Tool Chain
categories described previously. The Views may be realised in the following ways:

«viewpoint»
Requirement

Description Viewpoint

«ontology element»
Need Description

«ontology element»
Context

«viewpoint»
Stakeholder Context
Definition Viewpoint

«ontology element»
Stakeholder Role

«viewpoint»
Requirement Context

Viewpoint

«ontology element»
Use Case

«ontology element»
Boundary

«viewpoint»
Context Definition

Viewpoint

1..*

1

1..*

is within

1

1

1..*1

1

defines context for

1

1..*

gives contextual
description of

1

1

1

{incomplete}

1

is related to

0..*

1..*

1..*

1

1..*

is outside

1

1..*

defines needs in context from

1..*

1

defines point
of view of

1
1

interacts
with

0..*

1..*

yields an observable
result to

1..*

Word processor

or spreadsheet

Simple drawing

package

Figure 18.5 Quick and dirty Process implementation example – office-type Tools

The ‘Tool’ 667

● The ‘Source Element View’ may be realised using almost any Tool or file type,
for example e-mails, digital photos, scans of log books and word processor
documents.

● The ‘Requirement Description View’ may be defined as a word-processed
document that describes the Needs in a list or in a table. Another way would be
to represent the Needs in a table in a spread sheet.

● The ‘Requirement Context View’ may be realised using use case diagrams in a
simple drawing Tool in a word processor or even in a presentation application.

● The ‘Context Definition view’ may be realised using a block definition dia-
gram in a simple drawing Tool in a word processer or even a presentation
application.

● The ‘Validation’ views may be realised using sequence diagrams in a simple
drawing Tool, or as text-based ordered lists in a word processor.

● The ‘Traceability View’ may be realised using tables in a spread sheet. By
using a hypertext links in the spread sheet, it is also possible to start to provide
simple navigation between the various office documents.

Notice here that we are starting to see the beginnings of automation by using
hypertext links. This is the tip of the iceberg in terms of the benefits that MBSE can
offer, but it is a start point. Again, the more powerful the Tools, the more benefits
will be realised by using the MBSE approach.

The next example uses more sophisticated Tools that exhibit modelling and
support capabilities and, therefore, we would expect to see more automation and
more benefits than when using the office-based Tools.

«viewpoint»
Requirement

Description Viewpoint

«ontology element»
Need Description

«ontology element»
Context

«viewpoint»
Stakeholder Context
Definition Viewpoint

«ontology element»
Stakeholder Role

«viewpoint»
Requirement Context

Viewpoint

«ontology element»
Use Case

«ontology element»
Boundary

«viewpoint»
Context Definition

Viewpoint

1..*

1

1..*

is within

1

1

1..*1

1

defines context for

1

1..*

gives contextual
description of

1

1

1

{incomplete}

1

is related to

0..*

1..*

1..*

1

1..*

is outside

1

1..*

defines needs in context from

1..*

1

defines point
of view of

1
1

interacts
with

0..*

1..*

yields an observable
result to

1..*

Word processor
or spreadsheet

Simple drawing
package

Figure 18.6 Semi-formal Process implementation – office-type Tools

668 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The example in Figure 18.7 shows how a proprietary Toolset may be used to
realise the Views required for this Project. Note that, depending on the Tools
selected, this Tool Chain can potentially fit into any of the four categories of Tool
Chain described previously. For the purposes of this example, let us assume that
this proprietary Toolset consists of a modelling Tool and a requirements manage-
ment Tool that are being used in conjunction with standard office-type Tools. The
Views may be realised in the following ways:

● The ‘Source Element View’ may be realised using almost any Tool or file type,
for example e-mails, digital photos, scans of log books and word processor
documents.

● The ‘Requirement Description View’ may be defined in the requirements
management Tool. Most requirements management tools excel in this area and
allow the user to define a set of attributes for each Requirement. Each
Requirement here will be text-based, but it is also usually possible to paste in
graphics and images, which will prove useful in some of the later Views.

● The ‘Requirement Context View’ may be realised using use case diagrams in
the modelling Tool. This information may also be represented in the require-
ments Tool, depending on the sophistication of the Tool. At the very least, each
use case diagram may be pasted into the management Tool as an image. This
may then be used for the basis of traceability in the ‘Traceability View’ later. If
the Tool is more powerful, then there may be an automated link between the
modelling Tool and the requirements management Tool, which would have a
number of advantages, as discussed later in this section.

«viewpoint»
Requirement

Description Viewpoint

«ontology element»
Need Description

«ontology element»
Context

«viewpoint»
Stakeholder Context
Definition Viewpoint

«ontology element»
Stakeholder Role

«viewpoint»
Requirement Context

Viewpoint

«ontology element»
Use Case

«ontology element»
Boundary

«viewpoint»
Context Definition

Viewpoint

1..*

1

1..*

is within

1

1

1..*1

1

defines context for

1

1..*

gives contextual
description of

1

1

1

{incomplete}

1

is related to

0..*

1..*

1..*

1

1..*

is outside

1

1..*

defines needs in context from

1..*

1

defines point
of view of

1
1

interacts
with

0..*

1..*

yields an observable
result to

1..*

Requirements management

Tool or spreadsheet

Case tool

Figure 18.7 Semi-formal Process implementation – proprietary Tools

The ‘Tool’ 669

● The ‘Context Definition view’ may be realised using a block definition dia-
gram using the modelling Tool.

● The ‘Validation View’ may be realised using sequence diagrams in the mod-
elling Tool. Again, depending on the level of sophistication of the Tools, there
will be advantages to using the proprietary Toolset over the previous, office-
based example.

● The ‘Traceability View’ will be realised using the requirements management
Tool. This is one of the main uses for the requirements management Tool –
establishing traceability. At the moment, these traceability links would be put
into the requirements management Tool manually but, once established, can be
used to perform impact analysis and other types of investigation.

Now that we are starting to use sharper tools, we will start to see more benefits. One
of the main advantages to using a proprietary Toolset is that it is now possible to
automate the interactions between the two Tools.

● First, the diagrams from the model and their representations in the management
Tool will be linked, so that they can always be made consistent by simply
pressing a button to update the information in the management Tool from the
modelling Tool, or vice versa.

● Another advantage is that descriptions that are associated with elements in the
model (such as actors or use cases) may then be used automatically in the
requirements management Tool, avoiding the need for tiresome ‘‘cutting and
pasting’’.

● Both Tools should allow documents, websites, etc., that exist outside the Tools
to be linked to, which provides even more flexibility and power when it comes
to traceability.

● The use of the two Tools together provides rigour in terms of both the technical
correctness of the model (in the modelling tool) and the management of the
requirements Artefacts (in the requirements management Tool).

There are, however, several disadvantages to using this approach:

● Very often the integration or communication between Tools is non-trivial and
can entail quite a large piece of work. Of course, this should only need to be
carried out once, and then it can be re-used as often as desired. This initial
overhead should be taken into account when considering the semi-formal Tool
implementation.

● On a related note, Tools from different providers may have different versions, so
the configuration and version control of the Tools must be taken into account.

The semi-formal Process may be seen quite often in reality and can offer many
benefits to a Project or Programme.

18.4.3 Example Tool realisation – formal Process
The formal Process was used where the System was a mission-critical System, or
the Project was being conducted on a very large scale.

670 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

On Projects such as these, the initial cost of the Toolset being used is usually
less of an issue as it tends to be a very small part of the overall Project budget. More
importantly, the level of maturity of modelling of the Project should (emphasis the
word ‘‘should’’) be higher and, therefore, all the benefits of a powerful Toolset may
be realised.

Two examples of implementation will be looked at: the first with a Hetero-
geneous Tool Chain and the second with an Integrated Tool Chain.

The diagram in Figure 18.8 shows how the formal Process may be imple-
mented using a Heterogeneous Tool Chain that exhibits modelling and support
capabilities. In this case each Tool exists in its own right and will need some effort
to be put into the integration of the Tools. Examples of Tools that may be used here
are: a SysML modelling Tool, a requirements management Tool, simulation Tools,
data exchange Tools and spread sheets.

«ontology element»
Source Element

«viewpoint»
Requirement

Description Viewpoint

«ontology element»
Need Description

«ontology element»
Context

«viewpoint»
Stakeholder Context
Definition Viewpoint

«ontology element»
Stakeholder Role

«viewpoint»
Requirement Context

Viewpoint

«ontology element»
Use Case

«ontology element»
Boundary

«ontology element»
Scenario

«viewpoint»
Traceability Viewpoint

«ontology element»
Traceability Element«ontology element»

Traceability
Relationship

«viewpoint»
Context Definition

Viewpoint

«viewpoint»
Source Element

Viewpoint

«viewpoint»
Validation Viewpoint

1..*

defines needs in context from

1..*

1..*

1

1..*

1

1

defines point
of view of

1

1

is related to

0..*

{incomplete}

1..*1

1

1..*

1..*

1

interacts
with

0..*1..*

1

1..*

validates use case on

1

1..*

yields an observable
result to

1..*

1..*

identifies sources of needs on

1..*

1..*

is within

1

1..*

validates

1..*

1

defines context for

1

1..*

is outside

1

1..*

1

1

1

1

is traceable to

1..*

1..*

traces to

1..*

1..*

gives contextual
description of

1

Requirements management
Tool or spreadsheet Case tool

Requirements management
Tool or spreadsheet

Figure 18.8 Formal Process implementation – Heterogeneous Tool Chain

The ‘Tool’ 671

Other possible ways to realise the Views are as follows:

● The ‘Source Element View’ may be realised using almost any Tool or file type, for
example e-mails, digital photos, scans of log books and word processor documents.

● The ‘Requirement Description View’ may be defined in the requirements
management Tool or in a modelling Tool that supports SysML requirements
diagrams, or both.

● The ‘Requirement Context View’ may be realised using use case diagrams in
the modelling Tool. This information may also be referenced or repeated in the
requirements management Tool.

● The ‘Context Definition view’ may be realised using a block definition dia-
gram using the modelling tool.

● The ‘Validation View’ may be realised using sequence diagrams in the mod-
elling Tool. In the case of the formal Process a simulation Tool may be
required to define the parametric constraint blocks.

● The ‘Traceability View’ will be realised using the requirements management
Tool or with a separate traceability Tool, such as spread sheet or workbench-
type environment.

With the use of more Tools, one would expect to see more benefits. In fact, the benefits
and disadvantages are very similar to the ones discussed for the semi-formal Process.
The main benefits are automation and the ability to generate Process Artefacts. The
main disadvantages are again related to integrating the various Tools. These are pro-
blems that should be addressed with the next example of Tool implementation.

The second example of the formal Process implementation uses an Integrated
Tool Chain that exhibits both modelling and support capabilities (Figure 18.9). The
Tools may come from different vendors but all the hard work of Tool integration
has already been carried out by the Tool provider. At the heart of Integrated Tool
Chain will be the modelling Tool that provides interfaces to all of the other Tools,
such as requirements management Tools, simulation Tools, checking Tools and
document generation Tools.

Other possible implementations of the Views are as follows:

● The ‘Source Element View’ may be realised using almost any Tool or file type,
for example e-mails, digital photos, scans of log books and word processor
documents. These will be linked back to elements within the model, or may
even have SysML blocks to represent them.

● The ‘Requirement Description View’ is defined in the modelling tool using
SysML blocks. If anyone should want to see the same information in a require-
ments management Tool, then a button is pressed and the management modules
are generated automatically. These may then be edited in the requirements man-
agement Tool and re-imported back into the model – the model is the master.

● The ‘Requirement Context View’ may be realised using use case diagrams in
the modelling tool.

● The ‘Context Definition view’ may be realised using a block definition dia-
gram using the modelling Tool.

672 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● The ‘Validation View’ may be realised using sequence diagrams in the mod-
elling Tool. The parametric constraints may be defined using SysML para-
metric diagrams in the modelling Tool and then, at the push of button, they will
be sent to the simulation Tool for formal validation.

● The ‘Traceability View’ will be generated automatically from the model.
When the modelling is carried out properly, then traceability is inherent in the
model and should not need to be entered again.

The true benefits of MBSE start to become apparent now. Just in terms of auto-
mating Artefacts, checking and simulation, the following benefits may be realised:

● Automatic verification of the model. This may take many forms as there may be
standard checks and bespoke checks. When using SysML, there are a number of
standard consistency checks that should be carried out on any model. However,
in addition to these checks there may be bespoke checks associated with the
Process that is being followed. For example, there were a number of consistency
checks that were identified for the ACRE Process in Chapter 9 that can be

«ontology element»
Source Element

«viewpoint»
Requirement

Description Viewpoint

«ontology element»
Need Description

«viewpoint»
Definition Rule Set

Viewpoint

«ontology element»
Rule

«ontology element»
Context

«viewpoint»
Stakeholder Context
Definition Viewpoint

«viewpoint»
System Context

Definition Viewpoint

«ontology element»
Stakeholder Role

«ontology element»
System Element

«viewpoint»
Requirement Context

Viewpoint

«ontology element»
Use Case

«ontology element»
Boundary

«ontology element»
Scenario

«viewpoint»
Context Definition

Viewpoint

«viewpoint»
Source Element

Viewpoint

«viewpoint»
Validation Viewpoint

1

interacts
with

1..*

1..*

constrains

1..*

1..*

yields an observable
result to

1..*

1 1..*

1

1

defines point
of view of

1

1..*

is within

1

1..*

validates use case on

1

1..*

validates

1..* 1
is related to

0..*

1

is related to

0..*

1

interacts with

0..*

1..*

defines needs in context from

1..*

1..*

1

1..*

1

1..*

is outside

1

{incomplete}

1..*

gives contextual
description of

1

1..*

1

1..*

1..*

traces to

1..*

1

1

1..*

1

1

defines context for

1

1..*

1

1..*

identifies sources of needs on

1..*

1..*1

1..*1..*

«viewpoint»
Traceability Viewpoint

«ontology element»
Traceability Element

«ontology element»
Traceability Relationship

1is traceable to

1..*

1..*

defines constraints on descriptions of needs on

Figure 18.9 Formal Process implementation – Integrated Tool Chain

The ‘Tool’ 673

automated. This automation of consistency checks is a massive time-saver.
Performing consistency checks manually takes a long time, is incredibly tedious
and is very prone to human error. Just performing the consistency checks for the
ACRE Process can take anything between a few hours, a few days and a few
months, depending on the size of the Project. By automating this, the whole
Process takes anywhere from a few seconds to just less than a minute.

● Automatic generation of documents. The modelling will allow the user to define
document templates that may be used by standard word processors. Elements in
the model are then used to populate the document, which is then produced as the
word-processed document. This requires some effort to set up the templates but,
once done, can save a lot of time. Apart from saving time, it also means that the
word-processed document becomes a ‘‘throw-away’’ document in that if it ever
needs to be changed then it is simply discarded. Any changes are made to the
model and then the document is re-generated. This means that a document can be
generated at any point in time that is guaranteed to be consistent with the model.

● Automated interface with simulation Tools. SysML modelling Tools are
usually not very good at performing mathematical simulation as it is not what
they are intended for. Therefore, a good interface between the modelling Tool
and the simulation Tool can provide an excellent way to validate the para-
metric constraints that have been defined in the model.

● Requirements management automation. As was stated previously, if the model
is correct, then traceability comes for free. There are many cases, however,
where there is still a need for a separate requirements management Tool,
whether this is a true or perceived need. Again, the model is the master and the
management Tool information is simply automatically generated. Any changes
made in the management Tool may then be imported back into the model,
assuming that the interface is bidirectional.

Of course, these benefits will depend on the level of functionality of the Tools that
are being used to implement the Process.

18.4.4 Guidance for using Tools
Once the Tool has been selected it is advisable to tie its use to your Organisation’s
Processes. This will often take the form of defining procedures that show how to
implement the Processes using the Tools. The ‘‘seven views’’ approach to Process
modelling can also be applied to defining procedures, which will ensure con-
sistency with the overall MBSE approach.

This is the point where much of the automation may be defined. For example:

● Rules may be defined within the Tools that enforce the Process, allowing
automated verification activities to be performed.

● Templates for Artefacts may be defined that allow automated document
generation.

● Interfaces between different Tools in the Tool chains may be configured to
allow (potentially!) seamless integration between various Tools.

674 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

There are many more ways that the Tools may be used to realise more MBSE
benefits, such as automated test generation and automated Process measurement.

Another area where guidelines may be produced is in the use of the notation
within the Tool and the structure, navigation and use of the model. This is an area
that is covered extensively in Chapter 6 and it is recommended that this should be
used as a start point for a style guide for modelling.

18.5 Considering Tool selection

The selection of the Tools for a Project or Organisation can be the most important
decision that is made on a Project. Getting the right Tool is very important, but
getting the wrong Tool is usually much worse than not getting any Tool at all.

It was seen in Figure 18.2 that ‘select tool’ was an essential use case of the
overall ‘Tool Context’. This section provides guidance on Tool evaluation and, in
order to codify this, a set of Tool evaluation Processes known as MonTE (Model-
ling Tool Evaluation) is provided.

The main use cases that need to be satisfied when considering Tool evaluation
are shown in the context in Figure 18.10.

uc [package] RCV - MONTE [RCV - MONTE]

Evaluate CASE tools

Ensure vendor's
quality of service

Select tool

Decide on tool

Ensure compatibility
with process model

... for internal
processes

... for external
processes

Provide application
functionality

Provide capability

Provide modelling
capability

Provide
interoperability

Understand
operational
environment

Ensure compatibility
with modelling

language

Tool evaluation context

Vendor

Tool

Organisational Process
Model

Standard
«include»

«include»

«constrain»

«include»

«include»

«constrain»

«include»

«include»

«constrain»

«include»

Figure 18.10 Context for Tool evaluation Processes

The ‘Tool’ 675

The diagram in Figure 18.10 shows the Context for Tool evaluation and
identifies a number of use cases. Note how the ‘Evaluate CASE tool’ use case is
actually part of a higher-level ‘Select tool’ use case. There are a number of factors
that should be borne in mind when selecting Tools, each of which will be repre-
sented as use cases and that are now discussed in further detail.

18.5.1 ‘Provide modelling capability’
This is probably the most obvious factor and one that most people will put a lot of
effort into. First of all, it needs to be decided if there is a need for mathematical
modelling capability as well as the visual modelling capability.

The visual modelling capability describes the drawing, management and
usability of a Tool. This is aimed primarily at modelling (and some drawing) Tools
and should not be taken lightly or assumed.

There are some aspects, however, that are not so easy to quantify, such as the
usability. The Tool should be easy to use in that it should have an intuitive inter-
face. Unfortunately, what one Person thinks is perfectly intuitive (e.g. a pro-
grammer) may not seem at all intuitive to someone else (an end user). Therefore, it
is often desirable to have a Tool that has a configurable user interface.

Another aspect of usability that should be considered is the navigation of the
model. How easy is this? Are there search functions? Can one diagram be auto-
matically navigated to from another? And so on.

The previous section discussed the use of style guides for modelling, which can
be implemented by tailoring the Tool using profiles. The definition and application
of profiles varies enormously between Tools but if style guides are to be followed,
then this is a very important aspect of modelling capability for a Tool.

18.5.2 ‘Ensure compatibility with modelling language’
A large constraint on providing a good modelling capability is that of compliance
with the underlying modelling language or notation. Many Tools claim compliance
with a specific modelling notation, for example SysML, when in fact they do not
meet the entire underlying Standard. This can be very important as it is not just a
matter of how much of the Standard is implemented, but also to what degree is the
notational meta-model implemented in the Tool. For example, if you want con-
sistency-checking as part of your Tool, then the Tool needs to have a meta-model
and not just be a simple drawing package.

The compliance for the Standard is relatively easy to quantify and the SysML
Standard has a full specification that can be used for the comparison.

The same basic needs hold true for mathematical modelling – what languages
are supported and to what level? It is quite common for Tools that exhibit mathe-
matical modelling holds some sort of certification or has a formal proof that
describes their internal Processes.

18.5.3 ‘Understand operational environment’
This is a very pragmatic concern that describes the actual system requirements in
terms of any hardware and software requirements along with networking capabilities.

676 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Some Tools, particularly more powerful ones, come with quite heavy instal-
lation requirements. For example, a Tool that uses a fully transactional database as
its underlying technology will have very different system requirements compared to
one that has a simple flat file structure as its technology.

This is also a problem that can be compounded when using multiple Tools
from multiple vendors as the system requirements may require exclusive use of
system resources that may clash when it comes to running on a single machine.

18.5.4 ‘Provide interoperability’
This is a key for MBSE and describes how a Tool that forms part of a Tool Chain
may be required to operate with other Tools, technologies or clients. The previous
sections have discussed how one of the biggest problems with Tool Chains is their
integration.

It is important to look for what data formats may be used as outputs for com-
patibility of Tools, what interfaces are provided as standard, what interfaces may be
programmed and so on.

Effective interoperability can be the difference between running a successful
Project and having a Project fail. It is also very important that any interfaces or data
exchange mechanisms are investigated thoroughly and are not just assumed to work
on the basis of a data sheet. The use of Standards can be very important for ensuring
interoperability, so compliance with data exchange standards may be an important
issue for some users.

18.5.5 ‘Ensure vendor’s quality of service’
This describes how to ensure that the vendors can meet all of your Needs. If you
are working a Project that is in any way mission critical, expensive or scheduled to
take a long time then it is important that good support is available from the Tool
provider. Also, it is important that the Tool provider will still be in business when
the Project ends. Generally speaking, large companies will have more chance of
existing over the next 10 years, whereas a small provider may not. On the other
hand, smaller companies tend to provide better, or certainly more personal and
consistent support, as they can be far more pro-active and reactive in their support.
An essential aspect of any vendor is to decide whether they are providing a Pro-
duct, Service or both. This becomes very important as many Tool vendors will
also offer a number of professional Services, such as training, mentoring, tele-
phone and Internet support.

If a vendor is claiming to support MBSE then there are three very simple
criteria that can be applied with some obvious questions:

● People – Assuming that the vendor develops its own Tool, do they have
competent developers? In the event that the vendor is offering services, are
their consultants, trainers and support staff competent? Use the techniques
discussed in Chapter 14 and Appendix G to ascertain this.

● Process – Assuming that the vendor develops its own Tool, do they have effective
development Processes in place? If they offer Services, do they have effective

The ‘Tool’ 677

customer-related Processes in place? Use the techniques in Chapter 15 and
Appendix F to investigate this, along with Process assessment or audit techniques.

● Tools – Assuming again that the vendor develops its own Tool, do they use
Tools, especially their own, to develop the Product? Consider some of the
techniques discussed in this chapter and Appendix F to assess this.

In essence, it is important to ascertain whether the vendor ‘‘eats its own dog food’’
or whether they are simply paying lip-service to the principles of MBSE.

18.5.6 ‘Ensure compatibility with the process model’
This describes how the Tool may be required to fit in with a particular approach to
working, which may put additional requirements on the Tool. This may be con-
sidered both internally and externally.

As an example of internal Processes, consider your own Processes (or the
Processes that have been presented in this book and summarised in Appendix F),
and ask yourself whether the Tool would support these Processes or seek to change
the Process?

As an example of external Processes, consider any Standards that apply to your
business (or Standards and best practice models that have been used in this book,
for example ISO 15288, which is presented in Appendix E), and ask yourself
whether the Tool would support these Processes or seek to change the process?

Remember that the Process must drive the Tool and not the other way around.

18.5.7 ‘Provide capability’
Every Tool will have its own unique selling points and very often these will man-
ifest themselves in additional capabilities that are offered by the Tool. Different
Tool capabilities were discussed in the previous section, but some specific exam-
ples of these that many Tools offer are:

● Code generation, for automatically producing code from the models created in
the Tool.

● Report generation, for automatically producing nice-looking documents
directly from the model, without the need to create each document individually
in a word processor.

● Reverse engineering, in the case of a Tool that is used for legacy systems that
contain software, generating models (or model elements) from the code can be
an attractive capability.

● Animation, in terms of SysML, in almost half of the diagrams is behavioural,
which means that they can potentially be animated.

● Checking, not only in terms of the standard notational checks as found in
SysML, but also the Tool, allows bespoke checks to be defined according to,
for example, internal Processes.

This list is not intended to be exhaustive, but should provide a good start point for
considering other Tool capabilities.

678 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

One key question to ask here is whether you actually need these capabilities or
not. It is very easy to be blinded by the flashing lights of a good sales demonstra-
tion, only to arrive back at work of the following week to realise that these cap-
abilities are either not what you thought they were, or not of any practical use to
you or the business.

18.5.8 ‘Provide application functionality’
Many Tools will be geared towards specific applications, such as real-time Sys-
tems, Process modelling and enterprise modelling. Again, in a similar vein to the
previous point, are these useful to you?

When specific application areas are covered, then the basic approach that is
being used should be questioned. For example, is the approach based on genuine
research (whether academic or industrial) or has it been fabricated? Is anyone in
industry using the approach in anger, or does it have no user-base?

18.5.9 ‘Decide on tool’
The final use case, that sits alongside all the evaluation-related use cases, is that of
making a decision for the Tool selection. Tool evaluation provides the evidence that
is required in order to make an effective and informed decision that will be, ulti-
mately, up to you.

It is impossible to advise everyone on how to make a decision, but it is possible
to advise on how to perform an evaluation. The next section, therefore, introduces a
set of Processes for Tool evaluation.

18.6 Tool evaluation

When evaluating Tools it is important that the results from each evaluation can be
compared so that an informed decision can be made. If different Tools are eval-
uated using different techniques, then there is no common frame of reference,
which will not allow a good decision to be made. This is also unfair to the Tool
vendors who would not be competing on an even playing field.

With this in mind, there is a need for a defined set of evaluation Processes. These
Processes will be introduced briefly here and are fully described in Appendix F.

The processes are known as MonTE. This acronym is a little contrived but
there is a hidden message in it, as the term ‘‘MonTE’’ is often associated with
confidence tricks where you cannot possibly hope to come out on top. Selecting
Tools can sometimes seem a little like this.

18.6.1 The MonTE Processes
The MonTE Processes are defined using the ‘‘seven views’’ approach to Process
modelling that was described in Chapter 7.

The ‘Tool’ 679

This section will introduce the Processes at a high level and focus on how they
are applied, whereas the full definition can be found in Appendix F.

The Need for the Processes has actually already been described, as these
Processes satisfy the Needs represented by the use cases in the ‘Tool Context’ in
Figure 18.2. This Context, therefore, represents the RCV for the MonTE
Processes.

18.6.2 MonTE – the Process Content View
The Processes that make up MonTE are summarised in the Process Content View in
Figure 18.11.

PCV [Package] PCV - MONTE [PCV - MONTE]

«process group»
Tool Evaluation

«process»
Evaluation Tool Capture

«artefact»
Evaluation tool framework: Evaluation Tool Framework
Review report: Review Report
System requirement: System Requirement
Tool: Tool
Tool model: Tool Model

«activity»
create model()
identify background()
identify system requirement()
obtain evaluation tool()
refer to client()
review()

«process»
Tool Analysis

«process»
Tool Verification

«artefact»
Evaluation tool framework: Evaluation Tool Framework
Ideal tool framework: Ideal Tool Framework
Review report: Review Report
Verification result set: Result Set

«activity»
confirm ideal vs evaluation()
document result()
review()

«process»
Tool Validation

«artefact»
Evaluation tool framework: Evaluation Tool Framework
Ideal process model: Ideal Process Model
Ideal tool context: Ideal Tool Context
Review report: Review Report
Validation result set: Result Set

«activity»
document result()
review()
validate against context()

«process»
Result Definition

«artefact»
Evaluation tool framework: Evaluation Tool Framework
Ideal tool model: Ideal Tool Model
Recommendation: Recommendation
Result report: Result Report
Result set: Result Set
Review report: Review Report
Validation result set: Result Set
Verification result set: Result Set

«activity»
analyse result()
create introduction()
document evaluation tool()
document ideal tool()
document result()
document tool()
recommend()
review()

«process»
Ideal Tool Requirement Capture

«artefact»
Evaluation scope: Evaluation Scope
Ideal process model: Ideal Process Model
Ideal tool context: Ideal Tool Context
Ideal tool framework: Ideal Tool Framework
Ideal tool model: Ideal Tool Model
Organisational process model: Organisational Process Model
Review report: Review Report
Standard: Standard

«activity»
define scope()
generate ideal tool framework()
identify ideal context()
identify source process()
model process()
review()

Figure 18.11 MonTE – Process Content View

680 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The diagram in Figure 18.11 shows the Processes that make up the MonTE
Process set. These Processes are described as follows:

● ‘Ideal Tool Requirement Capture’. The main aim of this Process is to capture
the basic Needs of the ideal Tool. Essentially, this Process is concerned with
carrying out a requirements engineering activity concerning the Tool needs and
producing a model of what the ideal Tool should look like. The information
presented previously in this chapter should be used as a guide for considering
your needs for a tool and to understand how the Tool will be used with its
relevant Processes. The ‘Ideal Tool Evaluation’ process will typically only
need to be executed once for each Tool selection exercise.

● ‘Evaluation Tool Capture’. The main aim of this Process is to take each can-
didate Tool and to produce a model that captures the Tool and its features,
constraints and operation. This is then used to compare back to the model for
the ideal Tool that was created in the previous Process.

● ‘Tool Analysis’ – ‘Tool Verification’. The main aim of this Process is to
compare the ideal Tool model with the model for a candidate Tool.

● ‘Tool Analysis’ – ‘Tool Validation’. The main aim of this Process is to assess
whether the candidate Tool satisfies the Needs for the Ideal tool.

● ‘Result Definition’. The main aim of this Process is to take the outputs of the
two ‘Tool Analysis’ Processes and to present them in some form of report that
may then be used as an input to the decision-making Process (not shown here).

The basic way that these Processes work can be seen by considering the main
Artefacts of the Processes in the form of the Information View (IV).

18.6.3 Information View
The Tool evaluation Processes rely on creating an ideal model and a number of
evaluation models and then comparing the two. A high-level IV of the final Arte-
fact from the ‘Result Definition’ Process is shown in Figure 18.12.

The diagram in Figure 18.12 shows the main Artefacts for the ‘Result Defi-
nition’ Process. These may be described in more detail as follows:

● ‘Ideal Tool Model’ – this model is created based on an understanding of the main
Needs of the Tool, represented by the ‘Ideal Tool Context’. In order to support this
Context an ideal set of Processes (‘Ideal Process Model’) is created that the Tool
must either work with or comply with, and an ideal set of features for the Tool
(‘Ideal Tool Framework’) is created. This then forms the basis of the evaluation.

● ‘Evaluation Tool Framework’ – this is the model that represents each Tool that
is being evaluated.

● ‘Result Set’ – this forms the main output of the evaluation, upon which the
‘Recommendation’ will be made. This is performed in two ways: by verifica-
tion of the ‘Evaluation Tool Framework’ against the ‘Ideal Tool Framework’
and by validation of the ‘Evaluation Tool Framework’ against the ‘Ideal Tool
Context’ and ‘Ideal Process Model’.

● ‘Recommendation’ – this is generated based on the ‘Result Set’. It should be
noted that this is not the definitive decision on which Tool to select, but will
form an input to that decision-making process.

The ‘Tool’ 681

The way that the Processes are executed and hence the number of these Artefacts
that will be generated will vary depending on number of Tools being evaluated.
This is discussed in the next section.

18.6.4 Process Instance View
The Processes shown in Figure 18.13 are executed in a simple sequence, but this
will vary slightly depending on the number of Tools being evaluated. This is illu-
strated by the two Scenarios shown in Figures 18.13 and 18.14.

The diagram in Figure 18.13 shows a simple Scenario where only a single Tool
is being evaluated. The Processes are executed in a straightforward linear fashion,
with one Process instance (represented by a life line) for each Process. The ‘Ideal
Tool Requirement Capture’ process needs only be carried out once and, likewise
the ‘Result Definition’ Process. The ‘Evaluation Tool Capture’, ‘Tool Verification’
and ‘Tool Validation’ processes are executed once per tool. Thus, in the case of a
single Tool, these are only executed once.

The diagram in Figure 18.14 shows a second Scenario where multiple Tools are
being evaluated. Notice in this Scenario that the ‘Ideal Tool Requirement Capture’
Process is only executed once, whereas the tool analysis Processes (‘Evaluation Tool
Capture’, ‘Tool Verification’ and ‘Tool Validation’) are executed as many times as

IV [Package] IV - MONTE [IV - MONTE]

«artefact»
Result Report

«artefact»
Ideal Tool Model

«artefact»
Ideal Tool Context

«artefact»
Ideal Tool Framework

«artefact»
Ideal Process Model

«artefact»
Evaluation Tool Framework

«artefact»
Result Set

«artefact»
Validation Result Set

«artefact»
Verification Result Set

«artefact»
Recommendation

Figure 18.12 MonTE – Information View for ‘Result Definition’ Process

682 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

there are Tools to be evaluated. A single instance of the ‘Result Definition’ Process is
then executed that takes all of the verification and validation results and, based on
these, makes a recommendation.

The full definition of these Processes is presented in Appendix F.

PIV [Package] PIV - MONTE [PIV - MONTE - single Tool evaluation Scenario]

«process»

Ideal Tool Requirement
Capture

«process»

Evaluation Tool Capture

«process»

Result Definition

«process»

Tool Verification

«process»

Tool Validation

Figure 18.13 MonTE – Process Instance View (PIV) – single Tool
evaluation Scenario

PIV [Package] PIV - MONTE [PIV - MONTE - multiple Tool evaluation Scenario]

«process»
Ideal Tool

Requirement Capture

«process»
Evaluation Tool

Capture

«process»
Tool Verification

«process»
Tool Validation

«process»
Result Definition

loop for each Tool

Figure 18.14 MonTE – Process Instance View (PIV) – multiple Tool
evaluation Scenario

The ‘Tool’ 683

18.7 Summary

This chapter has focused on the ‘Tool’ aspect of the ‘People, Process, Tool’
approach that is adopted in this book. This has been presented by considering these
main areas:

● Considerations for a Tool, which looked at different types of Tools, Tool
Chains and Tool Capabilities.

● Use of Tools for Processes, where an example Process was selected and then
the use of various different types of Tools with different Tool Capabilities was
considered for different implementations of the Process.

● A set of Processes for Tool evaluation, where this set of Processes was intro-
duced at a high level, the intention being to provide an overview of Tool
evaluation.

This chapter is clearly heavily related to Chapters 14 and 15 and, as such, should
not be read in isolation, but should bear in mind the totality of this part of the book.

Also, the full definition of the Processes that are used in chapter, both ACRE
and MonTE, are presented in Appendix E.

684 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Chapter 19

Model Structure and Management

19.1 Introduction

What is the best way to structure a SysML model? This is a question often asked of
the authors. Unfortunately, as with much of modelling, the only valid answer that
can be given is ‘‘It depends’’. It depends on who are the main users of the model, on
the level of sophistication of the document generation facilities within a SysML
tool, on the life cycle stage you are in, on the Processes you are following and the
Architectural Framework you are using. It can also depend on the SysML tool you
are using. Section 19.2 of this chapter gives some thoughts on possible ways of
structuring a model. They are only suggestions, and the reality is that the structure
may well change considerably throughout the lifetime of the model.

The second topic covered by this chapter, in Section 19.3, is that of model
management. Again, this is a huge topic that is very much dependent on the SysML
tool being used. Nevertheless, some of our thoughts on model management are
presented.

The topics presented in this chapter, together with those diagramming guide-
lines discussed in Chapter 6, should be incorporated into an organisational SysML
modelling standard that is used and enforced as part of the reader’s systems engi-
neering processes.

19.2 Model structure

When creating a SysML model, it is important, in order to aid navigability and ease
of use, that the model is well structured. However, it is impossible here to define a
structure that is suitable for all projects; any structure adopted must be set up so as
to meet the needs of the project for which the model is being created. The authors
have created models that have been structured in many different ways. Some
examples of structuring adopted by the authors on projects include:

● Life Cycle Stage
● Engineering process or activity
● System and sub-system

– Structure
– Behaviour

● Team
● Architecture framework
● Modelling framework

Sometimes, model structure is a combination of these. For example, a model might
first be structured by Life Cycle Stage, then within each Stage further structured by
System. Figure 19.1 shows part of a model of a Standard (ISO15288:2015 – see [1]
and the Process model in Appendix C) that is structured according to the seven
views Process modelling Framework described in Chapter 7. Note the use of
additional packages to contain aspects of the model such as styles (symbol colours,
etc.), stereotypes and scripts (the tool in which this model was produced allows the
user to enhance functionality through user-defined scripts).

Another example is given in Figure 19.2. Here, the model is structured largely
into a structural and behavioural split influenced by engineering activity. For
example, the ‘Coffin Escape Schematic’, ‘Requirements’, ‘Stakeholders’ and
‘Scenarios’ packages contain the parts of the model concerned with Requirements,
whereas the ‘System’, ‘Constraints’, ‘Processes’ and ‘Units and Types’ packages
contain the parts of the model concerned with design, defining System structure and
behaviour.

Some SysML tools have a very useful facility that allows the model to be
navigated both by the package structure (as in Figures 19.1 and 19.2) and by model
Perspective and View. The two diagrams in Figures 19.3 and 19.4 illustrate this.
These examples are taken from the Martian invasion case study model, discussed in
Chapter 14.

The model structure shown in Figure 19.3 is structured in a similar way to the
model shown in Figure 19.2, showing a structure based on a structural and beha-
vioural split influenced by engineering activity.

As discussed in Chapter 14, the model has been constructed using an
Architectural Framework that defines a number of Perspectives and Viewpoints

Figure 19.1 Example of model structured by modelling Framework Views

686 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

(see Chapter 11 for a discussion of Viewpoints, Views and Perspectives). The
model consists of a number of Views that conform to the Viewpoints (which are
simply the definition of Views). Irrespective of the model structure defined by
the user, the tool allows the model to be navigated by the Perspectives and
Views defined by the Framework. An example is shown in Figure 19.4, which
shows the packages containing the Views that make up the System Perspective.
The root package shows the Perspective, and the sub-Packages correspond to
each View in that Perspective (not all Views are shown). The View packages
show all the model diagrams that conform to that View, no matter where in the
package structure shown in Figure 19.3 they reside. The Perspective and View
structure is defined by and enforced by the tool; the user is not allowed to
change this structure in any way.

Figure 19.3 Model structure – viewed by package

Figure 19.2 Example of model structured largely by engineering activity and
structural and behavioural split

Model Structure and Management 687

Note that the package names for the View packages are lower case, which
contradicts the naming convention described in Chapter 6. This is because the tool
used requires the use of stereotypes to name Views in a way that makes them
browsable as shown in Figure 19.4; so the package labelled system structure view is
displaying all the diagrams stereotyped «system structure view» and similarly for
the others. The naming convention can thus be seen to be consistent with the
guidelines for naming stereotypes given in Chapter 6.

Finally, many SysML tools will suggest a predefined model structure when a
new model is created in the tool. While such structures may be of use in suggesting
a starting point for the way the model is organised, they are rarely of much use
beyond that. The model will be much easier to navigate if time is taken to define the
structure that makes sense to the users of the model. The structure is up to you but
should be covered in your engineering Processes or modelling style guides.

19.3 Model management

Having a model structure that reflects the way you work or that makes model
navigation easier is essential. However, there are other issues around a model that
should be considered, issues to do with the management of the model. Four key
model management topics, namely version management, model access, sandboxing
and correctness checking, are discussed in the sub-sections which follow. The
discussions are necessarily brief. Entire books could (and probably have) been
written on the topics. Our aim here is to make you aware of some of the issues that
are worth considering, issues that may affect the way that you work or the tool that
you use. If you have not already done so, it is worth reading Chapter 18 on tools
before continuing with this section.

19.3.1 Version management
Of all the topics discussed in this section, version management is perhaps the
broadest. At its simplest, you want to be able to get back to previous versions of a
model. What would be even nicer would be the ability to get back to previous
versions of parts of a model.

Figure 19.4 Model structure – viewed by Perspective and View

688 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

All ‘‘sharp’’ SysML tools support some kind of version management, either
built-in or through links to third party version control systems. Such functionality
typically allows a package (and its contained diagrams, model elements, sub-
packages, etc.) to be checked into and out of a version control system and handling
the creation of new versions automatically. If an earlier version of a package is
needed, the model can be rolled back as needed.

The tool used by the authors, as well as working with third-party version
control systems, also supports the concept of baselining. This allows a snapshot of a
package and its contents to be made at a particular point in time. Such baselines can
be stored in the model and can also be exported from the model (as an XML file)
for storage in an external file system or version control system. The differences
between baselines can be checked and reported on and earlier baselines rolled back
to. This gives a powerful mechanism for creating a snapshot of a model or part of a
model at a point in time, giving the ability to undo changes that may be felt
(through review or even through the normal modelling of different alternatives) to
be wrong or not needed. Versioning and baselining often works well in conjunction
with sandboxing as discussed in Section 19.3.3.

Even if your tool has no support for version management (and if it does not,
perhaps it is not suitable and should be changed), at the very least take copies of
your model before making major changes so that you can get back to an earlier
version if needed.

However, versioning and baselining, through whatever mechanism it is
implemented in a tool, is not foolproof. Rolling back changes in one branch of a
model may then break changes in other branch. For example, let us say that block
‘NewBlock’ is added to a block definition diagram in package ‘B’ and that a
relationship is made from ‘NewBlock’ to another block, ‘OldBlock’, which was
added to a diagram in version 2 of package ‘A’. All fine. Now, however,
for whatever reason, package ‘A’ is rolled back to version 1. This will remove
‘OldBlock’ from the model and hence also the relationship from ‘NewBlock’ to
‘OldBlock’ (as ‘OldBlock’ is no longer there). The modeller working on the dia-
gram containing ‘NewBlock’ may not even know that part of the model has been
rolled back and will be left wondering why his diagram is now wrong. Some tools
have a mechanism to create ‘‘stubs’’ for such deleted elements, but this is neither
foolproof nor done by all tools. Thus, unless the model structure is carefully
thought about, access to the model controlled (see Section 19.3.2) and, above all
else, good communication encouraged and (if necessary) enforced between mem-
bers of the modelling team, it can be all too easy to destroy the integrity of a model.
Making a new version or baseline before performing a roll-back to a previous
version can mitigate these problems; if the roll-back breaks the model, roll-back the
roll-back so the model is back to where it started and look at how to remove the
changes in more detail.

Perhaps the key message with versioning is that it is a good thing and should be
encouraged, but that it needs a robust process in place to ensure that it works
properly and is used in a way that supports the needs of your organisation. Do not
assume that the tool will do everything for you and that it will get you out of

Model Structure and Management 689

whatever modelling hole you may find yourself in through incorrect or misunder-
stood use of versioning and baselining functionality. It probably will not!

19.3.2 Model access
One key aspect of successful model management is control of access to the model.
By this, we are not talking about stopping people seeing the model (although in
some organisations and on some projects this may be necessary for security rea-
sons). What we mean here is having mechanisms in place that limit the types and
level of interaction that people have with the model.

Most ‘‘sharp’’ SysML tools implement some kind of access control mechan-
ism. This may be fairly crude and simply either allow or disallow opening of the
model, with anything allowed once the model is open. Other tools offer much more
fine-grained control. For example, the tool habitually used by the authors allows
any number of user groups to be created and users assigned to particular user
groups. The tool has a large number of permissions that can be assigned to each
group and hence to each user in that group. Additional permissions can be added for
each user. These permissions cover the basics, such as the ability to edit model
elements through more advanced functionality such as exporting data, configuring
the tool and running scripts (see Section 19.3.4 for a brief discussion of scripts).

Thus different users can be allowed to access the model but do different
things. Power users could be allowed to do anything that the tool allows;
administration users might never model but would be responsible for configuring
tool behaviour and setting up users and user groups; normal users could be
allowed to edit the model and export data, run scripts but not be allowed to add
other users, change user permissions or configure the tool; reviewers might only
be allowed to look at the model contents but not change it. Limiting access in this
way gives a controllable method of limiting a user’s ability to change a model,
helping significantly with the management of the model in terms of the integrity
of the data contained.

Some SysML tools go further than this, and as well as general permissions,
allow access to be restricted, on a per user basis, to specific areas of the model.
Even if a user has edit permissions set up, they can only ‘‘see’’ the parts of the
model that they have been given access permission for.

Finally, some tools support the notion of model locking. For example, the
authors’ tool of choice supports a locking mechanism that prevents changes being
made to any part of the model, even if the user has edit permissions, unless a lock is
obtained for that part of the model. This has two benefits: it prevents accidental
changes and it stops two users attempting to change the same part of the model,
both important factors in maintaining data integrity.

And what if your tool supports none of this? Well, the flippant (but no less
valid) answer is to get a better tool; remember the mantra of ‘‘People, Process,
Tool’’ and that your processes should drive your tools. If your tools are not good
enough, they should be replaced. If this is not possible, you will have to ensure that
your systems engineering processes and allocation of work address issues of model
access and data integrity.

690 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

19.3.3 Sandboxing
Sometimes you need to try out different ideas in a model before deciding on the
right solution to your problem. And sometimes you want different people to be
involved in this, perhaps with different teams exploring different possible design
solutions that take an existing model forward.

Some SysML tools support this in a formal way through a concept often known
as ‘‘sandboxing’’. Multiple copies are made of a model at a point in time. Each of
these branches can be worked on separately without affecting the original model:
they provide a digital sandbox in which to play. When the sandboxing work is
finished, and decisions made on the way forward, then all or part of the sandboxed
models can be merged back into the original model. Such a mechanism gives a very
powerful method or exploring the design and solution space for a problem in a way
that maintains the original integrity and contents of the original model.

Other functionality provided by some SysML tools, and typically those that do
not support whole model sandboxing, is that of versioning on at the diagram level.
Such tools allow a new version of a diagram to be made. New versions of diagram
elements can also be created, if the elements are to change. The tool will then allow
users to see, for the new version of a diagram, what elements on that diagram are
completely new (i.e. only exist on that version), which elements are new versions of
existing elements (and hence represent elements that have changed between ver-
sions) and which elements have stayed the same between versions. This new dia-
gram version can, at a later point in time, itself have a new version created based on
it. The key thing is that the tool maintains the traceability links between the dif-
ferent versions of the same diagram and between the versions of the elements. This
allows the differences to be seen, as discussed above, but also allows the modeller
to roll-back to an earlier version if it is decided that the changes made in later
versions are incorrect. In some ways, this functionality is better than sandboxing in
which it allows every targeted, small-scale evolutionary changes to be made
quickly and easily. But this can also be its weakness compared to sandboxing. The
functionality is usually based on small, linear evolutions of parts of a model,
whereas sandboxing supports large-scale, parallel evolution of the whole model.

If your SysML tool does not support these mechanisms, unfortunately, you will
have to try to replicate such functionality manually through taking copies of
models, working on the copies, exporting changes you want to keep and merging
them back into the original model. This can be very time-consuming, is very prone
to errors and relies on your SysML tool as a minimum supporting the export and
import of parts of a model together with a ‘‘difference’’ mechanism so that you can
see what has changed. And if your tool supports none of this? Well, again the
answer is to get a better tool.

19.3.4 Correctness through scripting
One of the main pieces of functionality that sets apart industry-strength ‘‘sharp’’
SysML tools from others that may be very cheap (or even free) is the ability to
enhance the tool’s functionality through scripting. Scripting gives a very powerful

Model Structure and Management 691

way of helping to manage your SysML models in terms of their structure and data
integrity in three mains through scripts which:

● Allow parts of a model’s structure to be created automatically. Such scripts are
written to create standard parts of a model’s structure in terms of packages.
They can also, if required, create example diagrams within the packages and
even populate them with example model elements (such as blocks) to get you
started. Some SysML tools allow user-defined ‘‘wizards’’ to be incorporated
into SysML profiles created for the tool. These wizards provide this ability to
create complicated structures of packages with diagrams and model elements
without the need for scripting. Whether implemented through scripting or
through wizards incorporated into profiles, this ability to quickly generate
standard package structures in a few mouse clicks is both a time-saver and a
method of ensuring that the structure you create in your model conform to
whatever organisational model structuring standards you have in place.

● Allow diagrams to be created automatically. Such scripts can create a diagram
and populate it with information based on elements already in the model. The
information added to such a diagram may already exist or may be created by
the script. For example, the authors have a script, developed for a customer that
is using a variation of the ACRE Framework (see Chapter 9) that is run on a
SysML actor representing a Stakeholder Role. When run, it creates a new
Requirements Context View (see Chapter 9) for that Stakeholder Role, finds all
Needs (modelled as requirements) that the Stakeholder Role has an interest in
(this is captured in the model as a dependency from the Stakeholder to a Need
with the «interested in» stereotype) and creates new Use Cases for each Need
found, links each Use Case to the Stakeholder, names the Use Case based on
the original Need and the Stakeholder name, populates the descriptive text for
the Use Case with that of the original Need, creates a «refine» dependency from
the Use Case to the original Need and places the Use Cases on the diagram. It
also adds any other Stakeholder Roles (as actors) to the diagram, linked to the
Use Cases that they too have an interest in (by looking to see which other Sta-
keholder Roles are linked to the Needs discovered for the Stakeholder on which
the script is run). When run, this script executes all the above in a few seconds
and results in an initial diagram that would take the modeller perhaps 15 min to
create. Not only does this save time but also ensures that the initial information
added is correct, no links have been missed and also enforces the organisation’s
naming convention when creating the new Use Cases.

● Check a model for integrity in terms of conformance with a Framework. These
scripts, which are very focused in nature, are written to ensure the data integ-
rity of a model in terms of the models conformance to a Framework (see
Chapter 11 for a discussion of Frameworks and their associated concepts). The
Ontology Definition View for a Framework will define the allowed domain
concepts and relationships, and the various Viewpoint Definition Views of the
Framework will define what is allowed on each View constructed in accor-
dance with the Framework. Implementing such a Framework as a profile in

692 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

your SysML tool will go some way to enforce conformance by, for example,
making it hard to add the wrong type of model element to a View. However,
this only addresses some of the issues of Framework conformance. Scripting
can allow checks against relationships from an Ontology, for example, to
be easily checked. For example, in the SysML tool used by the authors, they
have implemented checking scripts for the Frameworks described in this book.
One such example, from the ACRE Framework (see Chapter 9), is run on a
package and recurses through that package and the package structure below it
looking for Use Cases. For each Use Case it finds, it checks that the Use Case
either directly or indirectly refines a Need. If no such «refine» dependency is
found, the Use Case is reported as being non-compliant. Approximately
20 such checking scripts, for the ACRE Framework alone, have been written
that perform similar types of checks. These scripts can be run in minutes on
very large parts of the model, performing checks that would take a human
reviewer hours, if not days, to carry out and to carry out almost certainly
carried with errors.

Writing such scripts takes time. However, once written, such scripts can be used at
any time and can be re-used on future models that follow the same standards for
model structure and which use the same Frameworks. The correctness checking
scripts in particular can massively change (for the best) the way in which an
organisation approaches modelling and reviewing. One of the authors’ customers
now runs detailed conformance checks on at least a weekly basis, allowing them to
very quickly address errors in their model that prior to the use of such scripts would
be detected at most monthly as part of a very time-consuming, labour-intensive
and, frankly, boring manual review. Their systems engineering is becoming much
more responsive and much less error-prone through the use of such scripts.

Of course, other types of scripts can be written to aid in day-to-day model
tasks, such as utility scripts that allow large numbers of elements to be quickly
renamed, scripts that quickly turn compartments (such as a block’s operations
compartment) on or off for multiple elements and scripts that add, delete or
rename tags for multiple elements. The power of scripting is only limited by the
tool’s Application Programming Interface and your imagination. Nevertheless,
in terms of model management, it is the three types discussed above that are the
most useful. Again, if your tool does not support scripting, perhaps it is time to
find a better tool.

19.4 Chapter summary

This chapter has presented our thoughts on how to structure SysML models and on
model management.

Wherever possible, any SysML tool used should allow the modeller to organise
a model as desired, perhaps providing multiple ways of viewing the model’s con-
tents. Avoid using the tool’s default model structure, if it provides one; such a
structure will rarely be suitable.

Model Structure and Management 693

Similarly, different SysML tools provide different ways of addressing issue of
model management such as configuration and version management, model access,
sandboxing and scripting. A number of thoughts on these topics have been given.
The reality is, shock, horror, that no SysML tool is perfect or does what you want.
Think about what aspects of model management are important to you and chose a
tool appropriately. Chapter 18 discussed tools and tool evaluation in some detail.
The harsh truth is that if your tool gives no support for basic access control and
versioning, perhaps you should be using a different tool.

Reference

[1] ISO/IEC. ‘ISO/IEC 15288:2015 Systems and Software Engineering – System
Life Cycle Processes’. 1st edn. Geneva, Switzerland. International Organisa-
tion for Standardisation; 2015.

694 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Chapter 20

Model Maturity

20.1 Introduction

A common problem that many industries face is how to know when it is appropriate
to start to adopt and integrate new technologies into their systems. The problem is
that when a technology is at a low level of maturity, the risks associated with
adopting the new technology are high. Of course, this may be a necessary adoption
of technology, but it is important that maturity of that technology is known. The
same is true for Models – how do we know when a Model is ready to be imple-
mented or is complete? There are several problems that will be faced by Modellers
when applying MBSE:

● Some people will think that the existence of a Model implies that it is both
complete and correct.

● If a non-MBSE person looks at a Model periodically over a project, it may not
be apparent how the Model has matured. Just counting the number of Views,
for example, is no indication of the maturity of a Model, just the size.

● Size of a Model does not imply quality of the Model.

In this chapter, we discuss how the concept of Maturity Levels, which are used
extensively in the industry, can be adopted for MBSE.

20.2 Maturity

Maturity is a key indicator that is used to assess the risk associated with the
adoption of a new technology or system, and maturity assessments have been
widely applied in many sectors for many years.

There are also many areas where we can apply and assess maturity. This will
be discussed in the next few sections.

20.2.1 Technology maturity
Technology maturity relates to Artefacts that may represent anything that is pro-
duced or consumed by a process, such as software, subsystems, systems, systems of

systems, processes, procedures, methodologies, new technologies, etc. The matur-
ity of these artefacts is an essential part of risk assessment that is used when:

● A new artefact, such as a new technology, is being adopted.
● A new system-related artefact, such as a subsystem of system, is being intro-

duced into an existing system.
● A new capability-related artefact, such as processes, life cycles or methodolo-

gies, is being introduced for example for integration or transition to production.
● A new individual-related artefact, such as competency frameworks, compe-

tency scopes and profiles, etc., is being introduced into a business.

Currently, the maturity of such artefacts is assessed using ‘‘readiness levels’’ that
have been adopted in a number of areas:

● Technology Readiness Levels (TRLs) – TRLs were originally conceived at
NASA in the 1970s and described as an assessment procedure in the 1980s [1].
They were originally used to assess how suitable developing systems and
technologies were for integration and implementation into existing complex
systems were, along with any associated risk. TRLs are typically defined using
nine levels that range from basic principles to deployment in missions.

● Manufacturing Readiness Levels (MRLs). Reference [2] MRLs are intended to
assess the manufacturing capabilities and their associated risks. MRLs were
developed from existing manufacturing practices documented in Government,
Industry and Academia sources.

● Integration Readiness Levels (IRLs). Reference [2] IRLs have been proposed
for use where two or more subsystems or systems are integrated to together.
IRLs are not currently mandated by any industry.

● System Readiness Levels (SRLs). Reference [2] SRLs provide a measure of
system maturity by combining and assessing the TRL and IRL assessments to
provide an overall level for the system. Although originally only defined using
five levels [3], SRLs are now widely defined as nine levels, consistent with
most other readiness level frameworks.

Most of these techniques identified will typically have nine readiness levels.

20.2.2 Process maturity
The maturity of processes is important for demonstrating the capability of an
organisation, or an organisational unit, within a defined operating context. Maturity
of processes is typically assessed by assessing a number of key indicators asso-
ciated with a pre-defined set of processes (the scope), and calculating a maturity
level for each process that can then provide an overall capability maturity. Exam-
ples of process maturity include Capability Maturity Model (CMM) [4] for soft-
ware, CMMI [5] for systems, ISO 15504 [6] for software and many more. There are
typically five maturity levels which for CMMI are:

● Level 1 – Initial. Processes at this level are typically undocumented and tacit,
existing mainly within the heads of the developers of the system. These

696 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

processes do exist, as otherwise there would be no system being produced, but
are executed on an ad hoc basis and may vary from person by person.

● Level 2 – Repeatable. Processes at level 2 may be documented and, in some
cases repeated amongst small teams on a project-by-project basis. There is
some rigour in the processes at level 2, but no consistency across the organi-
sation or organisation unit.

● Level 3 – Defined. Processes at level 3 are defined and documented and apply
across the organisation or organisational unit. The artefacts associated with the
processes are also managed and configured.

● Level 4 – Managed. Processes at this level are measured, using process
metrics, so that they can be managed in a more effective and efficient
manner.

● Level 5 – Optimising. Processes at this level are not only measured but the
results of the metrics are also fed back in order to continuously improve over
time, constantly reflecting the basic organisational needs of the business.

Other maturity models have similar levels, albeit using different terminology.

20.2.3 Individual maturity
If processes allow the ability of an organisation to be assessed, competencies allow
the ability of an individual to be assessed.

A set of competencies may be defined that allow the overall competence of an
individual to be assessed. The set of competencies for a specific stakeholder role is
typically referred to as a competency scope, whereas the measured output of an
assessment against such a scope is typically referred to as a competency profile.

In order to assess competence, a competency framework is used that defines a
set of competencies and associated indicators that may then be used to define
competency scopes and produce competency profiles. In a similar fashion to pro-
cess maturity, competence is defined using a pre-defined set of levels, typically
between four and nine. Examples of such competency frameworks include Skills
Framework for the information Age (SFIA), International Council on Systems
Engineering (INCOSE) Competencies Framework, People CMM, Association of
Project Management (APM), Association of Proposal Management Professionals
(APMP) and many more.

Competence (individual maturity) and capability (organisational maturity) are
strongly related to one another as one enables the other.

The whole topic of Competence is discussed elsewhere in this book.

20.3 Modelling for TRLs

On the basis that there are several types of readiness levels, and that they all have a
similar structure, this structured can be modelled. The basic structure of all the
types of readiness levels identified above (TRLs, MRLs, IRLs and SRLs) is the
same, as shown in the following diagram.

Model Maturity 697

The diagram in Figure 20.1 shows that there are four types of ‘Readiness
Level’ that are ‘TRL’, ‘MRL’, ‘IRL’ and ‘SRL’. Each of these types of ‘Readiness
Level’ has the same structure in that each comprises:

● ‘Level Description’ that is made up of a ‘Level Number’ (a number between 1
and 9), a ‘Definition’ (a text description) and one or more examples of ‘Sup-
porting Evidence’ (example of what is acceptable as evidence for this level).

● ‘Checklist’ that is made up of one or more ‘Factor’. These Factors provide the
assessment criteria for each piece of Supporting Evidence that relates to each
Level.

The levels for each of these types of readiness level along with their definition are
typically shown using a table that provides a set of criteria for each level. An
example of this can be seen in Table 20.1.

«block»
Readiness Level

«block»
TRL

«block»
MRL

«block»
IRL

«block»
SRL

«block»
Level Description

«block»
Level Number

«block»
Definition

«block»
Supporting Evidence

«block»
Checklist

«block»
Factor

1

1

1 1..*

1

1..*

1
is assessed against

1..*

Figure 20.1 Basic structure of Readiness Levels

698 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

The table here shows how each of the different types of readiness levels has a
set of criteria defined. Clearly, these will be defined for all nine or so levels, and
this table is intended to be indicative of typical readiness level definitions.

These tables are used as a basis for posing questions to Managers (typically),
and the results may be recorded using a similar table.

20.4 Readiness levels for models

Based on the common structure of the various types of Readiness Levels shown in
Figure 20.1, a new type of Readiness Level, hereafter referred to the Model
Readiness Level (MoRL), was defined.

The MoRL definition is shown in Table 20.2. There are nine Levels defined
that align with the Level Definitions for TRLs, IRLs, MRLs and SRLs.

The definition for each Level relates specifically to Models and describes the
maturity of the Model at each Level. It is now possible, therefore, to abstract a simple
Model that describes the basic assessment concepts that we need to consider.

The diagram in Figure 20.2 shows the key concepts associated with each
Readiness Level.

Each Readiness Level has a number of Factors that provides a set of indicators
that are used to qualify the Readiness Level. These Factors are:

● Source information. This Factor identifies that there is some source informa-
tion available for the Model. Examples of this include surveys, papers,
description of work documents, project overviews, etc. This source informa-
tion can include anything that would usually provide an input into the needs
definition.

● Need defined. This Factor identifies the basis need for the Model. Examples of
this include requirements models, requirements documentation, business need

Table 20.1 Levels and Definitions for Readiness Levels

Level
Number

TRL Definition MRL
Definition

IRL Definition Common
theme

*RL 1 Basic principles
observed and
reported

Basic Manu-
facturing
Implications
Identified

An interface between
technologies has been
identified with sufficient
detail to allow character-
isation of the relationship

Basic source
information
identified

*RL 2 Technology
concept and/
or application
formulated

Manufacturing
Concepts
Identified

There is some level of
specificity to characterise
the interaction between
technologies through
their interface

Need
identified

Model Maturity 699

definitions, etc. The needs can include anything that would be considered part
of a requirements engineering activity associated with the system.

● Validation defined. There is no value in having the needs for the Model defined
if it is not possible to demonstrate that those needs can be satisfied, so it is
essential that validation criteria for the needs is defined.

Table 20.2 Definition of the Model Readiness Levels

MoRL Level Definition Supporting evidence

1. Basic principles observed Basic source information is gathered and
collated as an input to demonstrating need

Academic/industrial papers, project
DOW, surveys

2. Technology concept or
application formulated

Concept is defined through definition of
needs model

Need Description Views, Context Definition
Views, Need Context Views

3. Characteristic proof of
concept

Validation criteria for concept is defined,
analysed and reviewed

Validation Views

4. Model defined based on
concepts and proof

The model of the approach, based on the
concepts and proof, is defined and verified

Approach (Ontology, Framework, etc.) defined
using established framework

5. Model validated on
relevant test applications

Partial model of approach is applied to one or
more test applications, such as established or
predefined test application models

Incomplete set of artefacts (views) produced
based on the defined approach using one or
more test applications

6. Model demonstration in
relevant environment

Model of approach is completed and process is
defined. Approach model is applied to one or
more test applications, such as established
or predefined test application models

Complete set of Views produced based on the
defined approach using one or more test
applications. Processes for Framework
defined

7. Model demonstration in
operational environment

Model is applied to one or more industrial
case studies

Complete set of artefacts (Views) produced
based on industry case study

8. Model completed and
qualified

Model tailored for specific industry and is
applied on real industry projects

Tailored Model developed and applied on real
industry projects

9. Model proven through
successful mission
operations

Model becomes part of industry approach,
is measured and controlled by industry
quality system

Tailored model becomes part of industry quality
management system

«block»
Readiness Level

«block»
Factor

«block»
Indicator

«block»
State

«block»
Evidence

1
provides quality measure for

1

1..*

qualifies

1

1..*
demonstrates satisfaction of

1

Figure 20.2 Assessment concepts

700 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● Approach. The Model must be developed according to a defined approach,
such as frameworks, processes, standards, etc.

● Test application. The model must be tested before it can be deployed. This may
take the form of laboratory-style testing, alpha testing, etc.

● Case study. The Model must be applied to a real-life project and system, in
order for its suitability for deployment to be assessed.

● Tailored model. The model has been applied, measured and assessed.
● Applied approach. The model along with its overall approach is defined.

Depending on the Level, some of these Factors are relevant and some are not. These
Factors are elaborated in the following table. As the Model increases in maturity, so
the number of relevant Factors increases.

Each Indicator is satisfied by providing Evidence. The Evidence for each
Indicator identifies a number of modelling-relating concepts. The existence of
Evidence for each Indicator provides an indication of the Readiness Level.

The Indicators may also have a State associated with them, which provide a
quality measure, which are defined as follows:

● Initial – Some Artefacts exist but have not been reviewed and are not held
under configuration management.

● Updated – The Artefacts have been reviewed and, where necessary, updated to
reflect the results of the review. Artefacts are held under configuration
management.

● Incomplete – The Artefacts produced have been reviewed but do not reflect the
full set of Artefacts for the approach.

● Complete – The Artefacts produced have been reviewed and reflect the full set
of Artefacts for the approach.

● Tailored – The Artefacts have been tailored for a specific industry.
● Accepted – The Artefacts produced have been reviewed and accepted as fit for

purpose.
● Adopted – The Artefacts produced have been validated and accepted as fit for

purposes and now form part of the industry Quality Management System.

The Checklist and associated Factors and how they relate to each Level are ela-
borated upon in Table 20.3.

Table 20.3 shows the whole Checklist along with each Factor and how they
relate to each Level. This information in this table is intended to be guidance for
determining whether each Indicator has been satisfied or not.

Notice how, as the Levels increase in number, the set of required Factors also
increases. Also, the Evidence required and its State will also increase as the pro-
gressively higher Levels demand more rigour.

This table shows a good set of basic information that can be used for assess-
ment but, of course, you should feel free to tailor this to suit your own ends.

Model Maturity 701

20.5 Assessment approach

The approach taken for performing the assessment is based on how similar
assessments are carried out in the fields of capability assessment (such as CMMI)
and competency assessment (such as the INCOSE Competencies Framework).

It is important that a Process is defined that will allow us to perform Model
Maturity Assessment. The exact Process will depend on how rigorous you want this
assessment to be, but a minimum set of Activities for such a Process are:

● Define the scope of the assessment. This involves determining which views in
the model will be assessed and to what level they will be assessed. In the case
of a large model with many views there may be only a subset of views that will
be assessed. Also, there are several scenarios where the model will not be
assessed up to the highest level. For example, if the model is quite new and the
maturity of the model is expected to low, then the assessment may be limited to
the first few levels.

● Define the context of the assessment. The project and system that the model
represents is identified, along with the organisational unit that owns the model.

● Assess model. Assess each view, or collection of views, using the Factors and
their associated Indicators. The supporting Evidence for each Indicator is
recorded.

● Produce the Maturity Profile for the model. A bar-chart-style profile is pro-
duced that shows the views included in the scope and the level that each has
attained.

Table 20.3 Checklist and Factors

Level Factor

Source
information

Need defined Validation
defined

Approach Test
application

Case
study

Tailored
model

Applied
approach

MoRL 1 DOW, papers,
surveys (initial)

N/A N/A N/A N/A N/A N/A N/A

MoRL 2 Source information
defined (initial)

Need definitions, Need
contexts (initial)

N/A N/A N/A N/A N/A N/A

MoRL 3 Source information
defined (updated)

Need definitions, Need
contexts (updated)

Validation
Views

N/A N/A N/A N/A N/A

MoRL 4 Source information
defined (updated)

Need definitions, Need
contexts (updated)

Validation Views
(updated)

Ontology, Framework
(initial)

N/A N/A N/A N/A

MoRL 5 Source Element
Views (accepted)

Need definitions, Need
contexts (updated)

Validation Views
(updated)

Ontology, Framework
(updated)

Views
(incomplete)

N/A N/A N/A

MoRL 6 Source Element
Views (accepted)

Need definitions, Need
contexts (updated)

Validation Views
(updated)

Ontology, Framework,
Processes (updated)

Views
(complete)

N/A N/A N/A

MoRL 7 Source Element
Views (accepted)

Need definitions, Need
contexts (updated)

Validation Views
(updated)

Ontology, Framework,
Processes (updated)

N/A Views
(complete)

N/A N/A

MoRL 8 Source Element
Views (updated)

Need definitions, Need
contexts (tailored)

Validation Views
(tailored)

Ontology, Framework,
Processes (tailored)

N/A Views
(accepted)

Views
(complete)

N/A

MoRL 9 SEV (accepted) Need definitions, Need
contexts (accepted)

Validation Views
(accepted)

Ontology, Framework,
Process (accepted)

N/A N/A Views
(accepted)

QMS
(adopted)

702 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Whilst carrying out the assessment, there are a number of Rules that have been
defined that will constrain the way that the assessment is carried out. Examples of
these Rules include:

● Level progression. It is impossible to achieve a Level without having achieved
the lower levels. For example, it is impossible to attain Level 5 without already
holding Levels 1–4.

● Maximum overall Level. The maximum Level attainable by the overall model
is limited to the lowest individual Level. Therefore, if four views are being
assessed and they attain Levels 5, 2, 4 and 6, then the overall Level for the
model would be 2 (the lowest individual Level).

The final output of the assessment is the Maturity Profile, an example of which is
shown below.

The diagram in Figure 20.3 shows an example Maturity Profile where the
views that comprise the scope are shown on the x-axis and the MoRLs are shown on
the y-axis.

20.6 Applying Model Maturity

Model Maturity assessment is something that should be carried out at regular
intervals on a Project. The trend of the Maturity evolution can be seen by com-
paring the Maturity Profiles from several assessments.

An example of where this can be very useful is as a standard part of a Systems
Engineering Management Plan that will be created at the beginning of a Project and
then updated periodically as the project progresses.

In order for the assessment to be practical, it is important that the assessment
may be carried out quickly and as simply as possible. The assessment should, in
reality, take an hour or two, rather than a day or two. By using the simple table, this

Level 9

Level 8

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

View #1 View #2 View #3 View #4

Figure 20.3 Example Maturity Profile

Model Maturity 703

becomes possible. A typical Manager should be able to ask the questions shown in
the table, and a competent Modeller should be able to answer each immediately and
also be able to show the evidence, by navigating the Model, very quickly.

20.7 Conclusions

There is a definite need for demonstrating the maturity of a Model at a given point
in time. This is particularly relevant when some Stakeholder Roles do not fully
comprehend the use of Models. To some, the existence of a Model in itself means
that the modelling has been completed. It is important therefore that we can apply
an approach to demonstrating how mature our Model is at any point.

The approach shown in this chapter is one that the authors have used exten-
sively in a number of industries and that a good provenance in terms of TRLs (etc.).
The approach is simple, quick and providing that a competent Modeller is on hand,
should not be onerous to carry out.

The output of the assessment may be visualised using a simple bar chart, as
shown here, or may provide an input into a more in-depth report.

References

[1] Sadin S.R., Povinelli F.P. and Rosen R. ‘The NASA technology push towards
future space mission systems’. Acta Astronautica. 1989;20:73–7.

[2] Bilbro J.W. ‘A suite of tools for technology assessment’. AFRL Technology
Maturity Conference, Sep 2007; 2007. Available at: http://www.dtic.mil/
cgi-bin/GetTRDoc?Location¼U2&doc¼GetTRDoc.pdf&AD¼ADA507181
(accessed April 2018).

[3] Sauser B., Verma D., Ramirez-Marquez J. and Gove R. ‘From TRL to SRL:
the concept of systems readiness levels’. In Conference on Systems
Engineering Research. Los Angeles, CA; 2006. Available at: http://www.
boardmansauser.com/downloads/2005SauserRamirezVermaGoveCSER.pdf
(accessed May 2018).

[4] Paulk M.C., Weber C.V., Curtis B. and Chrissis M.B. ‘Capability maturity
model for software (Version 1.1)’. Technical Report, February 1993. Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon University.

[5] CMMI Version 1.3 Information Center. Software Engineering Institute. 2011.
Available at: https://cmmiinstitute.com/resources/cmmi-development-version-13
(accessed 16 February 2011).

[6] CMMI. CMMI for Development, Version 1.3. CMMI-DEV (Version 1.3,
November 2010). Pennsylvania, USA: Carnegie Mellon University Software
Engineering Institute; 2010. Available at: http://www.sei.cmu.edu/library/
abstracts/reports/10tr033.cfm (accessed 16 February 2011).

704 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Part 6 – Annex

P6.1 Overview

This part of the book is structured according to the diagram in Figure P6.1.

This part of the book provides a wealth of information that can be used when
employing model-based systems engineering (MBSE) in real Organisations, on real
Projects in real life. This annex is intended to be used as a resource for MBSE
practitioners, and comprises five appendices.

● ‘Appendix A – Ontology and Glossary’. This appendix provides a summary of
the MBSE Ontology and definitions of all the concepts organised as a glossary,
which was introduced in Chapter 3.

● ‘Appendix B – Summary of SysML Notation’. This appendix provides a
summary of the entire SysML notation, which was introduced in Chapter 5.

«block»
Annex

«block»
Annex – Overview

«block»
Appendix A – Ontology and

Glossary

«block»
Appendix B – Summary of

SysML

«block»
Appendix C – ISO 15288

Process Model

«block»
Appendix D – Competency

Framework

«block»
Appendix E – The MBSE

Memory Palace

Figure P6.1 Structure of ‘Annex’

● ‘Appendix C – ISO 15288 Process Model’. This appendix defines the full model
for the ISO standard that may be used for compliance or reference purposes.

● ‘Appendix D – Competency Framework’. This appendix defines two complete
sets of Competency Scopes, one for the INCOSE Competencies Framework
and one for the MBSE Competency Framework, for each of the Stakeholders
Roles that are used in all of the Processes described in this book.

● ‘Appendix E – The MBSE Memory Palace’. This appendix contains a memory
palace that provides an aid for enhancing the recollection of large amounts of
information, in this case aimed at the MBSE Ontology.

All of the information presented in this annex is intended for reference only, and, in
many cases, this information will need to be tailored to suit your own organisational
Needs. Having said this, however, the information here should certainly shorten the
learning curve for MBSE and provide an excellent start point for any MBSE endeavour.

706 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Appendix A

Ontology and Glossary

A.1 Introduction

This appendix provides a summary of the model-based systems engineering
(MBSE) Ontology (Figure A.1). For full details, see Chapter 2; no explanation or
additional details are given in this appendix.

A.2 Ontology

«ontology element»
Viewpoint Element

«ontology element»
Architectural Framework

«ontology element»
Architecture

«ontology element»
Ontology

«ontology element»
Ontology Element

«ontology element»
View

«ontology element»
View Element

«ontology element»
Viewpoint

«ontology element»
Rule

«ontology element»
Enabling System

«ontology element»
Constituent System

«ontology element»
System Element

«ontology element»
System Context

«ontology element»
System of Interest

«ontology element»
System of Systems

«ontology element»
System

«ontology element»
Virtual System

«ontology element»
Collaborative System

«ontology element»
Directed System

«ontology element»
Acknowledged System

«ontology element»
Product

«ontology element»
Service

«ontology element»
Activity

«ontology element»
Artefact

«ontology element»
Process

«ontology element»
Process Execution Group

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Context

«ontology element»
Use Case

«ontology element»
Level

«ontology element»
Competence

«ontology element»
Competency

«ontology element»
Competency Scope

«ontology element»
Competency Profile

«ontology element»
Person

«ontology element»
Life Cycle

«ontology element»
Life Cycle Interaction

«ontology element»
Life Cycle Interaction

Point

«ontology element»
Life Cycle Model

«ontology element»
Gate

«ontology element»
Stage

«ontology element»
Project

«ontology element»
Programme

«ontology element»
Organisational Unit

«ontology element»
Organisation

«ontology element»
Concern

«ontology element»
Need

«ontology element»
Source Element

«ontology element»
Need Description

«ontology element»
Scenario

«ontology element»
Capability

«ontology element»
Goal

«ontology element»
Requirement

«ontology element»
Stakeholder Context

«ontology element»
Project Context

«ontology element»
Organisational Context

«ontology element»
Semi-formal Scenario

«ontology element»
Formal Scenario

«ontology element»
Process Context

1 requires

1

1..*

constrains

1

1..*

is executed during

1

1

is related to

0..*

1

is assessed against

1

1

shows the order of execution of1..*

1
is realised as

1..*

1is held at
1

1..*

is elicited
from

1..*

1..*

shows
behaviour of

1

1

consumes 1..*

0..*

1

1..*

produces/consumes

1..*

0..*

1

1

describes interactions between

1

1..*

1

1..*

0..1

1..*

describes

1..*

1..*

interacts with

1

1..*

is executed during

1

1

1describes

1

1..*

describes m
easured

1

1..*

1

1

represents the need for

1..*

1

represents the
need for

1

1

produces

1..*

1..*

is needed to
deliver

1

1..*

constrains

1..*

1..*

validates

1..*

1..*

de
sc

rib
es

 th
e

ev
ol

ut
io

n
of

1

1

is responsible for1..*

1..*

uses elements from

1

1..*

describes the evolution of

1

1

interfaces with

1..*

1

exhibits

1

1..*

1

1..*holds1..*

1..*realises1..* 1

1..*

1

1..*

represents the need for
1

1..*

meets
1..*

1

interacts
with

1..*

1..*

1..*

1

1..*

describes the
context of

1..*

1

describes measured
abilities of

1

1

describes structure of

1

1..*

has an
interest in

1

1..*

describes the need for

1

{incomplete}

1..* 1

1..*

visualises

1

1..*

1..*

1

0..*

1..*

1
1

interacts
with

1..*

1..*

runs

1..*

1..*

describes desired

1

1..*

corresponds to

1
1..*

1

1

assesses the execution of

1

1..*

1

interacts
with

1..*

1..*

conforms to

1

Figure A.1 The full MBSE Ontology

A.3 Glossary

Acknowledged System A special type of System of Systems that has
designated management and resources, and a con-
sensus of purpose. Each Constituent System retains
its own management and operation

Activity A set of actions that need to be performed in order
to successfully execute a Process. Each Activity
must have a responsible Stakeholder Role asso-
ciated with it and utilises one or more Resource

Architectural
Framework

A defined set of one or more Viewpoints and an
Ontology. The Architectural Framework is used to
structure an Architecture from the point of view of a
specific industry, Stakeholder Role set or Organi-
sation. The Architectural Framework is defined so
that it meets the Needs defined by one or more
Architectural Framework Concern. An Archi-
tectural Framework is created so that it complies
with zero or more Standard

Architectural
Framework Concern

Defines a Need that an Architectural Framework
has to address

Architecture A description of a System, made up of one or more
View. One or more related View can be collected
together into a Perspective

Artefact Something that is produced or consumed by an
Activity in a Process. Examples of an Artefact
include documentation, software, hardware, sys-
tems, etc.

Capability A special type of Need the Context of which will
typically represent one or more Project (as a Project
Context) or one or more Organisational Unit (as an
Organisational Context). A Capability will meet
one or more Goal and will represent the ability of an
Organisation or Organisational Unit

Collaborative System A special type of System of Systems that lacks
central management and resources but has con-
sensus of purpose

Competence The ability exhibited by a Person that is made up of
a set of one or more individual Competencies

Competency The representation of a single skill that contributes
towards making up a Competence. Each Compe-
tency is held at a Level that describes the maturity
of that Competency. There are four Level defined
for the MBSE Ontology

Ontology and Glossary 709

Competency Profile A representation of the actual measured Competence
of a Person and that is defined by one or more Com-
petency. An individual’s competence will usually be
represented by one or more Competency Profile.
A Competency Profile is the result of performing a
competence assessment against a Competence Scope

Competency Scope Representation of the desired Competence required
for a specific Stakeholder Role and that is defined
by one or more Competency

Constituent System A special type of System whose elements are one or
more System Element

Context A specific point of view based on, for example,
Stakeholder Roles, System hierarchy level, Life
Cycle Stage, etc.

Directed System A special type of System of Systems that has
designated management and resources, and a con-
sensus of purpose. Each Constituent System retains
its own operation but not management

Enabling System A special type of System that interacts with the
System of Interest yet sits outside its boundary

Formal Scenario A Scenario that is mathematically provable using,
for example, formal methods

Gate A mechanism for assessing the success or failure of
the execution of a Stage

Goal A special type of Need the Context of which will
typically represent one or more Organisational Unit
(as an Organisational Context). Each Goal will be
met by one or more Capability

Indicator A feature of a Competency that describes knowl-
edge, skill or attitude required to meet the Compe-
tency. It is the Indicator that is assessed as part of
competency assessment

Life Cycle A set of one or more Stage that can be used to describe
the evolution of System, Project, etc. over time

Life Cycle Interaction The point during a Life Cycle Model at which one
or more Stages interact with each other

Life Cycle Interaction Point The point in a Life Cycle where one or more Life
Cycle Interactions will occur

Life Cycle Model The execution of a set of one or more Stage that
shows the behaviour of a Life Cycle

Need A generic abstract concept that, when put into a
Context, represents something that is necessary or
desirable for the subject of the Context

710 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Need Description A tangible description of an abstract Need that is
defined according to a pre-defined set of attributes

Ontology An element of an Architectural Framework that
defines all the concepts and terms (one or more
Ontology Element) that relate to any Architecture
structured according to the Architectural Framework

Ontology Element The concepts that make up an Ontology. Each
Ontology Element can be related to each other and
is used in the definition of each Viewpoint (through
the corresponding Viewpoint Element that makes
up a Viewpoint). The provenance for each Ontology
Element is provided by one or more Standard

Organisation A collection of zero or more Organisational Units,
it runs one or more Projects and will have its own
Organisational Context

Organisational Unit A special type of Organisation that itself can make
up part of an Organisation. An Organisational Unit
also runs one or more Projects and will have its own
Organisational Context

Person A special type of Resource, an individual human,
who exhibits Competence that is represented by
their Competency Profile. A Person also holds one
or more Stakeholder Role

Perspective A collection of one or more Views (and hence also
one or more defining Viewpoints) that are related
by their purpose. That is, one or more Views which
address the same architectural needs, rather than
being related in some other way, such as by mode of
visualisation, for example.

Process A description of an approach that is defined by one
or more Activities, one or more Artefacts and one or
more Stakeholder Roles. One or more Processes
also define a Service

Process Execution Group A set of one or more Processes executed in order for
a specific purpose as part of a Stage. For example,
a Process Execution Group may be defined based
on a team, function, etc.

Product Something that realises a System. Typical products
may include, but are not limited to, software, hard-
ware, Processes, data, humans, facilities, etc.

Programme A special type of Project that is itself made up of
one or more Projects

Project One or more Projects are run by an Organisational
Unit in order to produce one or more Systems

Ontology and Glossary 711

Requirement A property of a System that is either needed or
wanted by a Stakeholder Role or other Context-
defining element. Also, one or more Requirements
are needed to deliver each Capability

Resource Anything that is used or consumed by an Activity
within a Process. Examples of a Resource include
money, locations, fuel, raw material, data, people, etc.

Rule A construct that constrains the attributes of a Need
Description. A Rule may take several forms, such
as, equations, heuristics, reserved word lists, gram-
mar restrictions, etc. Or A construct that constrains
an Architectural Framework (and hence the result-
ing Architecture) in some way, for example, by
defining one or more Viewpoint that are required as
a minimum

Scenario An ordered set of interactions between or more Sta-
keholder Roles, Systems or System Elements that
represents a specific chain of events with a specific
outcome. One or more Scenarios validate each Use
Case.

Semi-formal Scenario A Scenario that is demonstrable using, for example,
visual notations such as SysML, tables, text, etc.

Service An intangible Product that realises a System.
A Service in itself is realised by one or more Pro-
cess (see also: Process)

Source Element The ultimate origin of a Need that is elicited into one
or more Need Descriptions. A Source Element can be
almost anything that inspires, effects or drives a Need,
such as a Standard, a System, Project documentation,
a phone call, an email, a letter, a book, etc.

Stage A period within a Life Cycle that relates to its rea-
lisation through one or more Process Execution
Groups. The success of a Stage is assessed by a Gate

Stakeholder Role The role of anything that has an interest in a System.
Examples of a Stakeholder Role include the roles of
a Person, an Organisational Unit, a Project, a Source
Element and an Enabling System. Each Stakeholder
Role requires its own Competency Scope and will be
responsible for one or more Activities

System A set of interacting elements organised to satisfy
one or more System Context. Where the System is a
System of Systems, its elements will be one or more
Constituent System, and where the System is a
Constituent System, its elements are one or more

712 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

System Element. A System can interact with one or
more other System. The artefact being engineered
that an Architecture describes

System Element A basic part of a Constituent System

System of Interest A special type of System that describes the system
being developed, enhanced, maintained or investigated

System of Systems A special type of System whose elements are one or
more Constituent System and which delivers unique
functionality not deliverable by any single Con-
stituent System

Use Case A Need that is considered in a specific Context and
that is validated by one or more Scenarios

View The visualisation of part of the Architecture of a
System that conforms to the structure and content
defined in a Viewpoint. A View is made up of one
or more View Elements

View Element The elements that make up a View. Each View
Element visualises a Viewpoint Element that makes
up the Viewpoint to which the View, on which the
View Element appears, conforms

Viewpoint A definition of the structure and content of a View.
The content and structure of a Viewpoint uses the
concepts and terms from the Ontology via one or
more Viewpoint Elements that make up the View-
point. Each Viewpoint is defined so that it meets the
needs defined by one or more Viewpoint Concerns

Viewpoint Concern Defines a Need that a Viewpoint has to address

Viewpoint Element The elements that make up a Viewpoint. Each
Viewpoint Element must correspond to an Ontology
Element from the Ontology that is part of the
Architectural Framework

Virtual System A special type of System of Systems that lacks
central management and resources, and no con-
sensus of purpose

Ontology and Glossary 713

This page intentionally left blank

Appendix B

Summary of SysML Notation

B.1 Introduction

This appendix provides a summary of the meta-model and notation diagrams for
SysML that are used in Chapter 5. For each of the nine SysML diagram types,
grouped into structural and behavioural diagrams, three diagrams are given:

● A partial meta-model for that diagram type.
● The notation used on that diagram type.
● An example of that diagram type.

The same information is also given for the SysML auxiliary constructs. The
appendix concludes with a diagram that illustrates some of the main relationships
between the SysML diagrams.

This appendix does not add further information to that found in Chapter 5 but is
intended to provide a single summary section of the noted diagrams. See Chapter 5
for a discussion of each diagram.

B.2 Structural Diagrams

This section contains diagrams for each of the five SysML structural diagrams
(see Figure B.1):

● Block definition diagrams (Figures B.2–B.6)
● Internal block diagrams (Figures B.7–B.9)
● Package diagrams (Figures B.10–B.12)
● Parametric diagrams (Figures B.13–B.16)
● Requirement diagrams (Figures B.17–B.19)

The 5 SysML
structural diagrams

pkg [Package] Package Diagram [Package Diagram]

Package1

Package2

«import»

ibd [Block] Block1 [Internal Block Diagram]

PartB: Block2[1]

PartA: Block4[1..*]

par [ConstraintBlock] Parametric Diagram [Parametric Diagram]

Property4: Real

ConstraintProperty1 : ConstraintBlock1

Parameter1:
Real

Parameter2:
Real

req [Package] Requirement Diagram [Requirement Diagram]

«block»
Block1

«requirement»
Requirement1

id = "001"
text = "The System shall ..."

«satisfy»

bdd [Package] Block Definition Diagram [Block Definition Diagram]

«block»
Block1

«block»
Block2

«block»
Block3

«block»
Block4

PartB 1

PartA 1..*

Figure B.1 Summary of structural diagrams

716 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

B.2.1 Block Definition Diagrams

«graphic node»
Block

«diagram»
Block Definition

Diagram

Property

«graphic path»
Relationship

«graphic node»
Instance Specification

«graphic node»
Interface Block

«graphic node»
Proxy Port

«graphic node»
Port

«graphic node»
Full Port

«graphic path»
Item Flow

Flow Property

1
relates together

1..2

0..*

is typed by

1

0..*

0..*

flows between

0..*

0..*

1..*

1..*

defines instance of

11

has interaction points defined by

0..*

0..*

0..*

is nested with

1

0..*

0..*

1

conveys
1

0..*

is typed by

1

0..*

is typed by

1

Figure B.2 Partial meta-model for block definition diagrams

Summary of SysML Notation 717

«graphic node»
Block

OperationProperty Constraint

Part Property Reference Property

Value Property Flow Property

Feature

Provided Feature

Required Feature

Provided &
Required Feature

{NOT Flow Property}

0..*

1..*
may be marked as

1

0..*

1..* may be
marked as

1

0..*

Figure B.3 Partial meta-model for the block definition diagram showing block elements

«graphic path»
Relationship

«graphic path»
Association

«graphic path»
Dependency

«graphic path»
Generalization

«graphic path»
Aggregation

«graphic path»
Composition

Figure B.4 Partial meta-model for the block definition diagram showing types
of relationship

«block»
INVISIBLE BLOCK

«block»
Block2

references
 RoleName1 : Block3[1..*]

values
 ̂ BlockProperty1 : Real

«block»
Block1

«block»
Block3

parts
 RoleName2 : Block5[0..*]

Block

Specialisation /
generalisation

«block»
Block4

prov Operation1()

flow properties
 out FlowProperty2 : Real
 in FlowProperty1 : Real

«block»
Block5

values
 BlockProperty1 : Real

«block»
Block8

owned behaviours
«activity» MyActivity

Dependency

Aggregation

Composition

Block with value
property

«block»
Block7

Association
block

Block with
provided operation
and flow
properties

Block with reference
property and inherited
property

Block with part
properties.

«interfaceBlock»
Interface

Operation1(): Real
Operation2(): Block7

Interface block

«block»
Block9

Interface

Interface

«block»
Block11

Port1: Block4

Port2: Block3

«block»
Block6

Port: Block11

Port1: Block4

Port2: Block3

Block with port containing
two nested ports

Port with flow
properties

Provided
interface

Required
interface

«block»
Block12Port2: ~Block4

Conjugated port

Item flows
flowing across
connector

Object1: Block5 Instance
specification

Association showing
role name

classifier behaviours
«stateMachine» MyStateMachine

Block with owned and
classifier behaviours

«block» Block8

«ValueType» Real

RoleName2 0..*

0..1

1
is associated

with

RoleName1

1..*

1

1

Figure B.5 Block definition diagram notation

Summary of SysML Notation 719

bdd [package] System [Coffin Escape - Concepts Showing Fluid Types]

«block»
Pump

prime()
flush()
pump()
pumpReverse()
stopPump()

owned behaviors
«stateMachine» Pump

values
 Rate : m^3/s
 CurrentDirection : PumpDirection

pIn: ~FluidFlow

pOut: FluidFlow

«block»
Coffin

values
 Crush pressure : Pa
 Height : m
 Length : m
 Width : m

«block»
Escapologist

values
 Decision : Decision Type
 Bmax : s

«block»
Hole

values
 Length : m
 Height : m
 Width : m outflow: FluidFlow

inflow: ~FluidFlow

«block»
Fluid

references
 FluidDestination : Hole
 FluidSource : Reservoir

values
 Density : kg/m^3

«block»
Custard

«block»
Concrete

«block»
Water

«block»
Pump Controller

classifier behaviours
«stateMachine» Pump

{incomplete}

1

escapes from

1

1

controls
1

1

placed in
bottom of

1

1

is pumped intoFluidDestination

1

Figure B.6 Example block definition diagram

720 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

B.2.2 Internal block Diagrams

«diagram»
Internal Block Diagram

«graphic node»
Part

«graphic path»
Binding Connector

«graphic path»
Item Flow

«graphic node»
Port

«graphic node»
Full Port

«graphic node»
Proxy Port

Connection is via
Binding Connector

Connection is via
Binding Connector

1

connected to

0..*

0..*

1

has interaction points defined by

0..*

0..*

1..*

flows across

1

1

connected to

0..*
0..*0..*

is nested with

1
0..*

0..*connected to0..*

Figure B.7 Partial meta-model for the internal block diagram

«block»
Block10

: Block11

Port1: Block4

Port2: Block3

Interface

: Block12[1..3]

Port2: ~Block4

«proxy» Port3 :
Interface

«full» Port1

Interface

: Block6

Port: Block11

Port1: Block4

Port2: Block3

Port with two nested
ports

Port with provided
interface

Shared part

Port with flow
properties

: Block13

Nested
part

Owned part

Conjugated port with
flow properties

Proxy port types by an
interface block

Full port with required
interface

Diagram frame shows
owning block

Binding connector with
two item flows

«ValueType» Real

«block» Block6

Figure B.8 Internal block diagram notation

Summary of SysML Notation 721

B.2.3 Package Diagrams

ibd [block] Coffin Escape [Interfaces]

ibd [block] Coffin Escape [Interfaces]

Hole: Hole[1]

inflow: ~FluidFlow Reservoir: Reservoir[1]

outflow: FluidFlow

Pump: Pump[1]

pOut: FluidFlow

pIn: ~FluidFlow

ctrlIn

Controller: Pump
Controller[1]

ctrlOut

«block»
Coffin Escape

«block» Concrete

«block» Concrete

iPump

Figure B.9 Example internal block diagram

«graphic path»
Public Package Import

«graphic path»
Dependency

«graphic node»
Package

«diagram»
Package Diagram

«graphic path»
Package Import

«graphic path»
PrivatePackage Import

0..*

1

shows relationship
between

2

1..*

Figure B.10 Partial meta-model for the package diagram

Package3

Package1

Package2

Public package import

Private package
import

Dependency

Package

«import»

«access»

Figure B.11 Package diagram notation

pkg [package] Model Structure [Model Structure]

Life Cycle Model STUMPI

ISO15288:2015

«import»

«access»

Figure B.12 Example package diagram

Summary of SysML Notation 723

B.2.4 Parametric Diagram

«diagram»
Parametric

Diagram

«graphic path»
Connector

«graphic node»
Constraint Block

«graphic node»
Part

Constraint blocks are
defined on a block
definition diagram.

1..*

is linked to

0..*

0..*1..* 0..*

1

is linked to

0..*

Figure B.13 Partial meta-model for the parametric diagram

«constraint»
ConstraintBlock1

constraints
{ConstraintProperty1 = f (ConstraintProperty2)}

parameters
ConstraintProperty1 : Real
ConstraintProperty2 : Real

Constraint block
definition

Property1 : ConstraintBlock1
{ConstraintProperty1 = f (ConstraintProperty2)}

ConstraintProperty1 : Real

ConstraintProperty2 : Real

Constraint property

Constraint
parameter

Property1: Real Part

Connector

Figure B.14 Parametric diagram notation

724 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

bdd [package] Constraints [Constraint Definitions]

«constraint»
Volume

constraints
{v = w * l * h}

parameters
 l : m
 h : m
 v : m^3
 w : m

«constraint»
Mass

constraints
{m = d * v}

parameters
 d : kg/m^3
 m : kg
 v : m^3

«constraint»
Force

constraints
{f = m * a}

parameters
 f : N
 a : m/s^2
 m : kg

«constraint»
Pressure

constraints
{p = f / a}

parameters
 f : N
 a : m^2
 p : Pa

«constraint»
Surface Area

constraints
{sa = w * l}

parameters
 sa : m^2
 l : m
 w : m

«constraint»
Fill Time

constraints
{t = v / r}

parameters
 t : s
 r : m^3/s
 v : m^3

«constraint»
Minus

constraints
{r = a - b}

parameters
 a : Real
 b : Real
 r : Real

«constraint»
Plus

constraints
{r = a + b}

parameters
 a : Real
 b : Real
 r : Real

«constraint»
Decision - equipment

constraints
{IF pressure < strength THEN result = yes ELSE result = NO}

parameters
 pressure : Pa
 result : Decision Type
 strength : Pa

«constraint»
Decision - breath

constraints
{If breath time >= fill time THEN result = yes ELSE result = no}

parameters
breath time : s
fill time : s
result : Decision Type

«constraint»
Decision - stunt

constraints
{IF breath result = yes AND equipment result = yes THEN result = yes ELSE result = no}

parameters
 breath result : Decision Type
 equipment result : Decision Type
 result : Decision Type

Figure B.15 Example parametric diagram – definition

Summary of SysML Notation 725

par [block] Coffin Escape [Escapologist Decision]

Hole volume : Volume
{v = w * l * h}

v : m^3

w : m

l : m

h : m

Coffin volume : Volume
{v = w * l * h}

v : m^3
w : m

l : m

h : m

Concrete volume : Minus
{r = a - b}

b : Real
r : Real

a : Real

Height

From Coffin

Width

Length

Length

Height

Width

From Hole

Concrete mass : Mass
{m = d * v}

m : kg

d : kg/m^3

v : m^3

Density

From Concrete

Concrete force : Force
{f = m * a}

f : N
m : kg

a : m/s^2

g

From Constants

Coffin surface area : Surface Area
{sa = w * l}

sa : m^2
w : m

l : m

From Coffin

Time : Fill Time
{t = v / r}

t : s

v : m^3

r : m^3/s

Rate

From Pump

Concrete pressure : Pressure
{p = f / a}

p : Pa

f : N

a : m^2

Breath : Decision - breath
{If breath time >=fill time THEN
result = yes ELSE result = no}

breath time : s

fill time : s
result : Decision Type

Bmax

From Escapologist

Equip : Decision - equipment
{IF pressure < strength THEN
result = yes ELSE result = NO}

pressure : Pa

strength : Pa

result : Decision Type

Crush pressure

From Coffin

Stunt : Decision - stunt
{IF breath result = yes AND

equipment result = yes THEN
result = yes ELSE result = no}

breath result :
Decision Type

equipment result :
Decision Type

result : Decision Type

Decision

From Escapologist

tracesTo
«use case» Minimise risk to
escapologist

Figure B.16 Example parametric diagram – usage

B.2.5 Requirement Diagrams

«graphic path»
Relationship

«graphic path»
Derive

«graphic path»
Nesting

«graphic path»
Refine

«graphic node»
Requirement

«diagram»
Requirement Diagram

«graphic path»
Satisfy

«graphic node»
Test Case

«graphic path»
Trace

«graphic path»
Verify

0..*

1

may be decomposed into

1..* 1..*

verifies

1..* 1
may be derived

from

1..*

1..* 0..*

Figure B.17 Partial meta-model for the requirement diagram

Summary of SysML Notation 727

«block»
Block

«block»
Source Element

«requirement»
Requirement1

id = "ID007"
text = "The System shall do ..."

«requirement»
Requirement2

«requirement»
Requirement3

«requirement»
Requirement4

«testCase»
Sequence Diagram

Requirement showing
id and text properties

Nesting

Satisfy
relationship Verify

relationship

Trace
relationship

Derive
relationship

Refine
relationship

«verify»

«deriveReqt»

«satisfy»

«refine»

«trace»

Figure B.18 Requirement diagram notation

728 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

B.3 Behavioural Diagrams

This section contains diagrams for each of the four SysML behavioural diagrams
(see Figure B.20):

● State machine diagrams (Figures B.21–B.23)
● Sequence diagrams (Figures B.24–B.26)
● Activity diagrams (Figures B.27–B.31)
● Use case diagrams (Figures B.32–B.34)

req [package] Requirements Diagrams [Additional Traceability for Pump & Pump Controller]

«requirement»
Perform Stunt

«block»
Initial Ideas Meeting

10.01.2016

«requirement»
Computer-controlled Pump

«requirement»
Allow Different Fluids

id = "ES002"
text = "The System shall allow the Coffin
Escape stunt to be performed using
different Fluids, not just Concrete.
Examples include Custard and Water
etc."

«requirement»
Provide pump controller

Perform using custardPerform using concrete

«block»
Pump Controller

«block»
Pump

«testCase»
[Package] Scenarios

[Computer Control of Pump -
Successful Stunt]

«refine»

«verify»

«satisfy»

«refine»

«deriveReqt»

«trace»

«satisfy»

«satisfy»

Figure B.19 Example requirement diagram

Summary of SysML Notation 729

uc [Package] Use Case Diagram [Use Case Diagram]

System

Use Case1

Use Case2

Actor1

Actor2

«include»

sd [Package] Sequence Diagram [Sequence Diagram]

Lifeline A: Block4 Lifeline B: Block2

message()

stm [Package] State Machine Diagram [State Machine Diagram]

State1

State2

act [Package] Activity Diagram [Activity Diagram]

Activity Partition2Activity Partition1

Activity1

Activity2

The 4 SysML
behavioural diagrams

Figure B.20 Summary of behavioural diagrams

B.3.1 State machine diagrams

«graphic path»
Transition

Action

Activity

«graphic node»
Composite State

Event

Guard Condition

Region

«graphic node»
Simple State

«graphic node»
State

«diagram»
State Machine

Diagram

«graphic node»
Initial State

«graphic node»
Final State

0..1

0..1

0..*

1

shows how to change between

1..2

0..1

1..*

0..*1..*

Figure B.21 Partial meta-model for the state machine diagram

Composite State (Concurrent)

exit / op3

Simple State

do / op1

Simple State

Composite State (Sequential)

Composite state with
exit activity

State with do activity

Region

Simple State 1

entry / op2
Simple State 2

State with entry
activity

Final
state

Completion transition
with action only

Simple State

Simple state

Transition with event
only

Transition with event,
guard & action

Initial
state

Event1 [Attribute1 = VALUE] /op4

Event2 /Event3

Figure B.22 State machine diagram notation

B.3.2 Sequence diagrams

stm [StateMachine] Pump [Pump operation]

starting

working

pumping forward

entry / pump
do / prime

reversing

do / stopPump

pumping reverse

do / pumpReverse

stopping

entry / flush
do / stopPump

reverse

stop

[CurrentDirection = Reverse]
/CurrentDirection = Forward

reverse

start
/CurrentDirection = Forward

[CurrentDirection = Forward]
/CurrentDirection = Reverse

Figure B.23 Example state machine diagram

«graphic node»
Loop Combined

Fragment

«graphic node»
Alternative Combined

Fragment

«graphic node»
Combined Fragment

Execution
Specification

«graphic node»
Interaction Use

«graphic node»
Life Line

«graphic path»
Message

Occurrence
Specification

«graphic node»
Parallel Combined

Fragment

«diagram»
Sequence Diagram

1..*

0..*

spans

1..*

1

references

1

0..*

1
connects

2

0..*

1..*

occurs on

1

0..*1..*

Figure B.24 Partial meta-model for the sequence diagram

732 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Life Line 3: Block3Life Line 2: Block2Life Line 1: Block1

alt

Gate

loop

[min, max]

par

ref
Another Sequence Diagram

Loop combined
fragment

Synchronous (call)
message

Life line

Execution
specification

Reply (return)
message

Asynchronous
message

Alternative combined
fragment

Interaction use

Parallel combined
fragment

Figure B.25 Sequence diagram notation

Summary of SysML Notation 733

seq [package] Scenarios [Computer Control of Pump - Use of Alt]

:Pump:Pump Controller

:Assistant

alt

[Emergency = FALSE]

[Emergency = TRUE]

flush()

reverse()

pump()

reverse()

prime()

pumpReverse()

stopPump()

stop()

start()

stopPump()

stop()

start()

Figure B.26 Example sequence diagram

734 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

B.3.3 Activity diagrams

«graphic node»
Action

«diagram»
Activity Diagram

«graphic path»
Activity Edge

«graphic node»
Activity Node

«graphic node»
Activity Partition

«graphic path»
Control Flow

«graphic node»
Control Node

«graphic node»
Interruptible Region

«graphic node»
Object

«graphic path»
Object Flow

«graphic node»
Region

1..* 0..*

1

flows between

2

1

connects together

1..2

1..*

carries

1..*

0..*

interrupts

1..*

1..*

«graphic node»
Control Node

«graphic node»
Decision Node

«graphic node»
Final Node

«graphic node»
Fork Node

«graphic node»
Initial Node

«graphic node»
Join Node

«graphic node»
Merge Node

«graphic node»
Activity Final Node

«graphic node»
Flow Final Node

«graphic node»
Object

«graphic node»
Event

«graphic node»
Object Node

«graphic node»
Signal

Figure B.27 Partial meta-model for the activity diagram

Summary of SysML Notation 735

Activity Partition: Block2Activity Partition: Block1

Object: Object
Node

Action1 Action2

Action3

Signal

Initial node

Merge node

Control flow

Fork

Action

Join

Object flow

Object node

Decision
node

Flow final
node

Action4

Signal

Control flow with guard
and probability

Activity
partition

Continuous
object flow

{Probability = value %}

{rate =
expression}

Discrete
control flow
with rate

[condition]

«discrete»

[condition]

«continuous»

Figure B.28 Activity diagram notation

736 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Event1
Action3

Object Node1

Object Node

Action4

Object Node1

Action8

Overwrite object
node on input
pin

Action7

ObjectNode2

Interruptible region Event

Flow final
node

«overwrite»

Figure B.29 Activity diagram notation for showing interruptible regions and use
of pins rather than object nodes

Summary of SysML Notation 737

act [activity] Monitor [Monitor]

:Assistant

Start escape

Start timer

Watch coffin

Encourage
applause

Time Out

Emergency

[Escape complete]

[Escape NOT
complete]

Figure B.30 Example activity diagram

738 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

act [activity] Escape [Escape]

:Escapologist

Begin stunt

Free hands Count down
time

Emerge

Take a bow

Figure B.31 Example activity diagram

Summary of SysML Notation 739

B.3.4 Use case diagrams

«graphic path»
Include

«graphic node»
Actor

«graphic path»
Association

«graphic path»
Extend

Extension Point

«graphic path»
Relationship

«graphic node»
System Boundary

«graphic node»
Use Case

«diagram»
Use Case Diagram

crosses

0..*

1..*

yields an observable result to

1..*

1

defines condition for

1

0..*

1..*

0..*

0..*

Figure B.32 Partial meta-model for the use case diagram

740 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Boundary Name

Use Case4

Actor1

Actor2

Actor3

Use Case1

Use Case2 Use Case3

System boundary

Association

Use case

Actor

Include
relationship

Extend
relationship

Specialisation/
generalisation

«include»

«extend»

Figure B.33 Use case diagram notation

Summary of SysML Notation 741

B.4 Auxiliary Concepts

This section contains diagrams for the following auxiliary concepts that can be
applied to any diagram:

● Allocations (Figures B.35–B.37)

uc [package] Requirements [Coffin Escapology Stunt - Coffin Escape System Context]

Coffin Escape System Context

Allow stunt to be
performed using

different fluids

Perform coffin
escapology stunt

Fluid to be pumped into
hole under computer

control

Minimise risk to
escapologist

Ensure sufficient air Ensure coffin not
crushed by fluid

Maximise audience
excitement

Escapologist

Safety Officer

Audience

Coffin Maker

«include»

«include»

«include»

«constrain»«constrain»

«include»

Figure B.34 Example use case diagram (Product Context)

742 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

B.4.1 Allocations

«graphic node»
allocatedTo

Compartment

Allocation

Allocation
Compartment

«graphic path»
Allocation

Dependency

«graphic node»
allocatedFrom
Compartment

1

represents end of

1

Figure B.35 Partial meta-model for allocations

«block»
Block2

Allocation
dependency

Allocations shown in
call-out note

allocatedFrom
«activity» Activity1

allocatedTo
«block» Block2

allocatedFrom
«activity» Activity1

allocatedTo
«block» Block2

«block»
Block1

Allocations shown as
compartments

Activity1

allocatedTo
«block» Block1

«allocate»«allocate»

Figure B.36 Allocation notation

Summary of SysML Notation 743

B.5 Relationships between diagrams

SysML consists of nine diagrams that are used to capture and model different
aspects of a System. Figure B.38 illustrates the main relationships between the
diagrams (with the exception of the package diagram).

bdd [package] System [Escapologist and Coffin Deployment]

«block»
Hole

«block»
Coffin

«block»
Escapologist

allocatedFrom
«activity» Escape

«allocate»

«allocate»

Figure B.37 Example of allocation usage

744 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Figure B.38 Relationships between SysML diagrams

This page intentionally left blank

Appendix C

Process Model for ISO15288:2015

C.1 Introduction

This Appendix summarises what is perhaps the most widely used systems engineering
Standard in the world: ISO/IEC 15288:2015 Systems and software engineering –
System Life Cycle Processes [1].

The Appendix presents information on ISO15288:2015 using the ‘‘seven
views’’ approach to Process modelling that is discussed in Chapter 7, five out of the
seven possible Views are presented; no Information Views or Process Behaviour
Views are given as the Standard is written at a level which does not allow these
Views to be abstracted and modelled.

The Views are given without commentary and are intended to be used as a
reference in conjunction with a reading of the Standard. As an aid to understanding
the content of ISO15288:2015, the reader is also directed to the INCOSE Systems
Engineering Handbook [2].

C.2 Requirement Context View

RCV [Package] RCV - ISO 15288 [Standard Context]

Standard Developer Context

«concern»
Establish common

framework for describing
life cycle of systems

«concern»
Allow use of
processes

«concern»
.. for acquisition

«concern»

.. for supply

«concern»
Harmonise with
other standards

«concern»
Define terminology

«concern»
Define processes

«concern»
.. for managing life

cycle stages

«concern»
.. for support of

process definition

«concern»
.. for support of
process control

«concern»
.. for support of

process
improvement

«stakeholder role»
System

«stakeholder role»
Organisation

«stakeholder role»
Project

«stakeholder role»
Life Cycle Standard

«include»

«include»

«include»

«constrain»

Figure C.1 Requirement Context View

748 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

C.3 Stakeholder View

SV [Package] SV - ISO 15288 [Stakeholder Roles]

«stakeholder role»
Stakeholder Role

«stakeholder role»
Customer

«stakeholder role»
External

«stakeholder role»
Supplier

«stakeholder role»
User

«stakeholder role»
System

«stakeholder role»
Organisation

«stakeholder role»
Project

«stakeholder role»
Standard

«stakeholder role»
Life Cycle Standard

«stakeholder role»
Standard Developer

Figure C.2 Stakeholder View

Process Model for ISO15288:2015 749

C.4 Process Structure View

PSV [Package] PSV - ISO 15288 [Concepts]

«ontology element»
Process

«ontology element»
Process Purpose

«ontology element»
Outcome

«ontology element»
Activity

«ontology element»
Task

«ontology element»
Process Group

«ontology element»
Life Cycle

«ontology element»
Stage

«ontology element»
ISO 15288:2015

«ontology element»
Resource

1..*

1..*

1..*

contributes to

1..*

1..*

1..*

is executed during

1..*

1..*utilises/consumes

1..*

1 proposes use of

1

1..*

1..*

4

1

describes goals of

1

Figure C.3 Process Structure View – Main Concepts

750 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

C.5 Process Content View

SV [Package] PSV - ISO 15288 [Stages & Gates]

«ontology element»
Life Cycle

«ontology element»
Stage

«ontology element»
Conception

«ontology element»
Development

«ontology element»
Production

«ontology element»
Utilisation

«ontology element»
Support

«ontology element»
Retirement

«ontology element»
Decision Gate

«ontology element»
Decision Option

«ontology element»
Execute Next Stage

«ontology element»
Continue this Stage

«ontology element»
Go to Previous Stage

«ontology element»
Hold Project Activity

«ontology element»
Terminate Project

1..*

1

1

Figure C.4 Process Structure View – ‘Stages’ and ‘Decision Options’

PCV [Package] PCV - ISO 15288 [Process Groups]

«process group»
Process Group

«process group»
Organizational Project-Enabling

Process Group

«process group»
Technical Management

Process Group

«process group»
Technical Process Group

«process group»
Agreement Process Group

Figure C.5 Process Content View – ‘Process Groups’

Process Model for ISO15288:2015 751

C.5.1 Process Content View – Agreement Process Group

PCV [Package] PCV - Agreement Process Group [Agreement Process Gr...

«process group»
Agreement Process Group

«process»
Acquisition Process

«process»
Supply Process

Figure C.6 Process Content View – Agreement Process Group contents

752 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

PCV [Package] Acquisition Process [Acquisition Process - Activities & Tasks]

«process»
Acquisition Process

«outcome» A product or service complying with the agreement is accepted
«outcome» A request for supply is prepared
«outcome» Acquirer obligations defined in the agreement are satisfied
«outcome» An agreement is established between the acquirer and supplier
«outcome» One or more suppliers are selected

«activity»
Prepare for the acquisition

«task» Define a strategy for how the acquisition will be conducted()

«activity»
Advertise the acquisition and select the supplier

«task» Communicate the request for the supply of a product or service to potential suppliers()
«task» Select one or more suppliers()

«activity»
Establish and maintain an agreement

«task» Develop an agreement with the supplier that includes acceptance criteria()
«task» Evaluate impact of changes on the agreement()
«task» Identify necessary changes to the agreement()
«task» Negotiate the agreement with the supplier()
«task» Update the agreement with the supplier, as necessary()

«activity»
Monitor the agreement

«task» Assess the execution of the agreement()
«task» Provide data needed by the supplier and resolve issues in a timely manner()

«activity»
Accept the product or service

«task» Accept the product or service from the supplier, or other party, as directed by the agreement()
«task» Close the agreement()
«task» Confirm that the delivered product or service complies with the agreement()
«task» Provide payment or other agreed consideration()

Figure C.7 Process Content View – ‘Acquisition Process’ – activities and tasks

PCV [Package] Supply Process [Supply Process - Activities & Tasks]

«process»
Supply Process

«outcome» An acquirer for a product or service is identified

«activity»
Prepare for the supply

«task» Define a supply strategy()
«task» Determine the existence and identity of an acquirer who has a need for a product or service()

«activity»
Respond to a tender

«task» Evaluate a request for the supply of a product or service to determine feasibility()
«task» Prepare a response that satisfies the solicitation()

«activity»
Establish and maintain an agreement

«task» Evaluate impact of changes on the agreement()
«task» Identify necessary changes to the agreement()
«task» Negotiate an agreement with the acquirer that includes acceptance criteria()
«task» Negotiate the agreement with the acquirer()
«task» Update the agreement with the acquirer, as necessary()

«activity»
Execute the agreement

«task» Assess the execution of the agreement()
«task» Execute the agreement according to the established project plans()

«activity»
Deliver and support the product or service

«task» Accept and acknowledge payment or other agreed consideration()
«task» Close the agreement()
«task» Deliver the product or service in accordance with the agreement criteria()
«task» Provide assistance to the acquirer in support of the delivered product or service()
«task» Transfer the product or service to the acquirer, or other party, as directed by the agreement()

Figure C.8 Process Content View – ‘Supply Process’ – activities and tasks

C.5.2 Process Content View – Organisational Project-Enabling
Process Group

PCV [Package] PCV - Organizational Project-Enabling Process Group [Organizational Project-Enabling Process Group Processes]

«process group»
Organizational Project-Enabling

Process Group

«process»
Life Cycle Model Management

Process

«process»
Infrastructure Management

Process

«process»
Portfolio Management Process

«process»
Human Resource Management

Process

«process»
Quality Management Process

«process»
Knowledge Management

Process

Figure C.9 Process Content View – ‘Organisational Project-Enabling Process Group’ contents

Process Model for ISO15288:2015 755

PCV [Package] Life Cycle Model Management Process [Life Cycle Model Management Process - Activities & Tasks]

«process»
Life Cycle Model Management Process

«outcome» Life cycle models and processes for use by the organization are assessed
«outcome» Organizational policies and procedures for the management and deployment of life cycle models
«outcome» Prioritized process, model, and procedure improvements are implemented
«outcome» Responsibility, accountability, and authority within life cycle policies, processes, models, and procedures

«activity»
Establish the process.

«task» Define business criteria that control progression through the life cycle()
«task» Define the roles, responsibilities, accountabilities, and authorities()
«task» Establish policies and procedures for process management and deployment that are consistent()
«task» Establish standard life cycle models for the organization that are comprised of stages()
«task» Establish the processes that implement the requirements of this international standard()

«activity»
Assess the process

«task» Conduct periodic reviews of the life cycle models used by the projects()
«task» Identify improvement opportunities from assessment results()
«task» Monitor process execution across the organization()

«activity»
Improve the process

«task» Implement improvement opportunities and inform relevant stakeholders()
«task» Prioritize and plan improvement opportunities()

Figure C.10 Process Content View – ‘Life Cycle Model Management Process’ – activities and tasks

PCV [Package] Infrastructure Management Process [Infrastructure Management Process - Activities & Tasks]

«process»
Infrastructure Management Process

«outcome» Infrastructure elements are developed or acquired
«outcome» The infrastructure elements are identified and specified
«outcome» The infrastructure is available
«outcome» The requirements for infrastructure are defined

«activity»
Establish the infrastructure

«task» Define project infrastructure requirements()
«task» Identify, obtain and provide infrastructure resources and services()

«activity»
Maintain the infrastructure

«task» Evaluate the degree to which delivered infrastructure resources satisfy project needs()
«task» Identify and provide improvements or changes to the infrastructure resources as the project()

Figure C.11 Process Content View – ‘Infrastructure Management Process’ – activities and tasks

PCV [Package] Portfolio Management Process [PCV - Portfolio management process]

«process»
Portfolio Management Process

«outcome» Business venture opportunities, investments or necessities are qualified and prioritized
«outcome» Project management responsibilities, accountability, and authorities are defined
«outcome» Projects are identified
«outcome» Projects meeting agreement and stakeholder requirements are sustained
«outcome» Projects not meeting agreement or satisfying stakeholder requirements are redirected or terminated
«outcome» Projects that have completed agreements and satisfied stakeholder requirements are closed
«outcome» Resources and budgets for each project are allocated

«activity»
Define and authorize projects

«task» Authorize each project to commence execution of project plans()
«task» Define projects, accountabilities and authorities()
«task» Identify and allocate resources for the achievement of project goals and objectives()
«task» Identify any multi-project interfaces and dependencies to be managed or supported()
«task» Identify potential new or modified capabilities or missions()
«task» Identify the expected goals, objectives, and outcomes of each project()
«task» Prioritize, select and establish new business opportunities, ventures or undertakings()
«task» Specify the project reporting requirements and review milestones()

«activity»
Evaluate the portfolio of projects

«task» Act to continue or redirect projects that are satisfactorily progressing()
«task» Evaluate projects to confirm ongoing viability()

«activity»
Terminate projects

«task» After completion of the agreement for products and services, act to close the projects()
«task» Where agreements permit, act to cancel or suspend projects()

Figure C.12 Process Content View – ‘Portfolio Management Process’ – activities and tasks

PCV [Package] Human Resource Management Process [Human Resource Management Process - Activities & Tasks]

«process»
Human Resource Management Process

«outcome» Conflicts in multi-project resource demands are resolved
«outcome» Necessary human resources are provided to projects
«outcome» Skills of personnel are developed, maintained or enhanced
«outcome» Skills required by projects are identified

«activity»
Identify skills

«task» Identify and record skills of personnel()
«task» Identify skill needs based on current and expected projects()

«activity»
Develop skills

«task» Establish skills development strategy()
«task» Maintain records of skill development()
«task» Obtain or develop training, education or mentoring resources()
«task» Provide planned skill development()

«activity»
Acquire and provide skills

«task» Control multi-project management interfaces to resolve personnel conflicts()
«task» Maintain and manage the pool of skilled personnel necessary to staff ongoing projects()
«task» Make project assignments based on project and staff-development needs()
«task» Motivate personnel, e.g., through career development and reward mechanisms()
«task» Obtain qualified personnel when skill deficits are identified()

Figure C.13 Process Content View – ‘Human Resource Management Process’ – activities and tasks

PCV [Package] Quality Management Process [Quality Management Process - Activities & Tasks]

«process»
Quality Management Process

«outcome» Organizational quality management policies, objectives, and procedures are defined and implemented
«outcome» Quality assurance evaluation results are gathered and analyzed
«outcome» Quality evaluation criteria and methods are established
«outcome» Quality management policies and procedures are improved based upon project and organizational results
«outcome» Resources and information are provided to projects to support the operation and monitoring of project

«activity»
Plan quality management

«task» Define quality evaluation criteria and methods()
«task» Define responsibilities and authority for implementation of quality management()
«task» Establish quality management policies, objectives, and procedures()
«task» Provide resources and information for quality management()

«activity»
Assess quality management

«task» Assess customer satisfaction()
«task» Conduct periodic reviews of project Quality Assurance activities for compliance with the Quality()
«task» Gather and analyze quality assurance evaluation results, in accordance with the defined criteria()
«task» Monitor the status of quality improvements on processes, products, and services()

«activity»
Perform quality management corrective and preventive action

«task» Monitor corrective and preventive actions to completion and inform relevant stakeholders()
«task» Plan corrective actions when quality management objectives are not achieved()
«task» Plan preventive actions when there is a sufficient risk()

Figure C.14 Process Content View – ‘Quality Management Process’ – activities and tasks

PCV [Package] Knowledge Management Process [Knowledge Management Process - Activities & Tasks]

«process»
Knowledge Management Process

«outcome» A taxonomy for the application of knowledge assets is identified
«outcome» Knowledge management usage data is gathered and analyzed
«outcome» The organizational knowledge, skills, and knowledge assets are available
«outcome» The organizational knowledge, skills, and knowledge assets are developed or acquired

«activity»
Plan knowledge management

«task» Define the knowledge management strategy()
«task» Identify projects that can benefit from the application of the knowledge, skills, and knowledge()
«task» Identify the knowledge, skills, and knowledge assets to be managed()

«activity»
Share knowledge and skills throughout the organization

«task» Capture or acquire knowledge and skills()
«task» Establish and maintain a classification for capturing and sharing knowledge and skills()
«task» Share knowledge and skills across the organization()

«activity»
Share knowledge assets throughout the organization

«task» Develop or acquire knowledge assets()
«task» Establish a taxonomy to organize knowledge assets()
«task» Share knowledge assets across the organization()

«activity»
Manage knowledge, skills, and knowledge assets

«task» Maintain knowledge, skills, and knowledge assets()
«task» Monitor and record the use of knowledge, skills, and knowledge assets()
«task» Periodically reassess the currency of technology and market needs of the knowledge assets()

Figure C.15 Process Content View – ‘Knowledge Management Process’ – activities and tasks

C.5.3 Process Content View – Technical Management
Process Group

PCV [Package] PCV - Technical Management Process Group [Technical Management Process Group Processes]

«process group»
Technical Management

Process Group

«process»
Project Planning Process

«process»
Project Assessment and

Control Process

«process»
Decision Management

Process

«process»
Risk Management Process

«process»
Configuration Management

Process

«process»
Information Management

Process

«process»
Measurement Process

«process»
Quality Assurance Process

Figure C.16 Process Content View – ‘Technical Management Process Group’ contents

762 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

PCV [Package] Project Planning Process [Project Planning Process - Activities & Tasks]

«process»
Project Planning Process

«outcome» Objectives and plans are defined
«outcome» Plans for the execution of the project are activated
«outcome» Resources and services necessary to achieve the objectives are formally requested and committed
«outcome» Roles, responsibilities, accountabilities, authorities are defined

«activity»
Define the project

«task» Define and maintain a life cycle model that is comprised of stages using the defined life cycle()
«task» Define and maintain the processes that will be applied on the project()
«task» Define the project scope as established in the agreement()
«task» Establish a work breakdown structure based on the evolving system architecture()
«task» Identify the project objectives and constraints()

«activity»
Plan project and technical management

«task» Define achievement criteria for the life cycle stage decision gates, delivery dates and major()
«task» Define and maintain a project schedule based on management and technical objectives and work()
«task» Define roles, responsibilities, accountabilities, and authorities()
«task» Define the costs and plan a budget()
«task» Define the infrastructure and services required()
«task» Generate and communicate a plan for project and technical management and execution()
«task» Plan the acquisition of materials and enabling system services supplied from outside the project()

«activity»
Activate the project

«task» Implement project plans()
«task» Obtain authorization for the project()
«task» Submit requests and obtain commitments for necessary resources to perform the project()

Figure C.17 Process Content View – ‘Project Planning Process’ – activities and tasks

PCV [Package] Project Assessment and Control Process [Project Assessment and Control Process - Activities & Tasks]

«process»
Project Assessment and Control Process

«outcome» Adequacy of resources is assessed
«outcome» Adequacy of roles, responsibilities, accountabilities, and authorities is assessed
«outcome» Affected stakeholders are informed of project status
«outcome» Corrective action is defined and directed, when project achievement is not meeting targets
«outcome» Deviations in project performance from plans are investigated and analyzed
«outcome» Performance measures or assessment results are available
«outcome» Project action to progress (or not) from one scheduled milestone or event to the next is authorized
«outcome» Project objectives are achieved
«outcome» Project replanning is initiated, as necessary
«outcome» Technical progress reviews are performed

«activity»
Plan for project assessment and control

«task» Define the project assessment and control strategy()

«activity»
Assess the project

«task» Analyze measurement results and make recommendations()
«task» Assess alignment of project objectives and plans with the project context()
«task» Assess management and technical plans against objectives to determine adequacy and feasibility()
«task» Assess progress using measured achievement and milestone completion()
«task» Assess project and technical status against appropriate plans to determine actual and projected()
«task» Assess the adequacy and availability of resources()
«task» Assess the adequacy of roles, responsibilities, accountabilities, and authorities()
«task» Conduct required management and technical reviews, audits and inspections()
«task» Monitor critical processes and new technologies()
«task» Monitor process execution within the project()
«task» Record and provide status and findings from assessment tasks()

«activity»
Control the project

«task» Authorize the project to proceed toward the next milestone or event, if justified()
«task» Initiate change actions when there is a contractual change to cost, time or quality due to the()
«task» Initiate necessary actions needed to address identified issues()
«task» Initiate necessary project replanning()

Figure C.18 Process Content View – ‘Project Assessment and Control Process’ – activities and tasks

PCV [Package] Decision Management Process [Decision Management Process - Activities & Tasks]

«process»
Decision Management Process

«outcome» A preferred course of action is selected
«outcome» Alternative courses of action are identified and evaluated
«outcome» Decisions requiring alternative analysis are identified

«activity»
Prepare for decisions

«task» Define a decision management strategy()
«task» Identify the circumstances and need for a decision()
«task» Involve relevant stakeholders in the decision-making in order to draw on experience and()

«activity»
Analyze the decision information

«task» Determine desired outcomes and measurable selection criteria()
«task» Evaluate each alternative, against the criteria()
«task» Identify the trade space and alternatives()
«task» Select and declare the decision management strategy for each decision()

«activity»
Make and manage decisions

«task» Determine preferred alternative for each decision()
«task» Record the resolution, decision rationale, and assumptions()
«task» Record, track, evaluate and report decisions()

Figure C.19 Process Content View – ‘Decision Management Process’ – activities and tasks

PCV [Package] Risk Management Process [Risk Management Process - - Activities & Tasks]

«process»
Risk Management Process

«outcome» Appropriate treatment is implemented
«outcome» Risk treatment options are identified, prioritized, and selected
«outcome» Risks are analyzed
«outcome» Risks are evaluated to assess changes in status and progress in treatment
«outcome» Risks are identified

«activity»
Plan risk management

«task» Define and record the context of the Risk Management process()
«task» Define the risk management strategy()

«activity»
Manage the risk profile

«task» Define and record the risk thresholds and conditions under which a level of risk may be accepted()
«task» Establish and maintain a risk profile()
«task» Periodically provide the relevant risk profile to stakeholders based upon their needs()

«activity»
Analyze risks

«task» Estimate the likelihood of occurrence and consequences of each identified risk()
«task» Evaluate each risk against its risk thresholds()
«task» For each risk that does not meet its risk threshold, define and record recommended treatment()
«task» Identify risks in the categories described in the risk management context()

«activity»
Treat risks

«task» Identify recommended alternatives for risk treatment()
«task» Implement risk treatment alternatives()
«task» Once a risk treatment is selected, coordinate management action()
«task» When the stakeholders accept a risk that does not meet its threshold, consider it a high priority()

«activity»
Monitor risks

«task» Continually monitor all risks and the risk management context for changes and evaluate the risks()
«task» Continually monitor for the emergence of new risks and sources throughout the life cycle()
«task» Implement and monitor measures to evaluate the effectiveness of risk treatments()

Figure C.20 Process Content View – ‘Risk Management Process’ – activities and tasks

PCV [Package] Configuration Management Process [Configuration Management Process - Activities & Tasks]

«process»
Configuration Management Process

«outcome» Changes to items under configuration management are controlled
«outcome» Configuration baselines are established
«outcome» Configuration status information is available
«outcome» Items requiring configuration management are identified and managed
«outcome» Required configuration audits are completed
«outcome» System releases and deliveries are controlled and approved

«activity»
Plan configuration management

«task» Define a configuration management strategy()
«task» Define the archive and retrieval approach for configuration items, configuration management()

«activity»
Perform configuration identification

«task» Define baselines through the life cycle()
«task» Establish system, system element, and information item identifiers()
«task» Identify the hierarchy and structure of system information()
«task» Identify the system elements and information items that are configuration items()
«task» Obtain acquirer and supplier agreement to establish a baseline()

«activity»
Perform configuration change management

«task» Coordinate, evaluate, and disposition Requests for Change and Requests for Variance()
«task» Identify and record Requests for Change and Requests for Variance()
«task» Submit requests for review and approval()
«task» Track and manage approved changes to the baseline()

«activity»
Perform configuration status accounting

«task» Capture, store and report configuration management data()
«task» Develop and maintain the configuration management status information,()

«activity»
Perform configuration evaluation

«task» Assess whether the system conforms to the operational and configuration information items()
«task» Assess whether the system meets baseline functional and performance capabilities()
«task» Identify the need for CM audits and schedule the events()
«task» Monitor the incorporation of approved configuration changes()
«task» Record the CM audit results and disposition action items()
«task» Verify the product configuration meets the configuration requirements()

«activity»
Perform release control

«task» Approve system releases and deliveries()
«task» Track and manage system releases and deliveries()

Figure C.21 Process Content View – ‘Configuration Management Process’ – activities and tasks

PCV [Package] Information Management Process [Information Management Process - Activities & Tasks]

«process»
Information Management Process

«outcome» Information is obtained, developed, transformed, stored, validated, presented, and disposed of
«outcome» Information is available to designated stakeholders
«outcome» Information representations are defined
«outcome» Information to be managed is identified
«outcome» The status of information is identified

«activity»
Prepare for information management

«task» Define information maintenance actions()
«task» Define the content, formats and structure of information items()
«task» Define the items of information that will be managed()
«task» Define the strategy for information management()
«task» Designate authorities and responsibilities for information management()

«activity»
Perform information management

«task» Archive designated information()
«task» Dispose of unwanted, invalid or unvalidated information()
«task» Maintain information items and their storage records, and record the status of information()
«task» Obtain, develop, or transform the identified items of information()
«task» Publish, distribute or provide access to information and information items to designated()

Figure C.22 Process Content View – ‘Information Management Process’ – activities and tasks

PCV [Package] Measurement Process [Measurement Process - Activities & Tasks]

«process»
Measurement Process

«outcome» An appropriate set of measures, based on the information needs are identified or developed
«outcome» Information items provide objective information that support decisions
«outcome» Information needs are identified
«outcome» Required data is collected, verified, and stored
«outcome» The data is analyzed and the results interpreted

«activity»
Prepare for measurement

«task» Define criteria for evaluating the information items and the Measurement process()
«task» Define data collection, analysis, access, and reporting procedures()
«task» Define the measurement strategy()
«task» Describe the characteristics of the organization that are relevant to measurement()
«task» Identify and plan for the necessary enabling systems or services to be used()
«task» Identify and prioritize the information needs()
«task» Select and specify measures that satisfy the information needs()

«activity»
Perform measurement

«task» Analyze data and develop information items()
«task» Collect, store, and verify data()
«task» Integrate procedures for data generation, collection, analysis and reporting into relevant processes()
«task» Record results and inform the measurement users()

Figure C.23 Process Content View – ‘Measurement Process’ – Activities and Groups

PCV [Package] Quality Assurance Process [Quality Assurance Process - Activities & Tasks]

«process»
Quality Assurance Process

«outcome» Criteria and methods for quality assurance evaluations are defined
«outcome» Evaluations of the project’s products, services, and processes are performed
«outcome» Incidents are resolved
«outcome» Prioritized problems are treated
«outcome» Project quality assurance procedures are defined and implemented
«outcome» Results of evaluations are provided to relevant stakeholders

«activity»
Prepare for quality assurance

«task» Define a Quality Assurance strategy()
«task» Establish independence of quality assurance from other life cycle processes()

«activity»
Perform product or service evaluations

«task» Evaluate products and services for conformance to established criteria, contracts, standards, and()
«task» Perform verification and validation of the outputs of the life cycle processes to determine()

«activity»
Perform process evaluations

«task» Evaluate project life cycle processes for conformance()
«task» Evaluate supplier processes for conformance to process requirements()
«task» Evaluate tools and environments that support or automate the process for conformance()

«activity»
Manage quality assurance records and reports

«task» Create records and reports related to quality assurance activities()
«task» Identify incidents and problems associated with product, service, and process evaluations()
«task» Maintain, store, and distribute records and reports()

«activity»
Treat incidents and problems

«task» Incidents and problems are tracked to closure()
«task» Incidents are recorded, analyzed and classified()
«task» Incidents are resolved or elevated to problems()
«task» Problems are recorded, analyzed and classified()
«task» Stakeholders are informed of the status of incidents and problems()
«task» Treatments for problems are prioritized and implementation is tracked()
«task» Trends in incidents and problems are noted and analyzed()

Figure C.24 Process Content View – ‘Quality Assurance Process’ Activities and Groups

C.5.4 Process Content View – Technical Process Group

PCV [Package] PCV - Technical Process Group [Technical Process Group Processes]

«process group»
Technical Process Group

«process»
Business or Mission Analysis

Process

«process»
Stakeholder Needs and
Requirements Definition

Process

«process»
System Requirements

Definition Process

«process»
Architecture Definition

Process

«process»
Design Definition Process

«process»
System Analysis Process

«process»
Implementation Process

«process»
Integration Process

«process»
Verification Process

«process»
Transition Process

«process»
Validation Process

«process»
Operation Process

«process»
Maintenance Process

«process»
Disposal Process

Figure C.25 Process Content View – ‘Technical Process Group’ contents

PCV [Package] Business or Mission Analysis Process [Business or Mission Analysis Process - Activities & Tasks]

«process»
Business or Mission Analysis Process

«outcome» Any enabling systems or services needed for business or mission analysis are available
«outcome» Candidate alternative solution classes are identified and analyzed
«outcome» Preliminary operational concepts and other concepts in the life cycle stages are defined
«outcome» The preferred candidate alternative solution class(es) are selected
«outcome» The problem or opportunity space is defined
«outcome» The solution space is characterized
«outcome» Traceability of business or mission problems and opportunities and the preferred solution

«activity»
Prepare for business or mission analysis

«task» Define the business or mission analysis strategy()
«task» Identify and plan for the enabling systems or services needed to support business()
«task» Obtain or acquire access to the enabling systems or services to be used()
«task» Review identified problems and opportunities in the organization strategy()

«activity»
Define the problem or opportunity space

«task» Analyze the problems and opportunities in context()
«task» Define the mission, business, or operational problem or opportunity()

«activity»
Characterize the solution space

«task» Define preliminary operational concepts and other concepts in life cycle stages()
«task» Identify candidate alternative solution classes()

«activity»
Evaluate alternative solution classes

«task» Assess each alternative solution class()
«task» Select the preferred alternative solution class(es)()

«activity»
Manage the business or mission analysis

«task» Maintain traceability of business or mission analysis()
«task» Provide key information items that have been selected for baselines()

Figure C.26 Process Content View – ‘Business or Mission Analysis Process’ – activities and tasks

PCV [Package] Stakeholder Needs and Requirements Definition Process [Stakeholder Needs and Requirements Definition Process - Activities & Tasks]

«process»
Stakeholder Needs and Requirements Definition Process

«outcome» Any enabling systems or services needed for stakeholder needs and requirements are available
«outcome» Constraints on a system are identified
«outcome» Critical performance measures are defined
«outcome» Required characteristics and context of use of capabilities and concepts in the life cycle stages
«outcome» Stakeholder agreement that their needs and expectations are reflected adequately in the requirements
«outcome» Stakeholder needs are defined
«outcome» Stakeholder needs are prioritized and transformed into clearly defined stakeholder requirements
«outcome» Stakeholders of the system are identified
«outcome» Traceability of stakeholder requirements to stakeholders and their needs is established

«activity»
Analyze stakeholder requirements

«task» Analyze the complete set of stakeholder requirements()
«task» Define critical performance measures that enable the assessment of technical achievement()
«task» Feed back the analyzed requirements to applicable stakeholders to validate that their needs()
«task» Resolve stakeholder requirements issues()

«activity»
Manage the stakeholder needs and requirements definition

«task» Maintain traceability of stakeholder needs and requirements()
«task» Obtain explicit agreement on the stakeholder requirements()
«task» Provide key information items that have been selected for baselines()

«activity»
Define stakeholder needs

«task» Define context of use within the concept of operations and the preliminary life cycle concepts()
«task» Define the stakeholder needs and rationale()
«task» Identify stakeholder needs()
«task» Prioritize and down-select needs()

«activity»
Develop the operational concept and other life cycle concepts

«task» Define a representative set of scenarios to identify all required capabilities()
«task» Identify the interaction between users and the system()

«activity»
Prepare for stakeholder needs and requirements definition

«task» Define the stakeholder needs and requirements definition strategy()
«task» Identify and plan for the necessary enabling systems or services needed to support stakeholder()
«task» Identify the stakeholders who have an interest in the system throughout its life cycle()
«task» Obtain or acquire access to the enabling systems or services to be used()

«activity»
Transform stakeholder needs into stakeholder requirements

«task» Define stakeholder requirements, consistent with life cycle concepts, scenarios, interactions()
«task» Identify the constraints on a system solution()
«task» Identify the stakeholder requirements and functions that relate to critical quality characteristics()

Figure C.27 Process Content View – ‘Stakeholder Needs and Requirements Definition Process’ – activities and tasks

PCV [Package] System Requirements Definition Process [System Requirements Definition Process - Activities & Tasks]

«process»
System Requirements Definition Process

«outcome» Any enabling systems or services needed for system requirements definition are available
«outcome» Critical performance measures are defined
«outcome» System requirements and constraints are defined
«outcome» The system description is defined
«outcome» The system requirements are analyzed
«outcome» Traceability of system requirements to stakeholder requirements is developed

«activity»
Prepare for system requirements definition

«task» Define the functional boundary of the system()
«task» Define the system requirements definition strategy()
«task» Identify and plan for the necessary enabling systems or services needed to support system()
«task» Obtain or acquire access to the enabling systems or services to be used()

«activity»
Define system requirements

«task» Define each function that the system is required to perform()
«task» Define necessary implementation constraints()
«task» Define system requirements and rationale()
«task» Identify system requirements that relate to risks, criticality of the system, or critical quality()

«activity»
Analyze system requirements

«task» Analyze the complete set of system requirements()
«task» Define critical performance measures that enable the assessment of technical achievement()
«task» Feed back the analyzed requirements to applicable stakeholders for review()
«task» Resolve system requirements issues()

«activity»
Manage system requirements

«task» Maintain traceability of the system requirements()
«task» Obtain explicit agreement on the system requirements()
«task» Provide key information items that have been selected for baselines()

Figure C.28 Process Content View – ‘System Requirements Definition Process’ – activities and tasks

PCV [Package] Architecture Definition Process [Architecture Definition Process - Activities & Tasks]

«process»
Architecture Definition Process

«outcome» Alignment of architecture with requirements and design characteristics
«outcome» An architectural basis for processes throughout the life cycle is achieved
«outcome» Architecture candidates are assessed
«outcome» Architecture viewpoints are developed
«outcome» Architecture views and models of the system are developed
«outcome» Concepts, properties, characteristics, behaviors, functions, or constraints
«outcome» Context, boundaries, and external interfaces of the system are defined
«outcome» Enabling systems or services needed for architecture definition are available
«outcome» Identified stakeholder concerns are addressed by the architecture
«outcome» System elements and their interfaces are identified
«outcome» Traceability of architecture elements to stakeholder and system requirements

«activity»
Prepare for architecture definition

«task» Define evaluation criteria based on stakeholder concerns and key requirements()
«task» Define the architecture definition roadmap, approach, and strategy()
«task» Identify and plan for the necessary enabling systems or services()
«task» Identify stakeholder concerns()
«task» Obtain or acquire access to the enabling systems or services to be used()
«task» Review pertinent information and identify key drivers of the architecture()

«activity»
Develop architecture viewpoints

«task» Capture rationale for selection of framework(s), viewpoints and model types()
«task» Establish or identify potential architecture frameworks used in developing models()
«task» Select or develop supporting modeling techniques and tools()
«task» Select, adapt, or develop viewpoints based on stakeholder concerns()

«activity»
Develop models and views of candidate architectures

«task» Allocate concepts, properties, characteristics, behaviors, functions, or constraints()
«task» Compose views from the models in accordance with identified viewpoints()
«task» Define the system context and boundaries in terms of interfaces and interactions()
«task» Harmonize the architecture models and views with each other()
«task» Identify architectural entities and relationships between entities()
«task» Select, adapt, or develop models of the candidate architectures of the system()

«activity»
Relate the architecture to design

«task» Define principles for the system design and evolution()
«task» Define the interfaces and interactions between system elements and external()
«task» Identify system elements that relate to architectural entities()
«task» Map system elements and architectural entities to design characteristics()
«task» Partition, align, allocate requirements to architectural entities and system elements()

«activity»
Assess architecture candidates

«task» Assess each candidate architecture against constraints and requirements()
«task» Assess each candidate architecture against stakeholder concerns()
«task» Establish the architecture baseline of the selected architecture()
«task» Select the preferred architecture(s) and capture key decisions and rationale()

«activity»
Manage the selected architecture

«task» Formalize the architecture governance approach and specify governance related roles()
«task» Maintain concordance and completeness of the architectural entities()
«task» Maintain the architecture definition and evaluation strategy()
«task» Maintain traceability of the architecture()
«task» Obtain explicit acceptance of the architecture by stakeholders()
«task» Organize, assess and control evolution of the architecture models and views()
«task» Provide key information items that have been selected for baselines()

Figure C.29 Process Content View – ‘Architecture Definition Process’ – activities and tasks

PCV [Package] Design Definition Process [Design Definition Process - Activities & Tasks]

«process»
Design Definition Process

«outcome» Any enabling systems or services needed for design definition are available
«outcome» Design alternatives for system elements are assessed
«outcome» Design artifacts are developed
«outcome» Design characteristics of each system element are defined
«outcome» Design enablers necessary for design definition are selected or defined
«outcome» Interfaces between system elements composing the system are defined or refined
«outcome» System requirements are allocated to system elements
«outcome» Traceability of the design characteristics to the architectural entities of the system architecture is

«activity»
Prepare for design definition

«task» Define principles for evolution of the design()
«task» Define the design definition strategy()
«task» Determine technologies required for each system element composing the system()
«task» Determine the necessary design characteristics types()
«task» Identify and plan for the necessary enabling systems or services needed to support design()
«task» Obtain or acquire access to the enabling systems or services to be used()

«activity»
Establish design characteristics and design enablers related to each system element

«task» Allocate system requirements to system elements()
«task» Define the necessary design enablers()
«task» Establish the design artifacts()
«task» Examine design alternatives()
«task» Refine or define the interfaces between the system elements and with external entities()
«task» Transform architectural characteristics into design characteristics()

«activity»
Assess alternatives for obtaining system elements

«task» Assess each candidate NDI and new design alternative against criteria developed from expected()
«task» Determine the preferred alternative among any candidate NDI solutions and new design()
«task» Identify any candidate Non-Developmental-Items (NDI) that may be considered for use()

«activity»
Manage the design

«task» Capture design and rationale()
«task» Maintain traceability of design()
«task» Map design characteristics up to the system elements()
«task» Provide key information items that have been selected for baselines()

Figure C.30 Process Content View – ‘Design Definition Process’ – activities and tasks

PCV [Package] System Analysis Process [System Analysis Process - Activities & Tasks]

«process»
System Analysis Process

«outcome» Any enabling systems or services needed for system analysis are available
«outcome» System analyses needed are identified
«outcome» System analysis assumptions and results are validated
«outcome» System analysis results are provided for decisions
«outcome» Traceability of the system analysis results is established

«activity»
Prepare for system analysis

«task» Collect the data and inputs needed for the analysis()
«task» Define the scope, objectives, and level of fidelity of the system analysis()
«task» Define the system analysis strategy()
«task» Identify and plan for the necessary enabling systems or services needed to support system()
«task» Identify the problem or question that requires system analysis()
«task» Identify the stakeholders of the system analysis()
«task» Obtain or acquire access to the enabling systems or services to be used()
«task» Select the system analysis methods()

«activity»
Perform system analysis

«task» Apply the selected analysis methods to perform the required system analysis()
«task» Establish conclusions and recommendations()
«task» Identify and validate assumptions()
«task» Record the results of the system analysis()
«task» Review the analysis results for quality and validity()

«activity»
Manage system analysis

«task» Maintain traceability of system analysis results()
«task» Provide key information items that have been selected for baselines()

Figure C.31 Process Content View – ‘System Analysis Process’ – activities and tasks

PCV [Package] Implementation Process [Implementation Process - Activities & Tasks]

«process»
Implementation Process

«outcome» A system element is packaged or stored
«outcome» A system element is realized
«outcome» Any enabling systems or services needed for implementation are available
«outcome» Implementation constraints that influence the requirements, architecture, or design are identified
«outcome» Traceability is established

«activity»
Prepare for implementation

«task» Define an implementation strategy()
«task» Identify and plan for the necessary enabling systems or services needed to support()
«task» Identify constraints from the implementation strategy and implementation technology()
«task» Obtain or acquire access to the enabling systems or services, and materials to be used()

«activity»
Perform implementation

«task» Package and store the system element()
«task» Realize or adapt system elements, according to the strategy, constraints, and defined()
«task» Record objective evidence that the system element meets system requirements()

«activity»
Manage results of implementation

«task» Maintain traceability of the implemented system elements()
«task» Provide key information items that have been selected for baselines()
«task» Record implementation results and any anomalies encountered()

Figure C.32 Process Content View – ‘Implementation Process’ – activities and tasks

PCV [Package] Integration Process [Integration Process - Activities & Tasks]

«process»
Integration Process

«outcome» A system composed of implemented system elements is integrated
«outcome» Any enabling systems or services needed for integration are available
«outcome» Approach for the correct operation of the assembled interfaces and system functions
«outcome» Integration constraints that influence system requirements, architecture, or design, including interfaces
«outcome» Integration results and anomalies are identified
«outcome» The interfaces between the implemented system elements that compose the system are checked
«outcome» The interfaces between the system and the external environment are checked
«outcome» Traceability of the integrated system elements is established

«activity»
Prepare for integration

«task» Define the integration strategy()
«task» Identify and define check points for the correct operation and integrity of the assembled interfaces()
«task» Identify and plan for the necessary enabling systems or services needed to support integration()
«task» Identify system constraints from integration to be incorporated in the system requirements,()
«task» Obtain or acquire access to the enabling systems or services, and materials to be used()

«activity»
Perform integration

«task» Assemble the implemented system elements()
«task» Obtain implemented system elements in accordance with agreed schedules()
«task» Perform check of the interfaces, selected functions, and critical quality characteristics()

«activity»
Manage results of integration

«task» Maintain traceability of the integrated system elements()
«task» Provide key information items that have been selected for baselines()
«task» Record integration results and any anomalies encountered()

Figure C.33 Process Content View – ‘Integration Process’ – activities and tasks

PCV [Package] Verification Process [Verification Process - Activities & Tasks]

«process»
Verification Process

«outcome» Any enabling systems or services needed for verification are available
«outcome» Constraints of verification that influence the requirements, architecture, or design are identified
«outcome» Data providing information for corrective actions is reported
«outcome» Objective evidence that the realized system fulfils the requirements, architecture and design is provided
«outcome» The system or system element is verified: short
«outcome» Traceability of the verified system elements is established
«outcome» Verification results and anomalies are identified

«activity»
Prepare for verification

«task» Define the verification strategy()
«task» Identify and plan for the necessary enabling systems or services needed to support verification()
«task» Identify system constraints from the verification strategy to be incorporated in the system()
«task» Identify the constraints that potentially limit the feasibility of verification actions()
«task» Identify the verification scope and corresponding verification actions()
«task» Obtain or acquire access to the enabling systems or services to be used to support verification()
«task» Select appropriate verification methods or techniques and associated criteria for every verification()

«activity»
Perform verification

«task» Define the verification procedures, each supporting one or a set of verification actions()
«task» Perform the verification procedures()

«activity»
Manage results of verification

«task» Maintain traceability of the verified system elements()
«task» Obtain stakeholder agreement that the system or system element meets the specified()
«task» Provide key information items that have been selected for baselines()
«task» Record operational incidents and problems and track their resolution()
«task» Record verification results and any anomalies encountered()

Figure C.34 Process Content View – ‘Verification Process’ – activities and tasks

PCV [Package] Transition Process [Transition Process - Activities & Tasks]

«process»
Transition Process

«outcome» Any enabling systems or services needed for transition are available
«outcome» Operators, users and other stakeholders necessary to the system utilization and support are trained
«outcome» The installed system is activated and ready for operation
«outcome» The site is prepared
«outcome» The system installed in its operational location is capable of delivering its specified functions
«outcome» Traceability of the transitioned elements is established
«outcome» Transition constraints that influence system requirements, architecture, or design are identified
«outcome» Transition results and anomalies are identified

«activity»
Prepare for the transition

«task» Define a transition strategy()
«task» Identify and arrange shipping and receiving of system elements and enabling systems()
«task» Identify and arrange training of operators, users, and other stakeholders()
«task» Identify and define any facility or site changes needed()
«task» Identify and plan for the necessary enabling systems or services needed to support transition()
«task» Identify system constraints from transition to be incorporated in the system requirements()
«task» Obtain or acquire access to the enabling systems or services to be used()

«activity»
Perform the transition

«task» Commission the system for operations()
«task» Deliver the system for installation at the correct location and time()
«task» Demonstrate proper installation of the system()
«task» Demonstrate the functions provided by the system are sustainable by the enabling systems()
«task» Demonstrate the installed system is capable of delivering its required functions()
«task» Install the system in its operational location and interface to its environment()
«task» Perform activation and check-out of the system()
«task» Prepare the site of operation in accordance with installation requirements()
«task» Provide training of the operators, users, and other stakeholders necessary for system utilization()
«task» Review the system for operational readiness()

«activity»
Manage results of transition

«task» Maintain traceability of the transitioned system elements()
«task» Provide key information items that have been selected for baselines()
«task» Record operational incidents and problems and track their resolution()
«task» Record transition results and any anomalies encountered()

Figure C.35 Process Content View – ‘Transition Process’ – activities and tasks

PCV [Package] Validation Process [Validation Process - Activities & Tasks]

«process»
Validation Process

«outcome» Any enabling systems or services needed for validation are available
«outcome» Constraints of validation that influence the requirements, architecture, or design are identified
«outcome» Objective evidence that the realized system or system element satisfies stakeholder needs is provided
«outcome» The availability of services required by stakeholders is confirmed
«outcome» The system or system element is validated
«outcome» Traceability of the validated system elements is established
«outcome» Validation criteria for stakeholder requirements are defined
«outcome» Validation results and anomalies are identified

«activity»
Prepare for validation

«task» Define the validation strategy()
«task» Identify and plan for the necessary enabling systems or services needed to support validation()
«task» Identify system constraints from the validation strategy to be incorporated in the stakeholder()
«task» Identify the constraints that potentially limit the feasibility of validation actions()
«task» Identify the validation scope and corresponding validation actions()
«task» Obtain or acquire access to the enabling systems or services to be used to support validation()
«task» Select appropriate validation methods or techniques and associated criteria for each validation()

«activity»
Perform validation

«task» Define the validation procedures, each supporting one or a set of validation actions()
«task» Perform the validation procedures in the defined environment()
«task» Review validation results to confirm that the services of the system()

«activity»
Manage results of validation

«task» Maintain traceability of the validated system elements()
«task» Obtain stakeholder agreement that the system or system element meets the stakeholder needs()
«task» Provide key information items that have been selected for baselines()
«task» Record operational incidents and problems and track their resolution()
«task» Record validation results and any anomalies encountered()

Figure C.36 Process Content View – ‘Validation Process’ – activities and tasks

PCV [Package] Operation Process [Operation Process - Activities & Tasks]

«process»
Operation Process

«outcome» Any enabling systems, services, and material needed for operation are available
«outcome» Operation constraints that influence system requirements, architecture, or design are identified
«outcome» Support to the customer is provided
«outcome» System performance during operation is monitored
«outcome» System services that meet stakeholder requirements are delivered
«outcome» Trained, qualified operators are available

«activity»
Prepare for operation

«task» Assign trained, qualified personnel to be operators()
«task» Define an operation strategy()
«task» Identify and plan for the necessary enabling systems or services needed to support operation()
«task» Identify or define training and qualification requirements for personnel needed for system()
«task» Identify system constraints from operation to be incorporated in the system requirements,()
«task» Obtain or acquire access to the enabling systems or services to be used()

«activity»
Perform operation

«task» Apply materials and other resources, as required, to operate the system and sustain its services()
«task» Identify and record when system service performance is not within acceptable parameters()
«task» Monitor system operation()
«task» Perform system contingency operations, if necessary()
«task» Use the system in its intended operational environment()

«activity»
Manage results of operation

«task» Maintain traceability of the Operations elements()
«task» Provide key information items that have been selected for baselines()
«task» Record operational incidents and problems and track their resolution()
«task» Record results of operation and any anomalies encountered()

«activity»
Support the customer

«task» Determine the degree to which delivered system services satisfy the needs of the customers()
«task» Provide assistance and consultation to the customers as requested()
«task» Record and monitor requests and subsequent actions for support()

Figure C.37 Process Content View – ‘Operation Process’ – activities and tasks

PCV [Package] Maintenance Process [Maintenance Process - Activities & Tasks]

«process»
Maintenance Process

«outcome» Any enabling systems or services needed for maintenance are available
«outcome» Failure and lifetime data, including associated costs, is determined
«outcome» Maintenance constraints that influence system requirements, architecture, or design are identified
«outcome» Replacement, repaired, or revised system elements are made available
«outcome» The need for changes to address corrective, perfective, or adaptive maintenance is reported

«activity»
Prepare for maintenance

«task» Define a maintenance strategy()
«task» Identify and plan for the necessary enabling systems or services needed()
«task» Identify system constraints from maintenance to be incorporated in the system requirements()
«task» Identify trades such that the system and associated maintenance and logistics()
«task» Obtain or acquire access to the enabling systems or services to be used()

«activity»
Perform maintenance

«task» Identify when adaptive or perfective maintenance is required()
«task» Implement the procedures for random faults or scheduled replacement of system()
«task» Perform failure identification actions when a non-compliance has occurred in the system()
«task» Perform preventive maintenance by replacing or servicing system elements prior to failure()
«task» Record maintenance incidents and problems and track their resolution()
«task» Review incident and problem reports()
«task» Upon encountering random faults that cause a system failure, deploy actions()

«activity»
Perform logistics support

«task» Confirm that logistics actions include supportability requirements that are planned()
«task» Confirm that logistics actions satisfy the required replenishment levels so that stored system()
«task» Implement any packaging, handling, storage and transportation needed during the life cycle()
«task» Perform acquisition logistics()
«task» Perform operational logistics()

«activity»
Manage results of maintenance and logistics

«task» Identify and record trends of incidents, problems, and maintenance and logistics actions()
«task» Maintain traceability of the Maintenance elements()
«task» Monitor customer satisfaction with system and maintenance support()
«task» Provide key information items that have been selected for baselines()
«task» Record maintenance and logistics results and any anomalies encountered()
«task» Record operational incidents and problems and track their resolution()

Figure C.38 Process Content View – ‘Maintenance Process’ – activities and tasks

PCV [Package] Disposal Process [Disposal Process - Activities & Tasks]

«process»
Disposal Process

«outcome» Any enabling systems or services needed for disposal are available
«outcome» Disposal constraints are provided as inputs to requirements, architecture, design, and implementation
«outcome» Records of disposal actions and analysis are available
«outcome» The environment is returned to its original or an agreed state
«outcome» The system elements or waste products are destroyed, stored, reclaimed or recycled

«activity»
Prepare for disposal

«task» Define a disposal strategy for the system()
«task» Define preventive methods()
«task» Identify and plan for the enabling systems or services to support disposal()
«task» Identify system constraints on the system requirements, architecture and design()
«task» Obtain or acquire access to the enabling systems or services to be used()
«task» Specify containment facilities, storage locations, inspection criteria and storage periods()

«activity»
Perform disposal

«task» Conduct destruction of the system elements to reduce the amount of waste()
«task» Deactivate the system or system element to prepare it for removal()
«task» Disassemble the system or system element into manageable elements()
«task» Handle system elements and their parts that are not intended for reuse()
«task» Remove the system, system element, or waste material from use or production()
«task» Withdraw impacted operating staff from the system or system element()

«activity»
Finalize the disposal

«task» Archive information gathered through the lifetime of the system()
«task» Confirm that no detrimental health, safety, security and environmental factors exist()
«task» Return the environment to its original state or to a state that specified by agreement()

Figure C.39 Process Content View – ‘Disposal Process’ – activities and tasks

References

[1] ISO/IEC. ‘ISO/IEC 15288:2015 Systems and software engineering – System
Life Cycle Processes’. 1st edition. International Organisation for Standardi-
sation; 2015.

[2] INCOSE. ‘Systems Engineering Handbook – A Guide For System Life Cycle
Processes And Activities’. 4th edition. INCOSE; 2015.

786 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Appendix D

Competency Framework

D.1 Introduction

This appendix describes the MBSE Competency Framework that can be used as a
basis for carrying out assessments as described in Chapter 16. This appendix also
defines a number of Competency Scopes for the Stakeholder Roles identified as
being important for the realisation of MBSE in an Organisation.

«ontology element»
Evidence Type

«ontology element»
Lead

«ontology element»
Level

«ontology element»
Awareness

«ontology element»
Support

«ontology element»
Expert

«ontology element»
Indicator

«ontology element»
Competence

«ontology element»
Competency

«ontology element»
Competency Area

«ontology element»
Competency Scope

«ontology element»
Competency Profile

«ontology element»
Resource

«ontology element»
Stakeholder Role

«ontology element»
Person

1..*

describes desired

1

1

defines admissable evidence for

1..*

1

is held at

1

1

exhibits

1

1..*

describes
measured

1

1

describes
measured
abilities of

1

1..*

1

1

classifies

1..*

1

requires

1

1..*

1

1

is assessed
against

1

1..*

holds

1..*

1

Figure D.1 Subset of the MBSE Ontology focused on Competence

The diagram in Figure D.1 shows a recap of the key concepts associated with
Competence taken from the MBSE Ontology that has been used throughout this
book. An example Competency Framework, the MBSE Competency Framework
will now be described that is based and, therefore, is consistent with the MBSE
Ontology. It should be stressed that the Competency Framework provided here is
for guidance only and is not intended to be definitive for all MBSE activities in all
Organisations. The Competency Framework presented here is based on real work
and has been applied in industry.

D.2 MBSE Competency Framework – Levels

The MBSE Ontology identifies four Levels of Competence at which individual
Competencies may be held. These are summarised in Table D.1.

Table D.1 Summary of Indicators for each Level

Level Description Indicators

Level 1 –
Awareness

Speak knowledgeably about a particular aspect of the Com-
petency. The main aim is for the assessee to demonstrate
that they understand each Indicator fully, and back this up
with examples – either theoretical or real-life

Unique for each ‘Competency’

Level 2 –
Support

Reflect the ability to implement the concepts that were dis-
cussed at Level 1 for this Competency

Has achieved Level 1, ‘Awareness’, for this Competency
Has implemented the concepts discussed at Level 1
Has been trained in some way
Has supported other people in the implementation of

work Activities that use the Indicators in Level 1
Has created Artefacts related to the Competency as

characterised by the Indicators for Level 1
Has controlled Artefacts (applied version control, etc.)

related to the Competency as characterised by the
Indicators for Level 1

Has had Artefacts reviewed and has been able to address
any issues that have arisen as a result of the review

Can identify best practice in the Competencies, such as
Standards, books, methodologies, etc.

Level 3 –
Lead

Reflect the ability to be able to lead the Activity that was
described at Level 1 and implemented at Level 2

Has achieved Level 2, support
Has led Activity at a Project level
Has managed Level 2 Activity (version control, release,

setting work, assessing review responses, etc.)
Has formally reviewed Artefacts
Has experience facing clients
Has some formal affiliation to a professional body,

such as associate or full membership

Level 4 –
Expert

Reflect the ability to be a true, recognised expert in the field
that is described by this Competency

Has achieved Level 3, Lead
Holds formal Chartered status from a recognised

professional body
Has published in the field
Has external recognition
Has led Activity at the strategic or Programme level
Has mentored Level 2 and Level 3 staff
Has contributed to best practice
Is currently active in recognised professional bodies

788 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Table D.1 shows the set of Indicators for each Level in the form of a summary
table. These are described in more detail below.

D.2.1 Level 1 – Awareness
This Level identifies a number of Indicators that are required to be understood and
that will be used as the basis for assessment of all the other Levels. These Indicators
are specific to the Competency at Level 1, whereas at higher Levels, the Indicators
are the same across all Competencies.

The main aim of this Level is for the assessee to demonstrate that they possess
the ability to ‘speak knowledgeably about a particular aspect of the Competency.
The main aim is for the assessee to demonstrate that they understand each Indicator
fully, and back this up with examples – either theoretical or real-life’.

For example, to obtain ‘Level 1 – Awareness’, in the ‘Modelling’ Competency,
the assessee must demonstrate that they: understand the need for modelling (first
Indicator), can provide an appropriate definition of modelling (second Indicator)
and so on for all the Indicators.

By understanding all the concepts in this book, then Level 1 can be easily achieved.

D.2.2 Level 2 – Support
The indicators defined at ‘Level 2 – Support’ are the same across all of the Com-
petencies, whereas the ones at ‘Level 1 – Awareness’ are different for each
Competency.

The main goal of this Level is for the assessee to demonstrate that they can
‘reflect the ability to implement the concepts that were discussed at Level 1 for this
Competency’. In this example, the Indicators that are defined apply to the Indica-
tors that were identified in Level 1. These Indicators are defined as follows:

● Has achieved ‘Level 1 – Awareness’, for this Competency. Therefore, for the
‘Modelling Competency’ the assessee must have met the criteria – they are
able to demonstrate their knowledge – for the Indicators specified.

● Has implemented the concepts discussed at Level 1. Therefore, for the ‘Mod-
elling Competency’ the assessee must have actually worked on a Project where
they have been able to understand the need for modelling (first Indicator),
provide an appropriate definition of modelling (second Indicator) and so on for
all the Indicators.

● Has been trained in some way. This is usually by a course or in some cases by
on-the-job experience, in the areas described by the Indicators at level 1.
Therefore, for the ‘Modelling Competency’ the assessee must have actually
been trained to understand the need for modelling (first Indicator), provide an
appropriate definition of modelling (second Indicator) and so on for all the
Indicators.

● Has supported other people in the implementation of work activities that use
the Indicators in Level 1. Therefore, for the ‘Modelling Competency’ the
assessee must have supported people on a Project where they have been able to
understand the need for modelling (first Indicator), provide an appropriate
definition of modelling (second Indicator) and so on for all the Indicators.

Competency Framework 789

Examples of this on real Projects include contributing to creation and genera-
tion of Artefacts, and participation in workshops.

● Has created Artefacts related to the Competency as characterised by the Indi-
cators for Level 1. Therefore, for the ‘Modelling Competency’ the assessee must
have produced, or contributed to the production of Artefacts that demonstrate that
they can understand the need for modelling (first Indicator), provide an appro-
priate definition of modelling (second Indicator) and so on for all the Indicators.

● Has controlled Artefacts (applied version control, etc.) related to the Compe-
tency as characterised by the Indicators for Level 1. Therefore, for the ‘Mod-
elling Competency’ the assessee must have applied version control to Artefacts
that they have produced that demonstrate that they can understand the need for
modelling (first Indicator), provide an appropriate definition of modelling
(second Indicator) and so on for all the Indicators.

● Has had Artefacts reviewed and has been able to address any issues that have
arisen as a result of the review. Therefore, for the ‘Modelling Competency’ the
assessee must have actually worked had their Artefacts reviewed by others
where they can demonstrate that they: understand the need for modelling (first
Indicator), provide an appropriate definition of modelling (second Indicator)
and so on for all the Indicators.

● Can identify best practice in the Competencies, such as Standards, books and
methodologies. Therefore, for the ‘Modelling Competency’ the assessee must
be able to reference best practice, techniques, approaches, Standards, etc. that
demonstrate that they can understand the need for modelling (first Indicator),
provide an appropriate definition of modelling (second Indicator) and so on for
all the Indicators.

This list of Level 2 Indicators is then applied to all Competencies in the Compe-
tency assessment in exactly the same way. Therefore, when assessing against level
two using this approach, there are never ‘‘new’’ indicators that are introduced, just
the same ones applied to all the Competencies.

D.2.3 Level 3 – Lead
The Indicators defined at ‘Level 3 – Lead’ are the same across all of the Competencies,
whereas the ones at ‘Level 1 – Awareness’ are different for each Competency.

The aim of this Level is for the assessee to demonstrate that they can ‘reflect
the ability to be able to lead the activity that was described at Level 1 and imple-
mented at Level 2’.

In the same way that generic Indicators are defined at Level 2 that apply to all
Competencies, the same is done for Level 3. These Indicators are described as follows:

● Has achieved ‘Level 2 – Support’. The assessee must have achieved Level 2
and, therefore, Level 1 (which was one of the Level 2 indicators).

● Has led activity at a Project level. Therefore, for the ‘Modelling Competency’
the assessee must be able to demonstrate that they have led a team or group of

790 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

people where they have been able to understand the need for modelling (first
Indicator), provide an appropriate definition of modelling (second Indicator)
and so on for all the Indicators. Typically, the group that was led by the
assessee would be made up of primarily Level-2 people in the relevant
Competencies.

● Has supervised Level-2 activity. Therefore, for the ‘Modelling Competency’
the assessee must have supervised people who are at Level 2, where they can
understand the need for modelling (first Indicator), provide an appropriate
definition of modelling (second Indicator) and so on for all the Indicators. This
supervision may be management supervision in the same group or may also
include mentoring of Level-2 people, perhaps from other groups in the
Organisation.

● Has managed Level-2 activity (version control, release, setting work, assessing
review responses, etc.). Therefore, for the ‘Modelling Competency’ the
assessee must be able to demonstrate that they have been involved with
assessing work, setting work, etc. where they can understand the need for
modelling (first Indicator), provide an appropriate definition of modelling
(second Indicator) and so on for all the Indicators. Again, notice how the level
of responsibility is increasing – at Level 2 the assessee was required to have
their work set and managed, at Level 3 the assessee sits on the other side of the
table and performs the setting of the work.

● Has formally reviewed Artefacts. Therefore, for the ‘Modelling Competency’
the assessee must be able to demonstrate that they have reviewed Artefacts on
real Projects where they: understand the need for modelling (first Indicator),
provide an appropriate definition of modelling (second Indicator) and so on for
all the Indicators. Yet again, the Level-3 assessee is now sat across the
table from the Level-2 person and is performing the reviews.

● Has experience facing clients. Therefore, for the ‘Modelling Competency’ the
assessee must be able to demonstrate that they can represent the Organisation
where they can understand the need for modelling (first Indicator), provide an
appropriate definition of modelling (second Indicator) and so on for all the
Indicators. This is the first Indicator that reflects an outgoing image to the
outside world, where the Organisation’s reputation may be at stake.

● Has some formal affiliation to a professional body, such as associate or full
membership. Therefore, for the ‘Modelling Competency’ the assessee must be
able to demonstrate that they have found the relevant professional body that
relates to modelling and that shows that they can understand the need for
modelling (first Indicator), provide an appropriate definition of modelling
(second Indicator) and so on for all the Indicators.

Again, these Level-3 Indicators, like the Level-2 Indicators, are applied to all the
Competencies in the Competency Scope. Therefore, when assessing against Level
three using this approach, there are never ‘‘new’’ indicators that are introduced, just
the same ones applied to all the Competencies.

Competency Framework 791

D.2.4 Level 4 – Expert
The Indicators defined at ‘Level 4 – Expert’ are the same across all of the Com-
petencies, whereas the ones at ‘Level 1 – Awareness’ are different for each
Competency.

The aim of Level 4 is for the assessee to demonstrate that they can ‘reflect the
ability to be a true, recognised expert in the field that is described by this Compe-
tency’. The Indicators for Level 3 are as follows:

● Has achieved ‘Level 3 – Lead’. This is similar to the criteria of both Levels 2 and
3, each of which requires attainment of the previous Level for qualification.

● Holds formal Chartered status from a recognised professional body. Therefore,
for the ‘Modelling Competency’ the assessee must be able to demonstrate that
they have found the relevant professional body that relates to modelling and that
shows that they can understand the need for modelling (first Indicator), provide an
appropriate definition of modelling (second Indicator) and so on for all the Indi-
cators. The assessee must hold the Chartered status qualification or equivalent.

● Has published in the field. This includes books, first or second author on paper,
first author on published public presentations. Therefore, for the ‘Modelling
Competency’ the assessee must be able to demonstrate that they have pub-
lished work that shows that they can understand the need for modelling (first
Indicator), provide an appropriate definition of modelling (second Indicator)
and so on for all the Indicators. Due to the size of the Organisation, this will
again mean publications in the public domain, whereas for a large organisation,
internal publications may, or may not, be considered.

● Has external recognition. This includes speaking at public events, invited
presentations, awards and panels. This is similar to the previous Indicator but
this time relates to oral communication, rather than written. Therefore, for the
‘Modelling Competency’ the assessee must be able to demonstrate that they
have presented papers, spoken at events, etc. that show that they can under-
stand the need for modelling (first Indicator), provide an appropriate definition
of modelling (second Indicator) and so on for all the Indicators.

● Has led activity at the strategic or Programme level. Therefore, for the
‘Modelling Competency’ the assessee must be able to demonstrate that they
defined Process, policy, etc. that relates to modelling and that shows that they
can understand the need for modelling (first Indicator), provide an appropriate
definition of modelling (second Indicator) and so on for all the Indicators. At
the expert Level, the assessee must be seen to be driving the relevant dis-
ciplines forward both within and without the Organisation.

● Has mentored Level 2 and Level 3 staff. Therefore, for the ‘Modelling Com-
petency’ the assessee must be able to demonstrate that they have mentored
staff in relation to modelling and that shows that they can understand the need
for modelling (first Indicator), provide an appropriate definition of modelling
(second Indicator) and so on for all the Indicators. Notice again that the level of
responsibility is increasing all the time and that the mentoring for this Indicator
applies to all Levels below.

792 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

● Has contributed to best practice. This includes development of recognised
methods, methodologies, and tools. Therefore, for the ‘Modelling Compe-
tency’ the assessee must be able to demonstrate that they have contributed to
the knowledge pool and that shows that they can understand the need for
modelling (first Indicator), provide an appropriate definition of modelling
(second Indicator) and so on for all the Indicators.

● Is currently active in recognised professional bodies. Therefore, for the
‘Modelling Competency’ the assessee must be able to demonstrate that they
have found the relevant professional body that relates to modelling and that
they are actively involved in activities that show that they can understand the
need for modelling (first Indicator), provide an appropriate definition of
modelling (second Indicator) and so on for all the Indicators.

These Indicators apply to all the Indicators identified at Level 1. Therefore, when
assessing against Level four using this approach, there are never ‘‘new’’ indicators
that are introduced, just the same ones applied to all the Competencies.

D.3 Evidence Types

An essential part of the MBSE Competency Framework is to define the Evidence
Types that will be used to assess each of the Indicators that make up the Compe-
tency. Each of the four Levels, therefore, has its own Evidence Types defined, in
the following sections.

D.3.1 Level 1 – Awareness
The main goal of ‘Level 1 – Awareness’ is to ‘speak knowledgeably about a par-
ticular aspect of the Competency. The main aim is for the assessee to demonstrate
that they understand each Indicator fully, and back this up with examples – either
theoretical or real-life.’

With this is in mind, the following Evidence Types were defined:

● Tacit knowledge. This means that the assessee can talk knowledgably about the
selected Competency. It is important that the assessee can demonstrate that
they truly understand the key concepts and is not just repeating something
verbatim from a book or the Internet. This is an essential Evidence Type in that
the Level cannot be achieved without this being demonstrated. It was decided
that there would be an indefinite Timeliness set for this Evidence Type, pro-
viding of course that the assessee can answer questions successfully.

● Informal training course. This means that the assessee may have attended some
form of training course of workshop related to the Competency. This is an optional
Evidence Type and is, therefore, not essential to gain this Competency Level. It
was decided to attach a Timeliness of 2 years to this Evidence Type. Therefore, for
any course to be considered, it needs to have been attended in the last 2 years.

This Level was deemed to be the minimum acceptable Level for all Competencies
in the Applicable Competency Set for all employees for this Organisation.

Competency Framework 793

D.3.2 Level 2 – Support
The main goal of this Level is for the assessee to demonstrate that they can ‘reflect the
ability to implement the concepts that were discussed at Level 1 for this Competency’.

With this in mind, the following Evidence Types are defined:

● Formal training course. This means that the assessee must have some training
in the relevant area. The training course itself must be formally recognised by
the company as being of sufficient quality to be deemed appropriate to gain the
Level. For example, a course from an accredited institution, a course provided
by a professional body (with associated Continued Professional Development,
or equivalent, points), a course that has been specifically mapped to a relevant
Competency Framework or a course that is recognised as contributing to pro-
fessional qualification. This training must have taken place in the last 5 years.

● Activity – Artefact. The assessee must be able to demonstrate that they have
been involved with work activity in this area. The evidence that will be
accepted is proof that they have been involved in creating an Artefact by being
a documented contributor. This must have taken place in the last 2 years.

● Activity – sworn statement. Activity on a Project may also be demonstrated by
having a formal statement from a Level 3 or Level 4 Person to state that they
have contributed to a Project and met the requirements of Level 2. This must
have taken place in the last 2 years.

● Activity – formal review. It is also possible to demonstrate activity by having
work formally reviewed. In this Organisation, all work is formally reviewed by
Level 3 or level 4 personnel before it can be released. There is a formal process
for this in the Organisation, therefore review Artefacts are deemed as
acceptable proof. This must have taken place in the last 2 years.

This Level was deemed to be the minimum level for any staff to hold if they were to
be involved with relevant work activities in this area.

D.3.3 Level 3 – Lead
The aim of this Level is for the assessee to demonstrate that they can ‘reflect the
ability to be able to lead the activity that was described at Level 1 and implemented
at level 2’.

With this in mind, the following Evidence Types are defined:

● Educational qualification. In order to achieve this Level, it is necessary to hold
a minimum qualification of a Master’s degree in a related discipline. There is
no time limit on when this qualification was held.

● Lead activity. The assessee must have led activity on a Project which can be
demonstrated by being the lead author of a relevant Project Artefact. This must
have taken place in the last year.

● Reviewer. The assessee must have been a reviewer for an Artefact on a Project.
This must have taken place in the last year.

This Level was deemed to be the minimum Level for any staff to hold if they are to
hold the job title of, or call themselves, a consultant.

794 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

D.3.4 Level 4 – Expert
The aim of Level 4 is for the assessee to demonstrate that they can ‘reflect the ability
to be a true, recognised expert in the field that is described by this Competency’.

With this in mind, the following Evidence Types are defined:

● Professional qualification. The assessee must have achieved formal Chartered
status or higher. Nothing short of full, government-recognised Chartered or
Fellow-status will count, and the awarding body must be an official govern-
ment-recognised professional body.

● Publications. The assessee must have published work in a recognised format.
This includes writing books and peer-reviewed papers. Non-peer-reviewed
papers, such as some conferences and (definitely) white papers, will not be
recognised.

● Public speaking. The assessee must have spoken publically on behalf of the
Organisation. This includes conference presentations, invited talks, seminars
and so on.

● Activity definition. The assessee must have been directly responsible for the
definition of company policy, Process or approach.

This Level was deemed to be the minimum Level for any staff to hold if they are to
formally represent the Organisation in this area.

D.4 MBSE Competency Framework – Competency Areas

The MBSE Ontology describes a Competency Area as a classification of one or
more Competency. These Competency Areas will typically be arranged into a
classification taxonomy, as shown in Figure D.2.

«ontology element»
Systems Knowledge

Competency Area

«ontology element»
MBSE Concepts Competency

Area

«ontology element»
Life Cycle Process
Competency Area

«ontology element»
Domain Knowledge
Competency Area

«ontology element»
Skill Competency Area

«ontology element»
Soft Skill Competency Area

«ontology element»
Technical Skill Competency

Area

«ontology element»
Competency Area

Figure D.2 Taxonomy for ‘Competency Area’ types

Competency Framework 795

The different types of ‘Competency Area’ are shown here in the form of a
classification hierarchy. When describing these Competency Areas, it is important
to try to relate each one to other concepts in the MBSE Ontology or the Organi-
sation which will make the individual Competencies easier to define. These Com-
petency Areas are as follows:

● The ‘MBSE Concepts Competency Area’. This Competency Area is based
directly on the MBSE Ontology. The individual Competencies will, therefore,
relate to the MBSE Ontology concepts which means that it is possible to ensure
coverage of all important areas of MBSE that were introduced in Chapter 3 and
that have been used throughout this book.

● The ‘Life Cycle Process Competency Area’. This Competency Area applies to
the Life Cycle Processes that are used within an Organisation are based
directly on the Processes from the Process model for the Organisation. These
will be based on the wider MBSE model.

● The ‘Technical Skill Competency Area’. This Competency Area applies to
specific techniques that are necessary to carry out the MBSE activities in the
Organisation, such as ACRE and ‘‘seven views’’, that have been described in
Part 3 of this book. These will be based primarily on the MBSE Processes.

● The ‘Soft Skill Competency Area’. This is a Competency Area that is often be
covered by in-house human-resource Processes and Framework rather than
stem from technical areas.

● ‘Domain Knowledge Competency Area’. This Competency Area is directly
related to the field in which the Organisation operates and will usually be an in-
house Framework that maps onto some industry-specific source.

The MBSE Ontology shows that one or more ‘Competency Area’ classifies one or
more ‘Competency’, each of which is made up of one or more ‘Indicator’. The
competencies along with their associated indicators will now be described in the
following sections.

D.5 MBSE Competency area – MBSE concepts

Figure D.3 shows the Competencies that have been defined for the ‘MBSE Con-
cepts Competency Area’. Note in this and subsequent diagrams that the stereotype
on the various blocks modelling the Competency Areas has been changed from
‘«ontology element» (as on Figure D.2) to «competency area». This has been
done to reflect the change in emphasis here and subsequently. In Figure D.2 we
were presenting ontological concepts; here, and in the following sections, we
are now presenting competency concepts from a Competency Framework and
there is, therefore, a change in emphasis which can be highlighted by changing
stereotypes.

796 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Table D.2 describes the Competencies and their associated Indicators for the
‘MBSE Concepts Competency Area’.

«competency area»
MBSE Concepts
Competency Area

«competency»
Need Concepts

«competency»
Modelling

«competency»
Competence Concepts

«competency»
Process Concepts

«competency»
System Concepts

«competency»
Project Concepts

«competency»
Architecture Concepts

«competency»
Life Cycle Concepts

1

1 1

1

1

1

1

1

1

Figure D.3 MBSE competencies – ‘MBSE Concepts Competency Area’

Table D.2 Competency and indicator descriptions for the ‘MBSE Concepts Competency Area’

Competency Description Indicators

Modelling This Competency relates to generic modelling ● Understands the need for modelling
● Can provide an appropriate definition of modelling
● Understands the concept of abstraction
● Understands the concept of connection to reality
● Understands the concept of different approaches to

modelling
● Understands the concept of consistency
● Can define what a view is
● Understands the difference between modelling and

drawing pictures
● Understands structural modelling
● Understands behavioural modelling

Systems
Concepts

This Competency relates to the concept of a System and
the related concepts that are necessary to demonstrate
understanding of this concept

● Understands the concept of a System Understands
the concept of a System Context and its relationship
to a System

● Understands the concepts of System of Interest and
Enabling System and the relationships between them

● Understands the concepts of System of Systems
and Constituent Systems and the relationships
between them

(Continues)

Competency Framework 797

Table D.2 (Continued)

Competency Description Indicators

● Understands that there are different classifications of
System of Systems

● Understands the concepts of System Element and its
relationship to Constituent System

● Understands that a System is realised by one or more
Product

● Understands the concepts of a Product and a Service
and the relationship between them

Project
Concepts

This Competency relates to the concept of a Project and
the related concepts that are necessary to demonstrate
understanding of this concept

● Understands the concepts of Project and Programme
and the relationships between them

● Understands the concept of Project Context and the
relationship to a Project

● Understands the relationship between Project and
System

● Understands the relationship between Life Cycle and
Project

● Understands the concepts of Organisation and Orga-
nisational Unit and the relationships between them

● Understands the relationship between Organisational
Unit and Project

● Understands the concept of Organisational Context
and Organisational Unit

Process
Concepts

This Competency relates to the concept of a Process and
the related concepts that are necessary to demonstrate
understanding of this concept

● Understands the concept of a Process
● Understands the concept of a Process Execution

Group and its relationship to Process
● Understands the relationship between Process and

Service
● Understands the concepts of: Artefact, Activity and

Stakeholder Role and their relationship to Process
● Understands the relationship between Stakeholder

Role and Activity
● Understands the relationship between Stakeholder

Role and System
● Understands the relationship between Artefact and

Activity
● Understands the concept of Resource and its rela-

tionship to Activity

Need
Concepts

This Competency relates to the concept of a Need and
the related concepts that are necessary to demonstrate
understanding of this concept

● Understands the concept of a Need
● Understands the concepts of the different types of

Need: Requirement, Capability, Goal and Concern
● Understands the relationship between these types

of Need
(Continues)

798 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Table D.2 (Continued)

Competency Description Indicators

● Understands the concept of a Need Description and
its relationship to Need

● Understands the concept of a Source Element and its
relationship to Need

● Understands the concept of a Rule and its relation-
ship to Need

● Understands the concepts of Use Case and Context
and their relationship to Need

● Understands the concepts of the different types of
Context, such as System Context, Stakeholder Con-
text, Project Context and Organisational Context

● Understands the concept of a Scenario and to
relationship to Use Case

● Understands the concepts of the different types of
Scenario: Formal Scenario and Semi-formal Scenario

Architecture
Concepts

This Competency relates to the concept of an Archi-
tecture and the related concepts that are necessary to
demonstrate understanding of this concept

● Understands the concept of Architecture
● Understands the relationship between Architecture

and System
● Understands the concepts of Perspective and View,

their relationships to each other and to Architecture
● Understands the concept of Architectural Framework

and its relationship to Architecture
● Understands the concepts of Ontology and View-

point and their relationship to Architecture
● Understands the relationship between Ontology and

Viewpoint
● Understands the relationship between View and

Viewpoint

Competence
Concepts

This Competency relates to the concept of a Compe-
tence and the related concepts that are necessary to
demonstrate understanding of this concept

● Understands the concept of Competence
● Understands the concepts of Competency and

‘Level’ and their relationship to Competence and
each other

● Understands the concepts of the different types of
Level: Awareness, Support, Lead and Expert

● Understands the concepts of Indicator and Compe-
tency Area and their relationship to Competency

● Understands the concepts of Stakeholder Role and
Competency Scope, the relationship between them
and how these relate to Competence

● Understands the concepts of Person and Competency
Profile, the relationship between them and how these
relate to Competence

(Continues)

Competency Framework 799

These Competencies and Indicators may now be used as a basis for a Com-
petency assessment exercise.

D.6 MBSE Competency area – Life Cycle Process

Figure D.4 shows the Competencies that have been defined for the ‘Life Cycle
Process Competency Area’.

Table D.2 (Continued)

Competency Description Indicators

● Understands the relationship between Person and
Stakeholder Role

● Understands the relationship between Competency
Scope and Competency Profile

● Understands the concept of Resource and how it
relates to Person

Life Cycle
Concepts

This Competency relates to the concept of a Life Cycle
and the related concepts that are necessary to
demonstrate understanding of this concept

● Understands the concept of Life Cycle and Life
Cycle Model and the relationship between them

● Understands the concept of Stage and its relationship
to Life Cycle

● Understands the concept of Gate and its relationship
to Stage

● Understands the concept of Process Execution Group
and its relationship to Stage

● Understands the concept of System and its relation-
ship to Life Cycle

● Understands the concept of Project and its relation-
ship to Life Cycle

● Understands the concept of Life Cycle Interaction
and its relationship to Life Cycle

● Understands the concept of Life Cycle Interface
Point and its relationship to Life Cycle Model

● Understands the concept of Life Cycle Interaction
and its relationship to Life Cycle Interface Point

800 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Table D.3 describes the Competencies and their associated Indicators for the
‘Life Cycle Process Competency Area’.

«competency area»
Life Cycle Process
Competency Area

«competency area»
Customer Supplier
Competency Area

«competency area»
Organisational Competency

Area

«competency area»
Management Competency

Area

«competency area»
Technical Competency Area

«competency»
Stakeholder Needs

«competency»
Project Planning

«competency»
Project Control

«competency»
Negotiation

«competency»
Tender Response

«competency»
Process Modelling

«competency»
Competency
Assessment

«competency»
Architecture

{incomplete}

{incomplete}

{incomplete}

{incomplete}

1 1

1

1

1

11

1

1 1

1

1

Figure D.4 MBSE competencies – ‘Life Cycle Process Competency Area’

Table D.3 Competency and indicator descriptions for the ‘Life Cycle Process Competency Area’

Competency Description Indicators

Process
Modelling

This Competency reflects the
ability to model Processes

● Holds the ‘Process Concepts’ Competency
● Understands that each Process or set of Processes must be driven by

its own Context
● Understands how Stakeholder Roles have a relationship with Processes in

terms of involvement and responsibility
● Understands the drivers behind Process modelling (complexity,

communication, lack of understanding)
● Understands the importance of the Ontology

(Continues)

Competency Framework 801

Table D.3 (Continued)

Competency Description Indicators

● Is aware of different approaches or techniques to Process modelling
● Is aware of the importance of Views
● Understands how a good Process model may be used (assessment, audits,

Process improvement, etc.)

Competency
Assessment

This Competency reflects the
understanding of assessing
Competency

● Holds the ‘Competence Concepts’ Competency
● Understands Competency assessment must be driven by its own Context
● Understands the specific drivers behind why someone may wish to

perform a Competency assessment
● Can define Competency
● Understands the difference between Capability and Competency
● Understands the concept of Competency groups or areas
● Understands what Indicators are and how they are used in Competency

Assessment
● Understands what a Competency Level is and how it is used in Compe-

tency Assessment
● Can provide examples of how the output of an assessment may be used

Project
Planning

This Competency reflects the
understanding of planning
projects

● Holds the ‘Project Concepts’ Competency
● Holds the ‘Process Modelling’ Competency
● Understands the need for good Project management
● Understands the Project management-related concepts from the MBSE

Ontology
● Understands the relationship between Project management concepts and

Life Cycles and Life Cycle Models
● Understands the relationship between Project management concepts and

Processes and Process Execution Groups
● Is able to allocate time to Life Cycle and Process behaviours to create the

Project Schedule
● Understands the difference between the ideal schedule, planned schedule

and actual schedule
● Understands that a schedule may be related to and even dependent on

other schedules

Project
Control

This Competency reflects the
understanding of controlling
projects

● Holds the ‘Project Concepts’ Competency
● Holds the Project Management Competency
● Understands how the time elapsed on Project relates to the schedule
● Is able to predict deadlines based on the Life cycle and Process

behaviours
● Can identify dependencies with other Projects and their schedules
● Can identify potential conflicts within the schedule
● Is able to define corrective actions
● Is able to report accurately on the progress and status of the Project

against the schedule
(Continues)

802 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Table D.3 (Continued)

Competency Description Indicators

Tender
Response

This Competency reflects the
understanding of responding
to tenders

● Holds the ‘Stakeholder Requirements’ Competency
● Holds the ‘Project Management’ Competency
● Is able to model the needs of a tender
● Is able to define different candidate Scenarios
● Is able to relate the Requirements model to Processes that enable Cap-

ability on the business
● Understands the core business activities of the Organisation, such as

Processes, Capabilities and Goals
● Is able to identify key Stakeholder Roles from the business model

required to satisfy the Needs of the tender
● Is able to relate Competencies to identified Stakeholder Roles

Negotiation This Competency reflects the
understanding of negotiation

● Holds the ‘Communication’ Competency
● Understands the Stakeholder Roles held by the people involved in the

negotiation
● Understands the basic Competencies required for the Stakeholder Roles

of the people involved in the negotiation
● Understands the model that represents the Needs of the subject of the

negotiation
● Can identify points of flexibility within this model
● Has clear Goals for the negotiation
● Has exit activities defined

Stakeholder
Needs

This Competency reflects
the understanding of
Stakeholder Needs

● Holds the ‘Need Concepts’ Competency
● Understands the concepts relating to Needs on the MBSE Ontology
● Understands the difference between defining a Need and

understanding a Need
● Is able to define Contexts based on different drivers
● Is able to identify and resolve conflicts between Needs
● Is able to establish traceability to and from Needs
● Is able to validate Use Cases using Scenarios

Architecture This Competency reflects the
understanding of Architecture

● Holds the ‘Architecture Concepts’ Competency
● Understands how Architecture relates to Systems
● Is able to identify and select an appropriate Architectural Framework
● Is able to define an Architectural framework where necessary
● Is able to realise Views based on defined Viewpoints
● Is able to demonstrate consistency between Views using the Ontology
● Is able to establish traceability with the Views

Competency Framework 803

These Competencies and Indicators may now be used as a basis for a Com-
petency assessment exercise.

D.7 MBSE Competency area – Technical Skill

Figure D.5 shows the Competencies that have been defined for the ‘Technical Skill
Competency Area’.

Table D.4 describes the Competencies and their associated Indicators for the
‘Technical Skill Competency Area’.

«competency»
SysML

«competency»
Seven Views

«competency»
ACRE

«competency area»
Technical Skill Competency

Area

«competency»
Sos ACRE

«competency»
UCAM

«competency»
UML

«competency»
MonTE

1 11

1 1 1

1

1

Figure D.5 MBSE competencies – ‘Technical Skill Competency Area’

Table D.4 Competency and indicator descriptions for the ‘Technical Skill Competency Area’

Competency Description Indicators

UML This Competency reflects the ability
to use the Unified Modelling
Language (UML)

● Must hold the ‘Modelling’ Competency
● Is familiar with the background to UML
● Is familiar with the ownership of UML
● Can name the six structural diagrams
● Can name the seven behavioural diagrams
● Understands the use of each of the structural diagrams
● Understands the use of each of the behavioural diagrams
● Understands the relationships between the diagrams
● Understands the language extension mechanisms
● Can explain what the UML meta-model is

(Continues)

804 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Table D.4 (Continued)

Competency Description Indicators

SysML This Competency reflects the ability
to use the Systems Modelling
Language

● Must hold the ‘Modelling’ Competency
● Is familiar with the background to SysML
● Is familiar with the ownership of SysML
● Can name the five structural diagrams
● Can name the four behavioural diagrams
● Understands the use of each of the structural diagrams
● Understands the use of each of the behavioural diagrams
● Understands the relationships between the diagrams
● Understands the language extension mechanisms

Seven Views This Competency reflects the ability
to use the ‘‘seven views’’ approach
to process modelling

● Must hold the ‘Process Modelling’ Competency
● Must understand the MBSE Ontology
● Is able to realise Views using defined Viewpoints
● Is able to demonstrate consistency relationships between the Views
● Must understand how each View may be used for different purposes
● Must appreciate different tools and techniques that can be used to

realise the Views
● Is able to tailor the Views
● Understands how the ‘‘seven views’’ relate to the wider

Enterprise Architecture

UCAM This Competency reflects the ability
to use the UCAM Competency
assessment model processes

● Must hold the ‘Competency Assessment’ Competency
● Must understand the key concepts in UKSPEC
● Must be familiar with at least one other external framework (e.g.

INCOSE, SFIA, etc.)
● Must understand the MBSE Ontology
● Is able to demonstrate consistency between Views
● Must understand how each View may be used for different purposes

depending on the Context
● Must appreciate different tools and techniques that can be used to

realise the Views
● Is able to tailor the Views
● Must be able to suggest uses for Competency output

ACRE This Competency relates specifically
to the ACRE Process

● Must hold the ‘Modelling’ Competency
● Must hold the ‘SysML Modelling’ Competency
● Understands the concepts and terms used in the ACRE ontology
● Is able to realise Views using defined Viewpoints
● Is able to demonstrate consistency relationships between the Views
● Must understand how each View may be used for different purposes
● Must appreciate different tools and techniques that can be used to

realise the Views
● Is able to tailor the Views
● Is able to use ACRE with other Processes

(Continues)

Competency Framework 805

These Competencies and Indicators may now be used as a basis for a Com-
petency assessment exercise.

D.8 MBSE Competency area – Soft Skill

Figure D.6 shows the Competencies that have been defined for the ‘Soft Skill
Competency Area’.

Table D.4 (Continued)

Competency Description Indicators

MonTE This Competency relates specifically
to the MonTE process

● Must hold the ‘Modelling’ Competency
● Must hold the ‘SysML’ Competency
● Understands the need for tool evaluation in general
● Understands the specific needs for the tool evaluation exercise
● Must understand the MBSE Ontology
● Is able to realise Views using defined Viewpoints
● Is able to demonstrate consistency relationships between the Views
● Must understand how each View may be used for different purposes
● Must appreciate different tools and techniques that can be used to rea-

lise the Views
● Is able to tailor the Views
● Understands the required capabilities for an ideal tool
● Understands how the tool will be used in industry
● Understands Processes within the business that will make use of the tool

SoSACRE This Competency relates specifically
to the SoSACRE process

● Must hold the ‘ACRE’ Competency
● Understands the concepts relating to systems of systems from the

MBSE ontology
● Understands the difference between SoSACRE and ACRE
● Is able to realise Views using defined Viewpoints
● Is able to demonstrate consistency relationships between the Views
● Must understand how each View may be used for different purposes
● Must appreciate different tools and techniques that can be used to rea-

lise the Views
● Is able to tailor the Views
● Understands how SoSACRE relates to other Processes including ACRE

806 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Table D.5 describes the Competencies and their associated Indicators for the
‘Soft Skill Competency Area’.

«competency area»
Soft Skill Competency Area

«competency»
Public Presentation

«competency»
Writing

«competency»
Personal Communication

1

1

1

1

Figure D.6 MBSE competencies – ‘Soft Skill’

Table D.5 Competency and indicator descriptions for the ‘Soft Skill Competency Area’

Competency Description Indicators

Public Presentation This Competency relates to
an individual’s ability to
present information to
one or more people

● Understands the need to know the expectations of the potential
audience, such as who the audience are, the type of presentation
(conference, lecturing, meeting, one-on-one) and the subject

● Understands the need for good presentation material, such as slides,
personal notes, etc. and that the material

● Understands what constitutes good presentation material, in that it
must be well-structured, graphically well-presented and configura-
tion-controlled

(Continues)

Competency Framework 807

Table D.5 (Continued)

Competency Description Indicators

● Understands what constitutes good support material, in that it
must be well-structured, graphically well-presented and configura-
tion-controlled

● Understands the need for adequate support resources, such as pro-
jectors, microphones, pointers and flip charts

● Understands the need to tailor the presentation for different audi-
ences, in terms of the presentation material, support Material and
the way that the material is pitched

● Understands the need to practise and rehearse the presentation to
check the content, timing and presentational ability

● Understands the need to articulate ideas in a simple fashion, in
terms of the language, assumptions about knowledge and slide
clutter

● Understands the need to speak clearly and speak to the audience and
to greet people, face audience, manage expectations, speak clearly
and draw conclusions

● Understands that appearance is important and will vary depending
on the audience and that it must be congruent with the type of
presentation and the audience expectations

● Understands the need to address questions before and after pre-
sentation, to check the presenter’s understanding of question and the
questioner’s understanding of answer

Writing This Competency relates to
an individual’s ability to
present information
through writing

● Understands that all written Artefacts must be spell-checked and
proof-read

● Understands that all written artefacts must grammar-checked
● All Artefacts must have a good structure, for example having a

distinct beginning, middle and end and be written according to a
plan or model

● All Artefacts must be appropriately and correctly referenced where
appropriate. The level of referencing will depend on the type of
Artefact, for example academic papers will require more rigour than
informal presentations

● Artefacts should use diagrams and tables in order to improve com-
munication with audience. However, these should be used only
where there is a purpose and not gratuitously

● It is essential to understand needs of audience and to address these
needs in the Artefact

● All Artefacts must be controlled, for example by effective use of
configuration control and versioning

(Continues)

808 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

These Competencies and Indicators may now be used as a basis for a Com-
petency assessment exercise.

D.9 Competency Scopes

The stakeholder view for a subset of the MBSE activities described in this book is
shown below. Due to scope limitations in this book, the emphasis here is on the
‘Supplier’ roles and some of the ‘External’ roles, therefore none of the ‘Customer’
roles are shown and many of the ‘External’ roles are missing.

Each of the Stakeholder Roles shown here has two Competency Scopes defined –
one generic scope based on the INCOSE Systems Engineering Competencies Fra-
mework and one bespoke scope based on the MBSE Competency Framework
(Figure D.7). A short discussion is then provided that justifies the shape of each scope.

Table D.5 (Continued)

Competency Description Indicators

Personal
Communication

This Competency relates to
an individual’s ability to
communicate clearly

● When communicating, it is important to put people at ease, to
establish trust and be non-threatening

● It is important to keeping to point of the presentation or topic of
discussion

● It is essential not to ‘‘beyond speak’’ (BS) and talk beyond your own
knowledge or experience without stating so

● It is essential that the communication is two-way, therefore listen-
ing to the comments, observations and feedback from the audience
is crucial

● It is important to understand that there are different types of ques-
tions and to answer accordingly, for example. Open questions that
promote discussion, closed questions that require a specific answer
and so on

● It is important to focus on salient points
● It is important to control the presentation, which may include

knowing when to stop and move on from a specific point, or to say
‘‘no’’ to the audience

● It is essential to recap using summaries and conclusions at the end
of the presentation or discussion

● It is essential to obtaining consensus where possible or, where not,
to obtain consensus on what the differing points of view are

● It is important to discuss the way forward and talk about where to
go next

Competency Framework 809

«ontology element»
Stakeholder Role

«stakeholder role»
Supplier

«stakeholder role»
External

«stakeholder role»
Customer

«stakeholder role»
System Sponsor

«stakeholder role»
User

«stakeholder role»
Operator

«stakeholder role»
Standard

«stakeholder role»
Systems Engineer

«stakeholder role»
Systems Engineering

Manager

«stakeholder role»
Assessee

«stakeholder role»
MBSE Mentor

«stakeholder role»
Source Framework

«stakeholder role»
Tool

«stakeholder role»
Standard Enforcer

«stakeholder role»
Tool Vendor

«stakeholder role»
MBSE Trainer

«stakeholder role»
Configuration Manager

«stakeholder role»
Assessment Manager

«stakeholder role»
Requirement Manager

«stakeholder role»
Process Manager

«stakeholder role»
Project Manager

«stakeholder role»
MBSE Champion

«stakeholder role»
Requirement Engineer

«stakeholder role»
Systems Modeller

«stakeholder role»
Tester

«stakeholder role»
Reviewer

«stakeholder role»
Author

«stakeholder role»
Process Modeller

«stakeholder role»
Builder

«stakeholder role»
SoS Engineer

«stakeholder role»
Assessor

«stakeholder role»
Primary Assessor

«stakeholder role»
Secondary Assessor

Figure D.7 Stakeholder view for MBSE roles

D.10 Generic scopes

Figures D.8 and D.9 show the generic scope that will be used as a basis for all the
Competency Scopes that use the INCOSE Competencies Framework.

The diagram in Figure D.8 identifies the Competencies and their associated
Levels for a generic Competency Scope. Note that not all of the Competencies from
the INCOSE Systems Engineering Competencies Framework are shown here.

Level 4-
expert

Level 1-
awareness

Level 2-
supervised
practitioner

Level 3-
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.8 Generic Competency Scope based on the INCOSE

Competencies Framework

Competency Framework 811

The diagram in Figure D.9 identifies the Competencies and their associated
Levels for a Competency Scope based on the MBSE Competency Framework that
is defined in this book. Note that all of the Competencies that have been described
in this Appendix have been used to construct the scope. In reality, this would be
narrowed down using the concept of the ‘Applicable Competency Set’; see Chap-
ter 16 for more details.

D.11 Competency Scope – ‘Configuration Manager’

Figures D.10 and D.11 show the Competency Scopes for the ‘Configuration
Manager’ role.

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area
Pr

oj
ec

t P
la

nn
in

g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Figure D.9 Generic Competency Scope based on the MBSE Competency Framework

812 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.10 Competency Scope for ‘Configuration Manager’ based on the
INCOSE Competencies Framework

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.11 Competency Scope for ‘Configuration Manager’ based on the MBSE
Competency Framework

This Stakeholder Role is responsible for ensuring that the model and all the
other System Artefacts are correctly controlled, managed and configured. This will
require a basic understanding of modelling, as it is the model itself as well as the
Artefacts that are generated from it that will be held under configuration control.
These Artefacts may take on many different forms, such as models, documents,
hardware and software.

D.12 Competency Scope – ‘Assessment Manager’

Figures D.12 and D.13 show the Competency Scopes for the ‘Assessment Manager’
role.

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.12 Competency Scope for ‘Assessment Manager’ based on the
INCOSE Competencies Framework

814 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

This Stakeholder Role describes the Stakeholder Role of the Person who is
responsible for defining, setting up and managing Competency assessments.

D.13 Competency Scope – ‘Requirement Manager’

Figures D.14 and D.15 show the Competency Scopes for the ‘Requirement Man-
ager’ role.

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.13 Competency Scope for ‘Assessment Manager’ based on the
MBSE Competency Framework

Competency Framework 815

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.14 Competency Scope for ‘Requirement Manager’ based on the
INCOSE Competencies Framework

816 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

This Stakeholder Role will require good management skills but also an
understanding of the Requirements engineering activities that are being used on
Projects. The manager need not be an expert in this field but certainly needs to
understand the fundamental of the work being carried out. This may seem quite
obvious but, in real life, it is worryingly common to find managers who understand
very little of what they are managing.

D.14 Competency Scope – ‘Process Manager’

Figures D.16 and D.17 show the Competency Scopes for the ‘Process Manager’ role.

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.15 Competency Scope for ‘Requirement Manager’ based on the MBSE
Competency Framework

Competency Framework 817

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View
D

et
er

m
in

in
g

an
d

m
an

ag
in

g
st

ak
eh

ol
de

r r
eq

ui
re

m
en

ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.16 Competency Scope for ‘Process Manager’ based on the
INCOSE Competencies Framework

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.17 Competency Scope for ‘Process Manager’ based on the
MBSE Competency Framework

This Stakeholder Role is responsible for the definition, creation and con-
sistency of Processes. This will involve understanding the need for the Processes
and, where necessary, setting up Processes, for example.

D.15 Competency Scope – ‘Project Manager’

Figures D.18 and D.19 show the Competency Scopes for the ‘Project Manager’ role.

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.18 Competency Scope for ‘Project Manager’ based on the INCOSE
Competencies Framework

Competency Framework 819

This Stakeholder Role describes the Stakeholder Role of the Person who will
be in charge of the Project as a whole. Note that this Stakeholder Role requires,
quite obviously, good management skills, but will also require that they have a
basic understanding of any areas that they will be managing. For example, if the
Project Manager is overseeing a Project where an Architecture is being generated,
then it is essential that the Person playing this Stakeholder Role has an under-
standing of what Architecture is.

D.16 Competency Scope – ‘Primary Assessor’

Figures D.20 and D.21 show the Competency Scopes for the ‘Primary Assessor’ role.

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area
Pr

oj
ec

t P
la

nn
in

g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.19 Competency Scope for ‘Project Manager’ based on the
MBSE Competency Framework

820 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.20 Competency Scope for ‘Primary Assessor’ based on the
INCOSE Competencies Framework

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.21 Competency Scope for ‘Primary Assessor’ based on the MBSE
Competency Framework

This is the Stakeholder Role of the Person who will be leading the Compe-
tency assessment and, therefore, will require very good interpersonal skills in
order to make the assessment flow in a comfortable and consistent fashion. The
Primary Assessor must also have a very good working knowledge of all of the
Competencies that are being assessed. This is for very pragmatic reasons as
anyone who is leading the assessments needs to be able to make judgement calls
about whether the Assessee truly understands the subject matter and their inter-
pretation of it.

D.17 Competency Scope – ‘Secondary Assessor’

Figures D.22 and D.23 show the Competency Scopes for the ‘Secondary Assessor’
role.

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.22 Competency Scope for ‘Secondary Assessor’ based on the
INCOSE Competencies Framework

822 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

This Stakeholder Role is a support Stakeholder Role associated with the Pri-
mary Assessor. A basic knowledge of the Competencies being assessed is required,
although not to the level of the ‘Primary Assessor’. Good communication skills are
also required for this Stakeholder Role, especially good writing skills.

D.18 Competency Scope – ‘Requirement Engineer’

Figures D.24 and D.25 show the Competency Scopes for the ‘Requirement Engi-
neer’ role.

The area of Requirements engineering is one that is fundamental to systems
engineering and, hence, MBSE. The Stakeholder Role here has an emphasis on the
understanding the modelling of Requirements and, therefore, will include require
Competencies that relate to Context modelling, Use Cases, Scenarios, validation
and traceability. Unlike a traditional Requirements engineering Stakeholder Role,
there is a strong need for modelling skills as well as understanding the funda-
mentals of Requirements engineering.

D.19 Competency Scope – ‘Systems Modeller’

Figures D.26 and D.27 show the Competency Scopes for the ‘Systems Modeller’ role.

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.23 Competency Scope for ‘Secondary Assessor’ based on the
MBSE Competency Framework

Competency Framework 823

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View
D

et
er

m
in

in
g

an
d

m
an

ag
in

g
st

ak
eh

ol
de

r r
eq

ui
re

m
en

ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.24 Competency Scope for ‘Requirement Engineer’ based on the
INCOSE Competencies Framework

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.25 Competency Scope for ‘Requirement Engineer’ based on the MBSE
Competency Framework

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View
D

et
er

m
in

in
g

an
d

m
an

ag
in

g
st

ak
eh

ol
de

r r
eq

ui
re

m
en

ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.26 Competency Scope for ‘Systems Modeller’ based on the
INCOSE Competencies Framework

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.27 Competency Scope for ‘Systems Modeller’ based on the
MBSE Competency Framework

This Stakeholder Role covers a multitude of activities and will, in reality,
usually be split into a number of sub-types. Areas of expertise that must be covered
here include understanding interfaces, specification, design, testing, and trace-
ability. This is perhaps the most loosely defined of all the Stakeholder Roles here as
the scope is so large. Having said this, however, it should be pointed out that the
‘Systems Modeller’ requires very strong modelling skills and these skills may be
applied to any of the aforementioned activities. Therefore, it is possible for the
‘Systems Modeller’ to require a high level of Competence in almost any area,
depending on the nature of the work.

D.20 Competency scope – ‘Tester’

Figures D.28 and D.29 show the Competency Scopes for the ‘Tester’ role.

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.28 Competency Scope for ‘Tester’ based on the INCOSE
Competencies Framework

826 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

This Stakeholder Role is primarily involved with the verification and valida-
tion activities that are applied throughout the Life Cycle. Again, the Competencies
necessary for this Stakeholder Role may differ depending on the type of testing
activities required.

D.21 Competency scope – ‘Reviewer’

Figures D.30 and D.31 show the Competency Scopes for the ‘Reviewer’ role.
This Stakeholder Role is essential for all aspects of MBSE. Interestingly, there

are two main variations on this Stakeholder Role (not shown on the diagram) that
cover ‘‘mechanical reviews’’ and ‘‘human reviews’’. A mechanical review is a
straightforward verification review that does not require any real human input but
simply executes a pre-defined rule. Examples of these include SysML syntactical
checks and checks based on a Process. These mechanical reviews tend to be
quantitative in that they can be measured in terms of numbers or values and, very
importantly, they may be automated. This is essential for MBSE as it is one of the
benefits that were discussed in Chapter 1 of this book. The human reviews require
reasoning and will tend to be qualitative and are typically very difficult, if not
impossible to automate using a tool. The ‘Reviewer’ Stakeholder Role will require
a good understanding of any area in which they are involved with reviewing.

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.29 Competency Scope for ‘Tester’ based on the MBSE
Competency Framework

Competency Framework 827

D.22 Competency scope – ‘Author’

Figures D.32 and D.33 show the Competency Scopes for the ‘Author’ role.
This Stakeholder Role is concerned with taking models and turning them into

beautiful text. Caution needs to be exercised however, as the vast majority of the
text generated by the author will form part of the model, therefore, good modelling
skills will be necessary for this Stakeholder Role.

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.30 Competency Scope for ‘Reviewer’ based on the INCOSE
Competencies Framework

828 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.31 Competency Scope for ‘Reviewer’ based on the MBSE Competency Framework

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.32 Competency Scope for ‘Author’ based on the
INCOSE Competencies Framework

D.23 Competency scope – ‘Process Modeller’

Figures D.34 and D.35 show the Competency Scopes for the ‘Process Modeller’
role.

Having a well-defined Process is crucial when defining any approach to work
and, in-keeping with the MBSE philosophy, this Stakeholder Role requires good
modelling skills as well as an understanding of Process concepts and the business.
The Stakeholder Role of the ‘Process Modeller’ will also require a good under-
standing of any areas in which the Processes will be either defined or applied,
therefore, it is possible for the ‘Process Modeller’ to require a large number of
Competencies.

D.24 Competency scope – ‘Builder’

Figures D.36 and D.37 show the Competency Scopes for the ‘Builder’ role.
This Stakeholder Role is concerned with taking the model and turning it into a

real System. This will include building System Elements, integrating them into the
System itself, installation and so on. Of course, this is another Stakeholder Role that
on real Projects may be broken down into a set of lower-level Stakeholder Roles
with different skillsets and, hence, different Competency Scopes.

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area
Pr

oj
ec

t P
la

nn
in

g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.33 Competency Scope for ‘Author’ based on the MBSE
Competency Framework

830 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.34 Competency Scope for ‘Process Modeller’ based on the
INCOSE Competencies Framework

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.35 Competency Scope for ‘Process Modeller’ based on the
MBSE Competency Framework

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View
D

et
er

m
in

in
g

an
d

m
an

ag
in

g
st

ak
eh

ol
de

r r
eq

ui
re

m
en

ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.36 Competency Scope for ‘Builder’ based on the INCOSE Competencies Framework

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.37 Competency Scope for ‘Builder’ based on the MBSE Competency Framework

D.25 Competency scope – ‘SoS Engineer’

Figures D.38 and D.39 show the Competency Scopes for the ‘SoS Engineer’ role.
The Stakeholder Role of the ‘SoS Engineer’ is one that may be used in con-

junction with any of the other systems engineering Stakeholder Roles in order to
elevate it to the level of Systems of Systems. Key skills here will include integra-
tion, understanding of Requirements and verification and validation.

D.26 Competency scope – ‘MBSE Champion’

Figures D.40 and D.41 show the Competency Scopes for the ‘MBSE Champion’
role.

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.38 Competency Scope for ‘SoS Engineer’ based on the
INCOSE Competencies Framework

Competency Framework 833

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.39 Competency Scope for ‘SoS Engineer’ based on the MBSE Competency Framework

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.40 Competency Scope for ‘MBSE Champion’ based on the
INCOSE Competencies Framework

This Stakeholder Role is essential when it comes to implementing MBSE into
a business. The ‘MBSE Champion’ needs to have strong modelling skills but need
not be an expert. The ‘MBSE Champion’ must be visible in the business, have good
communication skills and be able to address any MBSE-related queries that arise. The
keyword here is ‘‘address’’ as it is not the Stakeholder Role of the MBSE Champion
to solve all the problems. In many instances, it may be that the MBSE Champion can
solve issues, in which case all is well and good. The MBSE Champion, however,
does need to know who the appropriate Stakeholder Roles are who can solve any
problem. For example, if a tool-related issue arises, then the MBSE Champion may
not have the specific expertise to solve the problem outright. On the other hand,
they must be able to understand the nature of the problem and then relate this to an
expert who can solve it. The Stakeholder Role of MBSE Champion, therefore, will
often be one of a go-to person for all things MBSE-related. The effective use of and
MBSE Champion is also one way to ensure that the MBSE knowledge and
experience within a business is captured, controlled and used so that the same
mistakes are not always repeated.

D.27 Competency scope – ‘MBSE Mentor’

Figures D.42 and D.43 show the Competency Scopes for the ‘MBSE Mentor’ role.

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.41 Competency Scope for ‘MBSE Champion’ based on the
MBSE Competency Framework

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View
D

et
er

m
in

in
g

an
d

m
an

ag
in

g
st

ak
eh

ol
de

r r
eq

ui
re

m
en

ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.42 Competency Scope for ‘MBSE Mentor’ based on the INCOSE
Competencies Framework

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area

Pr
oj

ec
t P

la
nn

in
g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.43 Competency Scope for ‘MBSE Mentor’ based on the MBSE
Competency Framework

The MBSE Mentor must be an expert in the field of MBSE or the specific area
of MBSE as necessary. The MBSE Mentor, unlike the ‘MBSE Trainer’ must build
up an excellent working relationship with the business. This will involve getting to
know and understand the nature of the business, getting to know and understand
specific issues and getting involved with Projects. Indeed, the MBSE Mentor
should be a valuable member of any Project team where they are contributing to a
Project. This does not mean that they need to work full-time on the Project, but they
must be known to the team and able to be called upon by the team or the MBSE
Champion at any point. Continuity is key to a good MBSE Mentor, so it should not
be the case that every time there is an issue that a different person turns up as the
MBSE Mentor. Continuity is essential for a good working relationship.

D.28 Competency scope – ‘MBSE Trainer’

Figures D.44 and D.45 show the Competency Scopes for the ‘MBSE Trainer’ role.

Level 4 -
expert

Level 1 -
awareness

Level 2 -
supervised
practitioner

Level 3 -
practitioner

Systems Thinking

Sy
st

em
s

co
nc

ep
ts

Su
pe

r-
sy

st
em

 c
ap

ab
ili

ty
 is

su
es

Holistic Life Cycle View

D
et

er
m

in
in

g
an

d
m

an
ag

in
g

st
ak

eh
ol

de
r r

eq
ui

re
m

en
ts

In
te

gr
at

io
n

an
d

ve
rif

ic
at

io
n

Va
lid

at
io

n

Fu
nc

tio
na

l a
na

ly
si

s

M
od

el
lin

g
an

d
si

m
ul

at
io

n

Systems
Engineering
Management

Li
fe

 c
yc

le
 p

ro
ce

ss
 d

ef
in

iti
on

Pl
an

ni
ng

, m
on

ito
rin

g
an

d
co

nt
ro

lli
ng

Figure D.44 Competency Scope for ‘MBSE Trainer’ based on the INCOSE
Competencies Framework

Competency Framework 837

The MBSE Trainer must be an established and recognised expert in the field of
MBSE. They must possess excellent theoretical knowledge of the subject and also
have practical experience of applying MBSE on real Projects. Unlike the ‘MBSE
Mentor’, the MBSE trainer does not need an in-depth understanding of the business
nor necessarily need to form an on-going relationship with the business.

MBSE Concepts Competency Area

Sy
st

em
s

C
on

ce
pt

s

M
od

el
lin

g

Pr
oj

ec
t C

on
ce

pt
s

Pr
oc

es
s

C
on

ce
pt

s

N
ee

d
C

on
ce

pt
s

A
rc

hi
te

ct
ur

e
C

on
ce

pt
s

C
om

pe
te

nc
e

C
on

ce
pt

s

Li
fe

 C
yc

le
 C

on
ce

pt
s

Life Cycle Process Competency Area
Pr

oj
ec

t P
la

nn
in

g

Pr
oj

ec
t C

on
tr

ol

N
eg

ot
ia

tio
n

Te
nd

er
 R

es
po

ns
e

Pr
oc

es
s

M
od

el
lin

g

C
om

pe
te

nc
y

A
ss

es
sm

en
t

St
ak

eh
ol

de
r R

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e

Ve
rif

ic
at

io
n

an
d

va
lid

at
io

n

Technical Skills Competency Area

So
SA

C
R

E

U
C

A
M

Sy
sM

L

U
M

L

Se
ve

n
Vi

ew
s

A
C

R
E

M
on

TE

Soft Skills
Competency

Area

Pu
bl

ic
 P

re
se

nt
at

io
n

W
rit

in
g

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

Level 4 -
Expert

Level 1 -
Awareness

Level 2 -
Support

Level 3 -
Lead

Figure D.45 Competency Scope for ‘MBSE Trainer’ based on the INCOSE
Competencies Framework

838 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Appendix E

The MBSE Memory Palace

E.1 Introduction to the memory palace

A memory palace is a mnemonic device that has been used for thousands of years
as an aid to remembering large amounts of information [1,2]. The memory palace
uses a series of points, or loci, that make up a pathway or route that is well known to
you. At each point, a set of unusual images is constructed that make up a memor-
able, if somewhat peculiar, story.

Generally speaking, the more ludicrous, bizarre and downright obscene these
images are, the more memorable the whole memory palace will be.

The following section provides a simple memory palace that may be used to
remember all (almost all) of the concepts that make up the MBSE Ontology that is
used throughout this book.

E.2 Strange days

Strange days indeed! I lead a very full and interesting life, but there are some days
when even I cannot explain what on earth is happening to me. Consider this
morning, for example. . . .

I was rudely awakened this morning by an intense feeling of discomfort – I was
tossing and turning and felt like I had not slept a wink. When I looked down,
I realised the reason for my discomfort – my bed had been transformed into a
massive hard-backed book. And not just any book, oh no, this was an academic text
titled The Art of Confidence Trickery and Subterfuge. I had a bad feeling that this
book would feature in everything that I did today.

Undeterred by this, I tucked the whole book under my arm (no mean feat) and
headed out onto the landing only to find the Pillsbury Dough Boy massaging his
own stomach.

I ignored the overly large pastry-based interloper, but at the doorway to the
bathroom, my entrance was blocked by a very stressed-looking Peter Piper who was
nervously pretending to comb his hair.

I took my book and headed down the staircase only to find (can this day get any
weirder?) an extreme uni-cyclist taking his life into his own hands by cycling up
and down the bannister.

From the foot of the stairs and into the kitchen, I was somewhat surprised to
see Archie Gemmill, the famous Scottish footballer from the 1970s, drinking down
an archaic medicine, or tincture.

I decided to leave the kitchen, grab a snack from the cupboard and have
breakfast on the move. I opened the cupboard only to find the Jolly Green Giant
who, for reasons best known to his own giant self, was offering me a can of
processed peas as a nutritious breakfast alternative.

I fled the house, via the back door, only to find the annoying opera-singing guy
from a series of car insurance adverts shouting loudly in my back garden, projecting
his voice across the land.

I raced past the fake opera singer and opened the back gate, only to trip over a
giant toilet flushing mechanism – who put that cistern there?

This was all too much for me, so I took my book from under my arm, opened it
up and considered my strange day so far – the Pilbury Dough Boy, Peter Piper
pretending to comb his hair, the death-defying uni-cyclist, Archie Gemmill, the
Jolly Green Giant, the annoying opera singer and a toilet cistern? Could I possibly
make sense of all this?

Strangely enough, each of these odd occurrences was related to my book – my
context.

The book stated that the Pilbury Dough Boy was just trying to knead himself and
then went on to describe that his kneaded dough came from some elephant sauce, that
was strictly controlled by the king, who ruled Pilbury land. Did he always massage
with his hands? No, sometimes he used a suitcase which he realised came from a
scene featuring Super Mario from a video game. It was all on my context.

The book also had something to say about Peter Piper. This was Peter’s third
attempt at comb pretence; having failed at comb pretence A and B, he hoped to
succeed with comb pretence C by using a spirit level in place of a comb. He then
gave up on his comb pretence and produced a picture of a silhouette of a person. He
then used this profile to scoop up some discarded baked goods and steak rolls,
I believe.

The death-defying uni-cyclist, the book went on to say, was only practising on
the bannister as his dream was to appear on the big stage. He was putting into action
a plan where he would cycle around the stage wearing a selection of evening wear,
swimwear and casual clothing, while leaping over a farmer’s gate. He was literally
putting his life on the line as if the gate leap failed, then he may well end up be
decapitated in a bizarre gate-related execution.

Despite what I was reading in the book, I was getting concerned about Archie
Gemmill’s behaviour. I could see him peering through my kitchen’s Perspex win-
dow, getting a good view of the dead elephant that was in the back garden. I could
see nothing, due to the elaborate window frame, but Archie made the frame work
for him and pointed at the view of the dead elephant, while muttering a eulogy
under his breath. The Jolly Green Giant, meanwhile, was still offering me the
processed peas.

He recommended me to serve them with baked goods, steak rolls again I think,
as this was what Salvador Dali used before creating his surreal artwork. I was not

840 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

sure about this arty fact but was assured that I could improve my own art-related
activities by applying more sauce to the baked goods.

Inspired by my artistic snack, I progressed to read more about the annoying
opera singer who was still projecting forth his favourite aria in an impromptu
performance. I say impromptu as it was not described in the programme, but this
could be due to the poor organisation of the eunuchs who wrote the programme.

The final chapter concerned of the whole problem with the toilet cistern. This was
perhaps the finest cistern in the whole constituency – indeed some may say a cistern
of cisterns. I noticed that the elephant problem had yet to go away as the cistern was
full to brim with cistern elements. Did I then see a knight in shining armour whose
breast plate was emblazoned with a twentieth-century student comic book? Probably
not, I would imagine that Sir Viz was a product of my over-active cistern.

Most peculiar, mama.

E.3 Strange days revisited

Did the previous section make any sense? Probably not (if it did, you should be
worried).

Can you remember any of it? Probably.
Each of the key strange occurrences relates directly to a concept from the

MBSE Ontology. Therefore, revisiting the first few paragraphs (note that the use of
italics and bold font is not the same here as described in Chapter 2):

I was rudely awakened this morning by an intense feeling of discomfort – I was
tossing and turning and felt like I had not slept a wink. When I look down, I realised
the reason for my discomfort – my bed – had been transformed into a massive hard-
backed book. And not just any book, oh no, this was an academic text entitled ‘the
art of confidence trickery and subterfuge’. [Context] I had a bad feeling that this
book would feature in everything that I did today.

Undeterred by this, I tucked the whole book under my arm (no mean feat) and
headed out onto the landing only to find the Pillsbury Dough Boy massaging
[Need] his own stomach.

I ignored the overly large pastry-based interloper, but at the doorway to the
bathroom, my entrance was blocked by a very stressed-looking Peter Piper who was
nervously pretending to comb his hair. [Competence]

I took my book and headed down the staircase only to find (can this day get any
weirder?) an extreme uni-cyclist taking his life into his own hands by cycling up
and down the bannister. [Life Cycle]

From the foot of the stairs and into the kitchen, I was somewhat surprised to
see Archie Gemmill, the famous Scottish footballer from the 1970s, drinking down
an archaic medicine, or tincture. [Architecture]

I decided to leave the kitchen, grab a snack from the cupboard and have
breakfast on the move. I opened the cupboard only to find the Jolly Green Giant
who, for reasons best known to his own giant self, was offering me a can of
processed peas as a nutritious breakfast alternative. [Process]

The MBSE Memory Palace 841

I fled the house, via the back door, only to find the annoying opera-singing guy
from a series of car insurance adverts shouting loudly in my back garden, projecting
his voice across the land. [Project]

I raced past the fake opera singer and opened the back gate, only to trip over a
giant toilet flushing mechanism – who put that cistern there? [System]

With this in mind, re-read the previous section and try to spot the key MBSE
concepts.

E.4 Summary

This brief, final appendix has provided a simple memory palace for remembering
the MBSE Ontology. The use of memory palaces, although quite strange, has been
proven over millennia and should not be dismissed out of hand.

Feel free to change the story provided here to fit your own mind and memory.
This memory palace description has been cleaned up and toned down for the
purposes of publication.

References

[1] Lorraine H. ‘How to Develop a Super Powerful Memory’. Hollywood, USA:
Frederick Fell Publishing, 1958, reprinted 1996.

[2] Berglas D. and Playfair G. L. ‘A Question of Memory’. London, UK: Jona-
thon Cape Ltd, 1988.

842 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Index

Acknowledged Systems of Systems 39,
42, 405–6

‘Activity’ 61, 63, 189, 241, 248, 634
activity diagrams 98, 118, 124, 126,

160, 191, 196, 209, 247, 735–9
diagram elements 209–15
examples 215–20

Activity Edge 209–10, 212–13
Activity Final Node 211
Activity Partition 210
‘Actor’ 221, 241
‘AF Context View’ 428, 456, 484–6
AF Context Viewpoint 428, 431

definition 432–3
discussion 434–5
rationale 431–2
visualisation 433–4

AF Definition Process 456
aggregation 104, 138, 150, 153–5, 157,

177–8, 539
Agreement Processes Group 301–3
aims and objectives, teaching 602
Allocation Compartment 233
Allocation Dependency 233
allocations 232, 743–4

partial meta-model for 233
‘Allow use of Processes’ 298
alternative combined fragments 200–1,

203–4, 571
‘analyse bespoke framework’

Activity 627
analyse requirements 401, 636, 639, 642
‘Applicable Competency View’

318–22, 324, 552–3
View definition 320
View discussion 322

View rationale 320
View relationships 320
View visualization 321

‘Application’ section 604
approach to context-based requirements

engineering (ACRE) 353, 403
Architectural Framework 32, 50–1,

54–5, 455, 483
AF Context View 484–6
Architecture-related concepts as

described by 49
background 483–4
defining Viewpoints using SysML

Auxiliary Constructs 499
Ontology Definition View (ODV) 486
Rules Definition View 490
Viewpoint Definitions 490–1

Post Structure Viewpoint 491
System Structure Viewpoint 496

Viewpoint Relationships View
(VRV) 486–90

‘Architectural Framework Concern’
54, 484–5

‘Architecture’ 48, 51, 54–6, 428
Architecture-related concepts 46

defence-based Architecture
Frameworks 50–1

as described by Architecture
Framework community 49

as described by International Council
on Systems Engineering
(INCOSE) 49

as described by International
Standards Organisation (ISO)
47–8

MBSE Ontology definition for 54–6

non-defence Architecture
Frameworks 51–3

Zachman Framework 49–50
Architectures and Architectural

Frameworks with MBSE 425
background 425–8
Framework 428–30
Framework for Architectural

Frameworks 455–6
MBSE ontology 428
Viewpoints 430–1

AF Context Viewpoint 431–5
Ontology Definition Viewpoint

435–9
Rules Definition Viewpoint 451–5
Viewpoint Context Viewpoint

443–6
Viewpoint Definition Viewpoint

446–51
Viewpoint Relationships

Viewpoint 439–42
‘Artefact’ 61, 63, 272, 277, 280, 634
assemble source information 401, 635
‘Assessment Manager’ 610, 814–15
Association 99–102, 134, 136, 140,

146–7, 161, 239
Association for Project Management

(APM) Institute
Project-related concepts as described

by 72
Association relationship 138, 223
‘Attendee’ 599–600
‘Author’ 609, 828–30
Automated compliance 653
‘Automated Tool’ 658
auxiliary concepts 742–4
auxiliary constructs 232–5
‘Awareness’ 590, 615

‘Background’ 602
‘Basic Skills and Behaviour’ 67, 614
Behavioural Diagrams 107, 117–18,

240–1, 729
Activity diagrams 735–9
Sequence diagrams 732–4

State machine diagrams 730–2
and structural level 116–20
in SysML 107
Use case diagrams 740–2

behavioural modelling 106
adding more detail 110–12
ensuring consistency 112
simple behaviour 109–10
solving the inconsistency 113

block definition diagram,
changing 114–16

state machine diagram, changing
113–14

‘benefits of MBSE’ 579
‘External’ Stakeholder Role 582
ISO 42010 architectural framework

586
MODAF/DoDAF/NAF architectural

framework 586
Stakeholder Roles and Benefits

580–1
‘Supplier’ Stakeholder Roles 582
Zachman architectural framework 586

Bespoke Competencies 617–18
Bespoke Competency Scope –

Evidence Types 619
Example Competency Scope 618

‘Bespoke Competency Definition’
Process 621–2

‘define concept-related
competencies’ Activity 623

‘define process-related
competencies’ Activity 623–6

‘define skill-related competencies’
Activity 626–7

‘identify competencies’ Activity
622–3

‘identify ontology’ Activity 622
‘identify source framework’

Activity 622
‘review’ Activity 627

Bespoke Competency Scope – Evidence
Types 619

‘Bespoke Framework Definition’
Process 627

844 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

‘analyse bespoke framework’
Activity 627

‘define evidence types’ Activity 628
‘define levels’ Activity 627–8
‘review’ Activity 629

‘Binding Connectors’ 151, 157, 159,
164, 178

block 15, 99–100, 106, 137, 142, 239
block and internal block

diagrams 245
interfaces, showing 245
item flows, showing 245–7

block definition diagram 96, 99, 109,
111, 114–15, 118, 121, 129,
135–6, 151–3, 243, 397, 438,
719–20

activity diagram 98
changing 114–16
diagram elements 135–44
examples 144–9
sequence diagram 97
state machine diagram 98
use case diagram 97

Booch’s examples of modelling 83
house 83–4
kennel (doghouse) 81–3
office block 84–6

bound references 93, 155, 157–8,
164

Brontosaurus of Complexity 88
‘Builder’ 609–10, 830–2
Business Life Cycle 329
Business Requirement 357
Business Value Viewpoint 463, 469

aims 469–70
definition 470
example 471

callout notes 175, 183, 187, 233, 235
‘Capability’ 46, 355–7
Capability Maturity Model (CMM) 696
Capability Maturity Model Integration

(CMMI) 32
competence-related concepts as

described by 63–4

Life Cycle-related concepts as
described by 56–7

Process-based concepts as
described by 61

Project-related concepts as
described by 70–1

‘Chess’ 121–4, 126
classifier behaviours 193
‘Closed’ Tool Chain 659
CMMI: see Capability Maturity Model

Integration (CMMI)
‘Coffin Escape’ 137–8, 144–5,

158–9
‘Coffin Stunt’ 137
‘Collaborative’ 42, 405–6
‘Collaborative’ Systems of

Systems 39, 406
colour, use of 247–50
communication 9, 90
communication problems

group-to-group level 90
organisation-to-organisation level 90
person-to-person level 90
system-to-system level 90

Competence 63, 68–9, 323, 327,
596, 605–7

competence-related concepts 63
as described by Capability

Maturity Model Integration
(CMMI) 63–4

as described by Competency
Framework Community 64–5

as described by International Standards
Organisation (ISO) 63

as described by US
Office of Personnel
Management 67–8

INCOSE competencies Framework
66–7

MBSE Ontology for 68–9
UKSPEC 65–6

‘Competency’ 63, 67–9, 317, 321, 323,
325, 327, 596, 606, 615

‘Competency Area’ 321, 325, 327, 596,
622–3, 796

Index 845

Competency Assessment 551–2, 578,
610, 613, 629

Competency Framework 64–5, 316,
318–20, 787

Competency Scope 809–10
‘Assessment Manager’ 814–15
‘Author’ 828–30
‘Builder’ 830–2
‘Configuration Manager’ 812–14
‘MBSE Champion’ 833–5
‘MBSE Mentor’ 835–7
‘MBSE Trainer’ 837–8
‘Primary Assessor’ 820–2
‘Process Manager’ 817–19
‘Process Modeller’ 830
‘Project Manager’ 819–20
‘Requirement Engineer’ 823
‘Requirement Manager’ 815–17
‘Reviewer’ 827–8
‘Secondary Assessor’ 822–3
‘SoS Engineer’ 833
‘Systems Modeller’ 823–6
‘Tester’ 826–7

Evidence Types 793
Level 1 – Awareness 793
Level 4 – Expert 795
Level 3 – Lead 794
Level 2 – Support 794

generic scopes 811–12
MBSE Competency area

Life Cycle Process 800–4
MBSE concepts 796–800
Soft Skill 806–9
Technical Skill 804–6

MBSE Competency
Framework – Competency
Areas 795–6

MBSE Competency
Framework – Levels 788

Level 1 – Awareness 789
Level 4 – Expert 792–3
Level 3 – Lead 790–1
Level 2 – Support 789–90

Competency Perspective
Applicable Competency View 552–3
Competency Scope View 553–4
Framework View 551–2

‘Competency Profile’ 68–9, 317, 327,
596, 606–7

Competency Profile View
317, 323–4, 326

View definition 326–7
View discussion 328
View rationale 326
View relationships 327
View visualization 327

‘Competency Scope’ 63, 69, 596, 606
‘Competency Scope View’ 317, 320,

322–3, 325, 553–4
View definition 323
View discussion 325
View rationale 322
View relationships 323–4
View visualization 324–5

complexity 3, 87–9
complexity identification through levels

of abstraction 121
behavioural views 122–7
structural view 121–2
systems 121

‘Composite State’ 188, 190
Concurrent 191
Sequential 191

‘Composition’ 104, 138, 140
‘Conception’ Stage 300
‘Concepts’ section 603
‘Concern’ 357, 500
‘Configuration’ 50
‘Configuration Manager’ 610, 812–14
‘Connecting Linkage’ 154–5, 157–8
‘Constituent System’ 41–2, 404–5,

412, 415, 418, 420, 497
‘Constraint Block’ 169–72, 175, 177,

239
constraint parameters 172, 176,

178–9
Contact Information Viewpoint 464

aims 471–2
definition 472–3
example 473

‘Context’ 25, 44, 46, 258, 355, 360,
381, 385

Context Definition View 269, 364, 382,
506, 604

846 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Context Definition Viewpoint 364,
382, 384

definition 385–6
discussion 387
rationale 384
relationships 386–7
visualisation 387

Context Interaction View 413, 415–16,
418, 423, 519, 521

Context Interaction Viewpoint
412–13

definition 413
discussion 416
rationale 413
relationships 413–15
visualisation 415–16

Context Process 456
‘Continue this stage’ 301
‘Contribute to wider initiative’ 648
‘Control Flow’ 210, 213, 215, 217
Core Element 24–5, 258
Course Structure 602
‘Course Work’, developing 604–5
Critical level 639, 664
Cross-cutting Element 24
‘Customer’ Stakeholder Role 268, 581

‘Decide on tool’ 679
‘Decision Gate’ 300–1
‘Decision Node’ 212–14
default tool settings 247

colour, use of 247–50
navigability 250

defence-based Architecture
Frameworks 50–1

‘define acceptance criteria’ 401, 640, 642
‘define concept-related competencies’

Activity 623
‘define evidence types’ Activity 628
‘define levels’ Activity 627–8
Define Processes 298
‘define process-related competencies’

Activity 623–6
‘define quagmire’ Activity 309–10
‘define scope’ Activity 312
‘define skill-related competencies’

Activity 626–7

‘Define terminology’ 298
‘Definition’ 49, 698
‘Definition Rule Set View’ 376,

379–81, 504–5, 635, 642
Definition Rule Set Viewpoint 364,

373, 375
constraint validation 377–81
definition 375–6
rationale 375
relationships 377

Deliberate misdirection 290
‘Demonstrator’ 599–600
dependency 131–2, 141, 165, 183
‘Development’ Stage 300
‘develop Process model’ Activity

310, 312
diagram frame 158, 168, 241–4, 434,

436, 442, 445, 449
diagramming guidelines 237

activity diagrams 247
block and internal block diagrams

showing interfaces 245
showing item flows 245–7

default tool settings 247–50
navigability 250
use of colour 247–50

diagram frame labels 241–4
naming conventions 237

behavioural diagrams 240–1
stereotypes 241
structural diagrams 237–9

diagram name 243
diagram name element 244
diagram ordering 129
diagrams, in SysML 96–8, 135

activity diagrams 209–20
block definition diagrams 135–49
internal block diagrams 150–63
package diagrams 164–9
parametric diagrams 169–79
requirement diagrams 180–7
sequence diagrams 197–209
state machine diagrams 188–96
use case diagrams 220–32

Directed Systems of Systems 39–40,
406

direction of an association 100

Index 847

disagreements with MBSE
Ontology 34

‘DoD – systems engineering guide for
systems-of-systems’ 32

‘Domain Expert’ 428
‘Domain Knowledge’ 67, 614
Domain Knowledge Competency Area

618, 796
domain-specific language 10–11
‘Dual Restraints’ 158

‘Elicit requirements’ 401, 635, 639–40,
642

‘Enabling System’ 42, 405
‘Encourage applause’ action 217
‘Engagement Definition Viewpoint’

463, 466
aims 466–7
definition 467–8
example 468–9

‘Engagement Relationship Viewpoint’
463–4

aims 464
definition 464
example 465–6

‘Engineer’ 582
‘Ensure appropriate presentation’ 646–7
‘Ensure awareness of process’ 646
‘Ensure compatibility with modelling

language’ 676
‘Ensure compatibility with process

model’ 678
‘Ensure consistency’ 648
‘Ensure quality’ 599, 601
‘Ensure value of process’ 647
‘Ensure vendor’s quality of service’

677–8
entry activity 191
Equipment Life Cycles 329
escapologist 129, 217
establish traceability 401
‘Event’ symbol 212
Evidence Types 793

Level 1 – Awareness 793
Level 2 – Support 794

Level 3 – Lead 794
Level 4 – Expert 795

Example Competency Scope 615–16,
618

‘Example’ section 603–4
‘Execute next stage’ 301
execution specifications 198
exit activity 191
Expanded Process Modelling 295

background 295–6
competence 316

Applicable Competency View
320–2

Competency Profile View
326–8

Competency Scope View 322–5
expanded MBSE Ontology

316–17
Framework 317
Framework View 317–20

Life Cycle modelling 328
Framework 331
Interaction Behaviour

View 340–2
Interaction Identification View

337–9
Life Cycle Model View 334–7
Life Cycle View 331–4

project management 343
expanded MBSE Ontology 343–5
Framework 345–6
Programme Structure Viewpoint

349–50
Project Schedule Viewpoint

346–9
standards modelling 296

ISO 15288 – Process Content
View 301–3

ISO 15288 – Requirement Context
View 297–8

ISO 15288 – Stakeholder View
298–301

‘Process analysis’ Process 312–14
‘Process Identification’ Process

309–12

848 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Process Mapping Process (PoMP)
305–9

‘Process Model set-up’ Process 312
Expanded Process modelling,

competence 316, 343
Applicable Competency View 320

View definition 320
View discussion 322
View rationale 320
View relationships 320
View visualization 321

Competency Profile View 326
View definition 326–7
View discussion 328
View rationale 326
View relationships 327
View visualization 327

Competency Scope View 322
View definition 323
View discussion 325
View rationale 322
View relationships 323–4
View visualization 324–5

expanded MBSE Ontology 316–17,
343–5

Framework 317, 345–6
Framework View 317

View definition 317–18
View discussion 320
View rationale 317
View relationships 318
View visualization 318–19

Programme Structure Viewpoint
349

View discussion 350
Viewpoint definition 349–50
Viewpoint rational 349
Viewpoint relationships 350
View visualization 350

Project Schedule Viewpoint 346
View discussion 348–9
Viewpoint definition 346
Viewpoint rational 346
Viewpoint relationships 346
View visualization 347–8

‘Expert’ 615
‘Extend’ relationship 223
‘External’ Stakeholder Role

268–9, 582

‘Feature’ 137
‘Flow Property’ 137
‘Fluid’ 137
‘Flying Saucer’ 410
Fork 248
Fork Node 211
Formal Process 639, 642–3, 670–4
‘Formal Scenario’ 46
frame tag 149, 241–2, 244, 445
Framework for Architectural

Frameworks (FAF) 459
Framework View 317–19, 551–2

View definition 317–18
View discussion 320
View rationale 317
View relationships 318
View visualization 318–19

‘Full Port’ 137
‘Functional Requirement’ 357

Gantt chart 343, 347–8, 541
‘Gate’ 59
‘Generalisation’ 105, 140
Generic Competencies 613–15

Example Competency Scope 615–16
Generic Competency Scope –

Evidence Types 616–17
Generic vs. specific Competencies

619–20
Goal 18, 46, 356
‘Go to previous stage’ 301
‘graphic node’ 131
‘graphic path’ 131
‘Guard conditions’ 110, 203, 241

‘Harmonise with other standards’ 298
‘Heterogeneous’ Tool Chains 659
history of SysML 92–3
‘Hold project activity’ 301
‘HoleFillVolume’ 177–8

Index 849

id# 370
‘Identification’ 49
‘identify competencies’ Activity 622–3
‘identify context definitions’ 401
‘identify gaps’ Activity 312–13
‘identify links’ Activity 313
‘identify ontology’ Activity 622
‘identify source framework’

Activity 622
‘identify source Process model’

Activity 312
‘identify source standards’

Activity 309
‘identify target Process model’

Activity 312
Implementation 120
‘Improve quality’ 599–601
Include relationship 223
INCOSE Competencies Framework

66–7, 613, 617
‘INCOSE systems engineering

handbook’ 32, 38
‘Indicator’ 69, 596
individual maturity 697
‘Individual Tool’ 658

‘Automated Tool’ 658
‘PAPS’ Tool 658

Information View 533–5, 681–2
Information Viewpoint 260, 279

View discussion 281–3
Viewpoint definition 280
Viewpoint rationale 279
Viewpoint relationships 280
View visualization 281

Initial Node 211
Instance Specification 136, 143
‘Instantiation’ 50
‘Integrated’ Tool Chains 659
Integration Readiness Levels (IRLs) 696
Interaction Behaviour View 340

View definition 340
View discussion 342
View rationale 340
View relationships 341
View visualization 341–2

Interaction Identification View 333,
337, 529–30

View definition 337–8
View discussion 338–9
View rationale 337
View relationships 338
View visualization 338

Interactions 257
Interface 239
Interface Definition View

561–2
Interface Element 25
interfaces 143
internal block diagrams 97, 150, 161,

721–2
diagram elements 150–8
examples 158–63

International Council on
Systems Engineering
(INCOSE) 5

Architecture-related concepts as
described by 49

Need-related concepts as
described by 43

system-related concepts as
described by 38–9

International Standards Organisation
(ISO)

Architecture-related concepts as
described by 47–8

competence-related concepts as
described by 63

Life Cycle related concepts as
described by 56

Need-related concepts as described
by 45

Process-based concepts as described
by 59–60

Project-related concepts as described
by 69–70

system-related concepts as described
by 36–8

Interruptible regions 210, 215, 217
‘Introduction’ section 602
iPumpExt 160–1

850 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

iPump interface 160–1
ISO 15288

Process Content View 301–3
Requirement Context View 297–8
Stakeholder View 298–301

ISO15288:2015, process model for 747
Process Content View 751

‘Acquisition Process’ 753
Agreement Process Group 752
‘Architecture Definition

Process’ 775
‘Business or Mission Analysis

Process’ 772
‘Configuration Management

Process’ 767
‘Decision Management

Process’ 765
‘Design Definition Process’ 776
‘Disposal Process’ 785
‘Human Resource Management

Process’ 759
‘Implementation Process’ 778
‘Information Management

Process’ 768
‘Infrastructure Management

Process’ 757
‘Integration Process’ 779
‘Knowledge Management

Process’ 761
‘Life Cycle Model Management

Process’ 756
‘Maintenance Process’ 784
‘Measurement Process’ 769
‘Operation Process’ 783
Organisational Project-Enabling

Process Group 755
‘Portfolio Management

Process’ 758
‘Project Assessment and Control

Process’ 764
‘Project Planning Process’ 763
‘Quality Assurance Process’ 770
‘Quality Management

Process’ 760
‘Risk Management Process’ 766

‘Stakeholder Needs and
Requirements Definition
Process’ 773

‘Supply Process’ 754
‘System Analysis Process’ 777
‘System Requirements Definition

Process’ 774
Technical Management Process

Group 762
‘Technical Process Group’ 771
‘Transition Process’ 781
‘Validation Process’ 782
Verification Process’ 780

Process Structure View 750–1
Requirement Context View 748
Stakeholder View 749

ISO 42010 architectural framework
586

‘ISO 15288 – systems and software
engineering life cycle
Processes’ 32

‘ISO/IEC/IEEE 42010 Systems
and software engineering –
Architecture description’ 32

Item flows 143

Join Node 211

‘Knowledge’ 65

Large-scale Projects 638, 664
Legal (Stakeholder Role) 269
‘Life Cycle’ 59
‘Life Cycle Interaction’ 59
‘Life Cycle Interface Point’ 59
‘Life Cycle Model’ 59, 168
Life Cycle modelling 328

Framework 331
Interaction Behaviour View

340
View definition 340
View discussion 342
View rationale 340
View relationships 341
View visualization 341–2

Index 851

Interaction Identification View 337
View definition 337–8
View discussion 338–9
View rationale 337
View relationships 338
View visualization 338

Life Cycle Model View 334
View definition 334
View discussion 336–7
View rationale 334
View relationships 334–5
View visualization 335

Life Cycle View 331
View definition 332
View discussion 334
View rationale 331–2
View relationships 332–3
View visualization 333–4

Life Cycle Perspective 524
Interaction Identification View

529–30
Life Cycle Model View 527–9
Life Cycle View 524–6

Life Cycle Process Competency Area
618, 623, 796

Life Cycle related concepts 56
as described by Capability Maturity

Model Integration (CMMI) 56–7
as described by International

Standards Organisation (ISO) 56
MBSE Ontology definition 57–9

Life Cycle View 524–6
life line 198 ,241

‘Make process accessible’ 646
‘Make process available’ 644–5
‘Manager’ 582
Manufacturing Readiness Levels

(MRLs) 696
Marking schedules 605
Martian Instance View 550–1
mathematical models 94
maturity 695

individual maturity 697
process maturity 696–7
technology maturity 695–6

measures of effectiveness (MOEs) 395
measures of performance (MOPs) 395
‘media type’ tag 134
Medium-scale Project 638, 664
‘Meet timing constraints’ 600–1
memory palace 839
Merge Node 212, 566
Message 241
meta-model, SysML 135
misdirection by assumption 290
misdirection by ignorance 290
missing information 256–7
MODAF/DoDAF/NAF architectural

framework 586
model access 690
Model-Based Systems Engineering

(MBSE) 6–8, 17, 593
concepts 796–800
defined 6
fundamentals 18–22
Life Cycle Process 800–4
MBSE Champion 611, 833–5
MBSE Competencies 22–3
‘MBSE Concepts Competency

Area’ 617–18, 623, 796
MBSE Framework 21–2, 25–7
MBSE Fundamentals 21
MBSE Mantra 17
MBSE Memory Palace 839

strange days 839–41
strange days revisited 841–2

‘MBSE Mentor’ 612, 835–7
MBSE Meta-model 29
MBSE Ontology 22–5, 403, 595–6
‘MBSE Sponsor’ 582
MBSE Stakeholder Roles 607–13
‘MBSE Trainer’ 612, 837–8
‘Person’ 593
‘Process’ 593
Process modelling Framework 286

abstracting tacit process
knowledge for a new System
289–91

abstracting tacit process
knowledge for an existing
System 291–2

852 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

analysing existing Processes 287–8
creating a new process document

from scratch 288–9
Process improvement for existing

Processes 292–3
Soft Skill 806–9
‘Tool’ 593
View 27

Viewpoint and 28–9
model element name 241, 244
model element type 242–4
modelling 93

choice of model 94–5
connection to reality 95–6
defining modelling 94
independent views of the same

system 96
level of abstraction 95

‘Modelling Capability’ 662
Modelling Community

Need-related concepts as described
by 43–4

Modelling Competency 790–3
‘Modelling Notation’ section 602–3
model management 688

correctness through scripting 691–3
model access 690
sandboxing 691
version management 688–90

model maturity 695
applying model maturity 703–4
assessment approach 702–3
individual maturity 697
modelling for TRLs 697–9
process maturity 696–7
readiness levels for models

699–702
technology maturity 695–6

Model Readiness Level (MoRL)
699–700

model structure 685–8
‘Monopoly’ diagram 124, 126
MonTE Processes 679
multiple names 267–8
multiple roles 267
multiplicities 101, 131

Name 370
naming conventions 237

behavioural diagrams 240–1
stereotypes 241
structural diagrams 237–9

navigability 250
‘Need’ 46, 355–7
‘Need Description’ 46, 357–8
‘Need Perspective’ 503

Context Definition View 506
Definition Rule Set View 504–5
Requirement Context View 506–10
Requirement Description View 506
Source Element View 504
Traceability View 515–19
Validation View 510–15

Need-related concepts 42
as described by International Council

on Systems Engineering
(INCOSE) 43

as described by International
Standards Organisation
(ISO) 45

as described by Modelling
Community 43–4

as described by Oxford English
dictionary 42

MBSE Ontology definition for 45–6
Non-critical level 639, 664
non-defence Architecture Frameworks

51–3
Non-functional Requirement 357
Note 239

Object Node 212, 214
office block 84–6
‘Office Capability’ 660
Ontology 24, 54
Ontology Definition Process 456
Ontology Definition View 244, 461–2,

486
Ontology Definition Viewpoint 430,

435
definition 436–7
discussion 438
example 438

Index 853

rationale 435–6
relationships 436–7
visualisation 436–8

‘Ontology Element’ 15, 54
‘Open’ Tool Chain 659
Operations 102–3, 143, 239
Operator 269, 581
‘Organisation’ 74
Organisational Perspective 488, 492

Martian Instance View 550–1
Organisation Unit Instance View

543–5
Organisation Unit Structure

View 542
Post Instance View 549
Post Structure View 546–8
Post to Role View 549–50
Rank Hierarchy View 545–6

Organisational Project-enabling
Processes Group 301

‘Organisational Unit’ 74
Organisation Unit Instance View

543–5
Organisation Unit Structure View 542
‘Organise course’ 599–600
‘Organiser’ 599–600
‘Origin’ 370–1
Ownership 370, 372
Oxford English dictionary

Need-related concepts as
described by 42

package diagram 96, 164, 723
diagram elements 164–6
examples 166–9

package import 165–6
package name 239
‘PAPS’ Tool 658
parallel combined fragment 204
parameter definitions 378
Parameter Set 376
parametric diagrams 97, 169, 243,

724–6
diagram elements 169–72
examples 172–9

part name 153
Part Property 102, 137
Pattern 26
Pemberton’s cooking analogy 663–4
‘People’ 593

Bespoke Competencies 617–18
Bespoke Competency

Scope – Evidence Types 619
Example Competency Scope 618

bespoke Competency Framework,
defining 620–1

‘Bespoke Competency Definition’
Process 622

‘Bespoke Framework Definition’
Process 627

Competency assessment 629
Competence 605–7
Generic Competencies 613–15

Example Competency Scope
615–16

Generic Competency Scope –
Evidence Types 616–17

Generic vs. specific Competencies
619–20

MBSE Ontology 595–6
MBSE Stakeholder Roles 607–13
teaching 596–7

different types of 597–8
Professional training 598–9

undergraduate or postgraduate
course 600

generic course structure 601
Stakeholder Roles and Use

Cases 600–1
‘Person’ 17, 68, 596, 655
‘Perspective’ 55
physical models 94
point 86–7
Port 137, 143, 246
Post Instance View 549
Post Structure View 546–8
Post Structure Viewpoint 491

Viewpoint Context View 491–3
Viewpoint Definition View 493–6

Post to Role View 549–50

854 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Power Supply Unit 162
‘Practitioner’ 615
‘Primary Assessor’ 610, 820–2
Priority 370–1
private package import 166
‘Process’ 17, 25, 256, 631, 655

compliance mapping with best
practice 648–53

Automated compliance 653
defining 634

ACRE Process 634
Process Content View (PCV) 634

deploying the Process 644
‘Contribute to wider initiative’ 648
‘Ensure appropriate presentation’

646–7
‘Ensure awareness of process’

646
‘Ensure consistency’ 648
‘Ensure value of process’ 647
‘Make process accessible’ 646
‘Make process available’

644–5
‘Provide feedback mechanism’

647
using 637

formal Process 642
quick and dirty Process 639–40
semi-formal Process 640–2
summary of process

implementation 644
Process Analysis 309
‘Process analysis’ Process 312

‘identify gaps’ Activity 312–13
‘identify links’ Activity 313
‘produce Process mapping’ Activity

313–14
‘review’ Activity 314

Process-based concepts 59
as described by Capability Maturity

Model Integration (CMMI) 61
as described by International

Standards Organisation (ISO)
59–60

MBSE Ontology definition 61–3

Process Behaviour View 535–6
Process Behaviour Viewpoint 260, 276,

291
View discussion 279
Viewpoint definition 276–7
Viewpoint rationale 276
Viewpoint relationships 277–8
View visualization 278

Process Content View (PCV) 263, 301–
3, 400–1, 532–3, 634, 680–1

Process Mapping Process (PoMP)
308–9

Process Content View, of
ISO15288:2015 model 751

‘Acquisition Process’ 753
Agreement Process Group 752
‘Architecture Definition Process’

775
‘Business or Mission Analysis

Process’ 772
‘Configuration Management

Process’ 767
‘Decision Management Process’ 765
‘Design Definition Process’ 776
‘Disposal Process’ 785
‘Human Resource Management

Process’ 759
‘Implementation Process’ 778
‘Information Management Process’

768
‘Infrastructure Management

Process’ 757
‘Integration Process’ 779
‘Knowledge Management Process’

761
‘Life Cycle Model Management

Process’ 756
‘Maintenance Process’ 784
‘Measurement Process’ 769
‘Operation Process’ 783
Organisational Project-Enabling

Process Group 755
‘Portfolio Management Process’ 758
‘Project Assessment and Control

Process’ 764

Index 855

‘Project Planning Process’ 763
‘Quality Assurance Process’ 770
‘Quality Management Process’ 760
‘Risk Management Process’ 766
‘Stakeholder Needs and

Requirements Definition
Process’ 773

‘Supply Process’ 754
‘System Analysis Process’ 777
‘System Requirements Definition

Process’ 774
Technical Management Process

Group 762
‘Technical Process Group’ 771
‘Transition Process’ 781
‘Validation Process’ 782
Verification Process’ 780

Process Content Viewpoint 260, 272,
287–8

View discussion 274–6
Viewpoint definition 272
Viewpoint rationale 272
Viewpoint relationships 272–3
View visualization 274

‘Process Execution Group’ 59, 63, 634
Process Identification 308
‘Process Identification’ Process 308–9

‘define quagmire’ Activity 309–10
‘develop Process model’ Activity

310–12
‘identify source standards’ Activity

309
‘review’ Activity 312

Process Instance View 536–7, 682–3
Process Instance Viewpoint 260, 283

View discussion 285–6
Viewpoint definition 283
Viewpoint rationale 283
Viewpoint relationships 283–4
View visualization 285

Process iteration within a Process 257
Process iteration with Process

instances 257
‘Process Manager’ 610, 817–19
Process Mapping Process (PoMP) 305

Process Content View 308–9
Process Structure View 305

Requirement Context View 305–6
Stakeholder View 306–8

process maturity 696–7
‘Process Modeller’ 307, 609, 830
Process Modelling Competency 625
process modelling with MBSE 255

background 255–8
Framework 258–60
MBSE Ontology (revisited) 258
Process modelling Framework 286

abstracting tacit process
knowledge for a new System
289–91

abstracting tacit process
knowledge for an existing
System 291–2

analysing existing Processes 287–8
creating a new process document

from scratch 288–9
Process improvement for existing

Processes 292–3
Viewpoints 260

Information Viewpoint 279–83
Process Behaviour Viewpoint

276–9
Process Content Viewpoint 272–6
Process Instance Viewpoint 283–6
Process Structure Viewpoint

269–71
Requirement Context Viewpoint

260–5
Stakeholder Viewpoint 265–9

‘Process Model set-up’ Process 309,
312

‘define scope’ Activity 312
‘identify source Process model’

Activity 312
‘identify target Process model’

Activity 312
‘review’ Activity 312

Process partitioning 257
Process Perspective 531

Information View 533–5
Process Behaviour View 535–6
Process Content View 532–3
Process Instance View 536–7
Process Structure View 531

856 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Requirement Context View 531–2
Stakeholder View 533

Process Set 21
Process Structure View 531, 649

Process Mapping Process (PoMP) 305
Process Structure View, of

ISO15288:2015 model 750–1
Process Structure Viewpoint 260, 269,

287, 291
View discussion 270–1
Viewpoint definition 270
Viewpoint rationale 269
Viewpoint relationships 270
View visualization 270

‘produce Process mapping’ Activity
313–14

‘Product’ 405
‘Production’ Stage 300
Product Life Cycles 329
‘programme’ 72, 74
Programme Life Cycles 329
Programme Structure View 538–41
Programme Structure Viewpoint 349

View discussion 350
Viewpoint definition 349–50
Viewpoint rational 349
Viewpoint relationships 350
View visualization 350

‘project’ 72–3
Project Life Cycles 329
Project Management Body of

Knowledge (PMBOK) 71
Project Management Institute (PMI)

Project-related concepts as described
by 71–2

‘Project Manager’ 610, 819–20
Project Perspective

Programme Structure View 538–41
Project Schedule View 541–2

Project Processes Group 301
Project-related concepts 69

as described by Association for
Project Management (APM)
Institute 72

as described by Capability Maturity
Model Integration (CMMI)
70–1

as described by International
Standards Organisation (ISO)
69–70

as described by US Project
Management Institute (PMI)
71–2

MBSE Ontology definition for 72–4
Project Schedule View 541–2
Project Schedule Viewpoint 346

View discussion 348–9
Viewpoint definition 346
Viewpoint rational 346
Viewpoint relationships 346
View visualization 347–8

properties 102–3
provenance of MBSE Ontology 31–3
‘Provide application functionality’ 679
‘Provide capability’ 678
Provided interface 246
‘Provide feedback mechanism’ 647
‘Provide interoperability’ 677
‘Provide modelling capability’ 676
Proxy Port 137
Public package import 166
Pump 194, 204
Pump Controller 146

quick and dirty Process 639–40, 665–7

Rank Hierarchy View 545–6
Realistic Processes 257
Reference Property 102, 137, 147
Refine relationship 182
relationships 99, 101, 183
‘Representation’ 49
Required interface 246
Requirement 42, 44–6, 239, 357
Requirement Context View 264, 292,

506–10, 531–2
Process Mapping Process (PoMP)

297–8, 305–6
of ISO15288:2015 model 748

Requirement Context Viewpoint 260,
364, 373, 381–4, 386

definition 381
discussion 384
rationale 381

Index 857

relationships 382–3
View discussion 264–5
Viewpoint definition 261–2
Viewpoint rationale 260–1
Viewpoint relationships 262
View visualization 262–3
visualisation 383–4

Requirement Description View (RDV)
506, 604

Requirement Description Viewpoint
364, 368, 382

definition 369–72
discussion 373–5
rationale 368
relationships 372–3
visualisation 373

Requirement diagrams 132, 180,
727–9

diagram elements 180–3
examples 183–7

‘Requirement Engineer’ 607, 823
‘Requirement Manager’ 815–17
Requirements 94
Requirements Context Views (RCV) 604
requirements diagram 97
Requirements engineering 119
‘Requirements Manager’ 610
Requirements Modelling with MBSE

353
ACRE Process 400–1
background 353–4
Framework 363–5, 399–400
MBSE Ontology 354–5

‘Context’ concept 360
‘Need’ concept 355–7
‘Need Description’ concept 357–8
‘Rule’ concept 358–9
‘Scenario’ concept 359–60
‘Source Element’ concept 358
Stakeholder Context 361
System Contexts 362
‘Use Case’ concept 362

Viewpoints 365
Context Definition Viewpoint 384
Definition Rule Set Viewpoint 375

Requirement Context Viewpoint
381–4

Requirement Description
Viewpoint 368

Source Element Viewpoint 365
traceability Viewpoints 395–9
Validation Viewpoint 388

Reservoir 147, 159
‘Resource’ 63, 634
Restraints 154, 158
‘Retirement’ Stage 301
Reverse engineering 120
‘review’ Activity 312, 314, 627, 629
Reviewer 307, 609
‘Reviewer’ Stakeholder Role 827–8
robustness 268
‘Rule’ 28, 46, 55, 358–9
Rule definition 376, 378
Rule name 378
Rules Definition View 490
Rules Definition Viewpoint 430, 451

definition 452
discussion 455
rationale 451–2
relationships 452–4
visualisation 454–5

sandboxing 691
Satisfy relationship 182
‘Scenario’ 46, 359–60
scripting, correctness through 691
‘Secondary Assessor’ 610, 822–3
Semi-critical level 639, 664
Semi-formal Process 640–2, 641,

667–70
‘Semi-formal Scenario’ 46
Sequence diagrams 197, 732–4

diagram elements 197
referencing other diagrams 200–1
showing alternatives 201–4
showing loops 204
showing parallel processing 200

examples 205–9
‘Service’ 42, 405
shared part 155

858 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Simple Restraints 158
‘Skill’ 65
Small-scale Project 638, 664
‘Soft Skill Competency Area’ 618,

623, 796
SoSACRE 408
‘SoS Engineer’ 609, 833
‘Source Element’ 46, 358
Source Element View 504
Source Element Viewpoint 364–5, 373

definition 365
discussion 368
rationale 365
relationships 365–8

‘Source Framework’ 612
‘Spaceship System’ 520
‘Specification’ 49, 105
specialisation/generalisation relationship

103–5, 132, 142, 158, 223
spoken language 9–10
Sponsor 269, 307, 428, 599–600
‘Stage’ 59
Stakeholder Context 361
Stakeholder Context Definition

Viewpoint 385
Stakeholder Role 63, 69, 299, 596, 634,

819, 826, 830
Stakeholder Roles and Benefits 580–1
Stakeholder View 269, 298–301, 533

Process Mapping Process (PoMP)
306–8

of ISO15288:2015 model 749
Stakeholder Viewpoint 260, 265

View discussion 266–9
Viewpoint definition 265–6
Viewpoint rationale 265
Viewpoint relationships 266
View visualization 266

‘Standard’ 269, 307, 428, 582, 612
‘Standard Enforcer’ 307, 612
State 241
state machine diagram 107–10, 112,

122, 129, 188, 730–2
changing 113–14
diagram elements 188–92

examples 193–6
stereotypes 131–5, 241
‘stopPump’ operation 195
strange days 839–41
strange days revisited 841–2
Structural Diagrams 237–9, 715

Block definition diagrams 716–20
Internal block diagrams 721–2
Package diagrams 723
Parametric diagrams 724–6
Requirement diagrams 727–9
of SysML 96–8, 118

block definition diagram 96
internal block diagram 97
package diagram 96
parametric diagram 97
requirements diagram 97

structural level, behavioural
diagrams and

relationships between 116–20
structural modelling 98

adding more detail to relationships
103–6

structure of SysML diagrams 130
frames 131

STUMPI Context 263
‘STUMPI’ package 168
STUMPI Process Model 334
‘Supervised Practitioner’ 615
Supplier Stakeholder Role 268, 582, 611
‘Support Capability’ 661–2
Support capture of capabilities 353
Support capture of concerns 353
Support capture of goals 353
Support capture of requirements 353
‘Supporting Technique’ 67, 613–14
‘Support’ Stage 301
‘System’ 42, 55, 404
System Behaviour View 566–9
System boundaries 224–5
System Configuration View 562–4
System Context Definition Viewpoint

385
System Contexts 362
System design 119–20

Index 859

‘System Element’ 42, 405
System Identification View 555–8
System Interaction View 569–74
‘System of Interest’ 42, 404
‘System of Systems’ 42, 404
System of Systems (SoS) 39

acknowledged 39
collaborative 39
directed 39–40
virtual 39

System of Systems Perspective 519–21
Context Interaction View 521
Validation Interaction View 522–3

System Parametric View 574–6
System Perspective 488, 492, 554

Interface Definition View 561–2
System Behaviour View 566–9
System Configuration View 562–4
System Identification View 555–8
System Interaction View 569–74
System Parametric View 574–6
System State View 564–6
System Structure View 558–61

System procurement Life Cycles 329
System Readiness Levels (SRLs) 696
system-related concepts 36

as described by International Council
on Systems Engineering
(INCOSE) 38–9

as described by International
Standards Organisation (ISO)
36–8

as described by US Department of
Defense 39–40

MBSE Ontology definition for 40–1
‘Systems Concepts’ competency 624–5
Systems Engineer 269
systems engineering 4–6
systems engineering body of knowledge

(SEBoK) 33–4
‘Systems Engineering Manager’ 269,

610
‘Systems Modeller’ 428, 609, 823–6
Systems of Systems (SoS) 403

background 403–5
defining 406

Framework 412
MBSE ontology 408

‘Acknowledged’ 405
‘Collaborative’ 405
‘Constituent System’ 404
‘Directed’ 405
‘Enabling System’ 405
‘Product’ 405
‘Service’ 405
‘System’ 404
‘System Element’ 405
‘System of Interest’ 404
‘System of Systems’ 404
‘Virtual’ 405

types of 406
Viewpoints 413

Context Interaction Viewpoint
413–16

Validation Interaction View
416–23

‘System Sponsor’ 581
System State View 564–6
System Structure View 558–61
System Structure Viewpoint 496

Viewpoint Context View 496–7
Viewpoint Definition View 497–9

tacit process knowledge, abstracting
for an existing System 291–2
for a new System 289–91

teaching 596–7
different types of 597–8
professional training 598–9

Stakeholder Roles 599–600
‘Teach new skills’ 599–600
Teaching Context 600

generic course structure 601
‘Application’ section 604
‘Concepts’ section 603
Developing ‘Course Work’ 604–5
‘Example’ section 603–4
‘Introduction’ section 602
Marking schedules 605
‘Modelling Notation’ section 602–3

Stakeholder Roles and Use Cases
600–1

860 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

Technical Processes Group 301, 314
Technical Skill Competency Area 618,

623, 796
Technical Skill-related

Competency 626
Technology Life Cycles 329
technology maturity 695–6
Technology Readiness Levels (TRLs)

696
‘Terminate project’ 301
Testable Element 24
«testCase» 131
‘Tester’ 609, 826–7
text models 94
The Open Group Architecture

Framework (TOGAF) 53
‘Tool’ 17, 612, 655

considering Tool selection 675–6
‘Decide on tool’ 679
‘Ensure compatibility with

modelling language’ 676
‘Ensure compatibility with process

model’ 678
‘Ensure vendor’s quality of

service’ 677–8
‘Provide application

functionality’ 679
‘Provide capability’ 678
‘Provide interoperability’ 677
‘Provide modelling capability’ 676
‘Understand operational

environment’ 676–7
‘Individual Tool’ 658
Tool evaluation 679

Information View 681–2
MonTE Processes 679
Process Content View 680–1
Process Instance View 682–3

understanding the need for tool 663
Pemberton’s cooking analogy

663–4
using tools with existing Processes

664
Guidance for using Tools 674–5
Tool realization, formal Process

670–4

Tool realization, quick and dirty
Process 665–7

Tool realization, semi-formal
process 667–70

‘Tool Capability’ 660
‘Modelling Capability’ 662
‘Office Capability’ 660
‘Support Capability’ 661–2

‘Tool Chain’ 658
‘Closed’ Tool Chain 659
‘Heterogeneous’ Tool Chains 659
‘Integrated’ Tool Chains 659
‘Open’ Tool Chain 659

‘Tool Vendor’ 612
Tower of Babel 90
Traceability 257–8
Traceability View 515–19, 604
Traceability Viewpoints 364

definition 396–7
rationale 395–6
relationships 397
visualisation 397–9

Traceable Element 24
Trace relationship 182
TRAK 53
transition 108, 188
‘Tutor’ 599–600

UKSPEC 65–6
UML class diagrams 135
understanding 65

lack of 89–90
‘Understand operational environment’

676–7
Unified Modelling Language (UML)

91–2, 131
US Department of Defense

system-related concepts as described
by 39–40

‘Use Case’ 46, 241, 362
use case diagrams 132, 220, 740–2

diagram elements 221–4
examples 224

actor too high-level 228–30
repeated actors 230–2
use case too high-level 227–8

Index 861

User 268, 581
US Project Management Institute (PMI)

Project-related concepts as described
by 71–2

‘Utilisation’ Stage 300

«validate» 131
Validation criteria 370, 372
Validation Interaction View 416, 522–3

definition 416
discussion 420
rationale 416
relationships 417–18
visualisation 418–20

Validation View 510–15, 604
Validation Viewpoint 364, 388

definition 388–9
discussion 395
rationale 388
relationships 389–90
visualisation 390–3
visualising ‘Constraint Usage View’

393–5
Value Chain Modelling 459

Framework, aims of 460–1
implementation of 477–9
Ontology Definition View (ODV)

461–2
rules governing the use of 476–7
Viewpoints 463

Business Value Viewpoint 469
Contact Information Viewpoint 464
Engagement Definition

Viewpoint 466
Engagement Relationship

Viewpoint 464
ontology elements covered by

473–6
value properties 102, 137
‘Verification criteria’ 370, 372
Verify relationship 182
version management 688–90
vicious triangle 91
‘View’ 55
View abbreviation 244
View Element 27, 55

Viewpoint 25, 27–9, 54–5
‘Viewpoint Concern’ 55
Viewpoint Context View 464
Viewpoint Context Viewpoint 430, 443

definition 444
discussion 446
rationale 443–4
relationships 444–5
visualisation 445

Viewpoint Definition Process 456
Viewpoint Definitions 490–1

Post Structure Viewpoint 491
Viewpoint Context View 491–3
Viewpoint Definition View 493–6

System Structure Viewpoint 496
Viewpoint Context View 496–7
Viewpoint Definition View 497–9

Viewpoint Definition View 464
Viewpoint Definition Viewpoint 430,

446
definition 448
discussion 450–1
rationale 446–8
relationships 448–9
visualisation 449

Viewpoint Element 27, 55
Viewpoint Relationships View

486–90
Viewpoint Relationships Viewpoint

430, 439
definition 440
discussion 442
rationale 439–40
relationships 440
visualisation 440–2

Viewpoint Visualisation 434
Views 27
‘Virtual’ 42, 405
virtual SoS 39
‘Virtual’ system 406
Visualisation 19
visual models 94

‘Watch coffin’ 217

Zachman Framework 49–50, 586

862 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition

	Cover
	Contents
	Author biographies
	Preface to the Third Edition
	Part I Introduction
	P1.1 Overview
	1 Introduction to Model-Based Systems Engineering
	1.1 Introduction
	1.2 Understand the concepts and terms that will be used throughout the book
	1.2.1 Systems engineering
	1.2.2 Model-Based Systems Engineering

	1.3 Understand why we do what we do and define an approach
	1.4 Understand the concept of the common language
	1.4.1 The spoken language
	1.4.2 The domain-specific language

	1.5 Understand how to apply the approach for specific areas of Systems Engineering
	1.6 Understand how to implement such an approach in real organisations
	1.7 Using this book
	References

	2 Approach
	2.1 Introduction
	2.1.1 Writing conventions adopted in the book

	2.2 The MBSE Mantra
	2.3 The MBSE fundamentals
	2.4 The MBSE approach
	2.4.1 The 'MBSE Ontology'
	2.4.2 The 'MBSE Framework'
	2.4.3 The 'View'
	2.4.3.1 Defining Viewpoints and creating Views

	2.5 Chapter summary
	References

	3 MBSE Concepts
	3.1 Introduction
	3.1.1 Provenance of the MBSE Ontology
	3.1.2 The Systems Engineering Body of Knowledge
	3.1.3 Disagreements with the MBSE Ontology

	3.2 The MBSE Ontology
	3.2.1 The System concept
	3.2.1.1 System-related concepts as described by the International Standards Organisation (ISO)
	3.2.1.2 System-related concepts as described by the International Council on Systems Engineering (INCOSE)
	3.2.1.3 System-related concepts as described by the US Department of Defense
	3.2.1.4 The MBSE Ontology definition for System-related concepts

	3.2.2 The Need concept
	3.2.2.1 Need-related concepts as described by the Oxford English Dictionary
	3.2.2.2 Need-related concepts as described by the International Council on Systems Engineering (INCOSE)
	3.2.2.3 Need-related concepts as described by the Modelling Community
	3.2.2.4 Need-related concepts as described by the International Standards Organisation (ISO)
	3.2.2.5 The MBSE Ontology definition for Need-related concepts

	3.2.3 The Architecture concept
	3.2.3.1 Architecture-related concepts as described by the International Standards Organisation (ISO)
	3.2.3.2 Architecture-related concepts as described by the International Council on Systems Engineering (INCOSE)
	3.2.3.3 Architecture-related concepts as described by the Architecture Framework community
	3.2.3.4 The Zachman Framework
	3.2.3.5 Defence-based Architecture Frameworks
	3.2.3.6 Non-defence Architecture Frameworks
	3.2.3.7 The MBSE Ontology definition for Architecture

	3.2.4 The 'Life Cycle' concept
	3.2.4.1 Life Cycle related concepts as described by the International Standards Organisation (ISO)
	3.2.4.2 Life Cycle-related concepts as described by the Capability Maturity Model Integration (CMMI)
	3.2.4.3 The MBSE Ontology definition

	3.2.5 The Process concept
	3.2.5.1 Process-based concepts as described by the International Standards Organisation (ISO)
	3.2.5.2 Process-based concepts as described by the Capability Maturity Model Integration (CMMI)
	3.2.5.3 The MBSE Ontology definition for Process-related concepts

	3.2.6 The Competence concept
	3.2.6.1 The competence-related concepts as described by the International Standards Organisation (ISO)
	3.2.6.2 The Competence-related concepts as described by the Capability Maturity Model Integration (CMMI)
	3.2.6.3 The Competence-related concepts as described by Competency Framework Community
	3.2.6.4 UKSPEC
	3.2.6.5 INCOSE competencies Framework
	3.2.6.6 The Competence-related concepts as described by the US Office of Personnel Management
	3.2.6.7 The MBSE Ontology for Competence-related concepts

	3.2.7 The Project concept
	3.2.7.1 The Project-related concepts as described by the International Standards Organisation (ISO)
	3.2.7.2 The Project-related concepts as described by the Capability Maturity Model Integration (CMMI)
	3.2.7.3 The Project-related concepts as described by the US Project Management Institute (PMI)
	3.2.7.4 The Project-related concepts as described by the Association for Project Management (APM) Institute
	3.2.7.5 MBSE Ontology definition for Project-related concepts

	3.3 Summary
	References

	Part II Modelling
	P2.1 Overview
	4 Introduction to SysML and Systems Modelling
	4.1 Introduction
	4.2 Why we model?
	4.2.1 The kennel (doghouse)
	4.2.2 The house
	4.2.3 The office block
	4.2.4 The point

	4.3 The three evils
	4.3.1 Complexity
	4.3.2 Lack of understanding
	4.3.3 Communication
	4.3.4 The vicious triangle

	4.4 What is SysML?
	4.4.1 SysML's relationship with UML
	4.4.2 A brief history of SysML

	4.5 Modelling
	4.5.1 Defining modelling
	4.5.2 The choice of model
	4.5.3 The level of abstraction
	4.5.4 Connection to reality
	4.5.5 Independent views of the same system

	4.6 The SysML diagrams
	4.7 Structural modelling
	4.7.1 Adding more detail to relationships

	4.8 Behavioural modelling
	4.8.1 Behavioural modelling – a simple example
	4.8.1.1 Simple behaviour
	4.8.1.2 Adding more detail
	4.8.1.3 Ensuring consistency
	4.8.1.4 Solving the inconsistency

	4.9 The relationships between behavioural diagrams and structural level
	4.10 Identifying complexity through levels of abstraction
	4.10.1 The systems
	4.10.2 Structural view
	4.10.3 Behavioural views

	4.11 Chapter summary
	References

	5 The SysML Notation
	5.1 Introduction
	5.1.1 Diagram ordering
	5.1.2 The worked example

	5.2 The structure of SysML diagrams
	5.2.1 Frames

	5.3 Stereotypes
	5.4 The SysML meta-model
	5.5 The SysML diagrams
	5.5.1 Block definition diagrams
	5.5.1.1 Diagram elements
	5.5.1.2 Examples
	5.5.1.3 Summary

	5.5.2 Internal block diagrams
	5.5.2.1 Diagram elements
	5.5.2.2 Examples
	5.5.2.3 Summary

	5.5.3 Package diagrams
	5.5.3.1 Diagram elements
	5.5.3.2 Examples
	5.5.3.3 Summary

	5.5.4 Parametric diagrams
	5.5.4.1 Diagram elements
	5.5.4.2 Examples
	5.5.4.3 Summary

	5.5.5 Requirement diagrams
	5.5.5.1 Diagram elements
	5.5.5.2 Examples
	5.5.5.3 Summary

	5.5.6 State machine diagrams
	5.5.6.1 Diagram elements
	5.5.6.2 Examples
	5.5.6.3 Summary

	5.5.7 Sequence diagrams
	5.5.7.1 Diagram elements
	5.5.7.2 Examples
	5.5.7.3 Summary

	5.5.8 Activity diagrams
	5.5.8.1 Diagram elements
	5.5.8.2 Examples
	5.5.8.3 Summary

	5.5.9 Use case diagrams
	5.5.9.1 Diagram elements
	5.5.9.2 Examples
	5.5.9.3 Summary

	5.6 Auxiliary constructs
	5.7 Chapter summary
	References

	6 Diagramming Guidelines
	6.1 Introduction
	6.2 Naming conventions
	6.2.1 Structural diagrams
	6.2.2 Behavioural diagrams
	6.2.3 Stereotypes

	6.3 Diagram frame labels
	6.4 Additional guidelines
	6.4.1 Block and internal block diagrams – showing interfaces
	6.4.2 Block and internal block diagrams – showing item flows
	6.4.3 Activity diagrams
	6.4.4 Default tool settings
	6.4.4.1 The use of colour
	6.4.4.2 Navigability
	6.4.4.3 Other common settings

	6.5 Chapter summary
	Reference

	Part III Applications
	P3.1 Overview
	7 Process Modelling with MBSE
	7.1 Introduction
	7.1.1 Background

	7.2 Approach
	7.2.1 The MBSE Ontology (revisited)
	7.2.2 The Framework
	7.2.3 The Viewpoints
	7.2.3.1 The Requirement Context Viewpoint
	7.2.3.2 The Stakeholder Viewpoint
	7.2.3.3 The Process Structure Viewpoint
	7.2.3.4 The Process Content Viewpoint
	7.2.3.5 The Process Behaviour Viewpoint
	7.2.3.6 The Information Viewpoint
	7.2.3.7 The Process Instance Viewpoint

	7.3 The process modelling framework
	7.4 Using the process modelling framework
	7.4.1 Analysing existing Processes
	7.4.2 Creating a new process document from scratch
	7.4.3 Abstracting tacit process knowledge for a new System
	7.4.4 Abstracting tacit process knowledge for an existing System
	7.4.5 Process improvement for existing Processes
	7.4.6 Summary

	7.5 Summary
	References

	8 Expanded Process Modelling
	8.1 Introduction
	8.1.1 Background

	8.2 Expanded Process modelling – standards modelling
	8.2.1 Views
	8.2.1.1 ISO 15288 – Requirement Context View
	8.2.1.2 ISO 15288 – Stakeholder View
	8.2.1.3 ISO 15288 – Process Content View

	8.2.2 Summary

	8.3 Expanded Process modelling – compliance mapping
	8.3.1 Process Mapping Process (PoMP)
	8.3.1.1 PoMP – Process Structure View
	8.3.1.2 PoMP – Requirement Context View
	8.3.1.3 PoMP – Stakeholder View
	8.3.1.4 PoMP – Process Content View

	8.3.2 Using PoMP
	8.3.2.1 The 'Process Identification' Process
	8.3.2.2 The 'Process Model set-up' Process
	8.3.2.3 The 'Process analysis' Process

	8.3.3 Summary

	8.4 Expanded Process modelling – competence
	8.4.1 The expanded MBSE Ontology
	8.4.2 The Framework
	8.4.3 Views
	8.4.3.1 The Framework View
	8.4.3.2 The Applicable Competency View
	8.4.3.3 The Competency Scope View
	8.4.3.4 The Competency Profile View

	8.5 Expanded Process modelling – Life Cycle modelling
	8.5.1 The expanded MBSE Ontology
	8.5.1.1 The Framework
	8.5.1.2 The Life Cycle View
	8.5.1.3 The Life Cycle Model View
	8.5.1.4 The Interaction Identification View
	8.5.1.5 The Interaction Behaviour View

	8.5.2 Summary

	8.6 Expanded Process modelling – project management
	8.6.1 The expanded MBSE Ontology
	8.6.2 The Framework
	8.6.3 Views
	8.6.3.1 The Project Schedule Viewpoint
	8.6.3.2 The Programme Structure Viewpoint

	8.7 Summary
	References

	9 Requirements Modelling with MBSE
	9.1 Introduction
	9.1.1 Background

	9.2 Approach
	9.2.1 The MBSE Ontology (revisited)
	9.2.1.1 The 'Need' concept
	9.2.1.2 The 'Need Description' concept
	9.2.1.3 The 'Source Element' concept
	9.2.1.4 The 'Rule' concept
	9.2.1.5 The 'Scenario' concept
	9.2.1.6 The 'Context' concept
	9.2.1.7 Stakeholder Context
	9.2.1.8 System Contexts
	9.2.1.9 The 'Use Case' concept

	9.2.2 The Framework
	9.2.3 Viewpoints
	9.2.3.1 The Source Element Viewpoint
	9.2.3.2 Requirement Description Viewpoint
	9.2.3.3 Definition Rule Set Viewpoint
	9.2.3.4 Requirement Context Viewpoint
	9.2.3.5 Context Definition Viewpoint
	9.2.3.6 Validation Viewpoint
	9.2.3.7 The traceability Viewpoints

	9.3 The Requirements modelling Framework
	9.4 Using the Requirements modelling Framework
	9.4.1 The ACRE Process – Process Content View

	9.5 Summary
	References

	10 Expanded Requirements Modelling – Systems of Systems
	10.1 Introduction
	10.1.1 Background
	10.1.2 Defining a System of Systems
	10.1.3 Types of Systems of Systems

	10.2 Approach
	10.2.1 The MBSE Ontology (revisited)
	10.2.2 The Framework
	10.2.2.1 Changes to the Framework

	10.2.3 The Viewpoints
	10.2.3.1 The Context Interaction Viewpoint
	10.2.3.2 The Validation Interaction View

	10.3 Summary
	References

	11 Architectures and Architectural Frameworks with MBSE
	11.1 Introduction
	11.1.1 Background

	11.2 Approach
	11.2.1 The MBSE Ontology (revisited)
	11.2.2 The Framework
	11.2.3 The Viewpoints
	11.2.3.1 The AF Context Viewpoint
	11.2.3.2 The Ontology Definition Viewpoint
	11.2.3.3 The Viewpoint Relationships Viewpoint
	11.2.3.4 The Viewpoint Context Viewpoint
	11.2.3.5 The Viewpoint Definition Viewpoint
	11.2.3.6 The Rules Definition Viewpoint

	11.3 The Framework for Architectural Frameworks
	11.4 Using the FAF
	11.5 Chapter Summary
	References

	12 Value Chain Modelling
	12.1 Introduction
	12.2 Aims of the Value Chain Framework
	12.3 Main Concepts – the Value Chain Framework's Ontology
	12.4 Viewpoints
	12.4.1 Engagement Relationship Viewpoint
	12.4.1.1 Aims
	12.4.1.2 Definition
	12.4.1.3 Example

	12.4.2 Engagement Definition Viewpoint
	12.4.2.1 Aims
	12.4.2.2 Definition
	12.4.2.3 Example

	12.4.3 Business Value Viewpoint
	12.4.3.1 Aims
	12.4.3.2 Definition
	12.4.3.3 Example

	12.4.4 Contact Information Viewpoint
	12.4.4.1 Aims
	12.4.4.2 Definition
	12.4.4.3 Example

	12.4.5 Overview of Ontology Elements Covered by the Viewpoints

	12.5 Rules Governing the use of the Value Chain Framework
	12.6 Implementation of the Value Chain Framework
	12.7 Summary
	Reference

	Part IV Case Study
	P4.1 Overview
	13 Case Study Introduction and Architectural Framework
	13.1 Introduction
	13.1.1 Background

	13.2 The MBSE Architectural Framework
	13.2.1 The AF Context View
	13.2.2 The Ontology Definition View
	13.2.3 The Viewpoint Relationships View
	13.2.4 The Rules Definition View
	13.2.5 Viewpoint Definitions
	13.2.5.1 The Post Structure Viewpoint
	13.2.5.2 The System Structure Viewpoint

	13.3 Defining Viewpoints using SysML Auxiliary Constructs
	13.4 Chapter Summary
	Reference

	14 The Case Study
	14.1 Introduction
	14.2 The Need Perspective
	14.2.1 The Source Element View
	14.2.2 The Definition Rule Set View
	14.2.3 The Requirement Description View
	14.2.4 The Context Definition View
	14.2.5 The Requirement Context View
	14.2.6 The Validation View
	14.2.7 The Traceability View

	14.3 The System of Systems Perspective
	14.3.1 The Context Interaction View
	14.3.2 The Validation Interaction View

	14.4 The Life Cycle Perspective
	14.4.1 Life Cycle View
	14.4.2 The Life Cycle Model View
	14.4.3 Interaction Identification View
	14.4.4 Interaction Behaviour View

	14.5 The Process Perspective
	14.5.1 Process Structure View
	14.5.2 Requirement Context View
	14.5.3 Process Content View
	14.5.4 Stakeholder View
	14.5.5 Information View
	14.5.6 Process Behaviour View
	14.5.7 Process Instance View

	14.6 The Project Perspective
	14.6.1 The Programme Structure View
	14.6.2 The Project Schedule View

	14.7 The Organisational Perspective
	14.7.1 The Organisation Unit Structure View
	14.7.2 The Organisation Unit Instance View
	14.7.3 The Rank Hierarchy View
	14.7.4 The Post Structure View
	14.7.5 The Post Instance View
	14.7.6 The Post to Role View
	14.7.7 The Martian Instance View

	14.8 The Competency Perspective
	14.8.1 Framework View
	14.8.2 Applicable Competency View
	14.8.3 Competency Scope View

	14.9 The System Perspective
	14.9.1 System Identification View
	14.9.2 System Structure View
	14.9.3 Interface Definition View
	14.9.4 System Configuration View
	14.9.5 System State View
	14.9.6 System Behaviour View
	14.9.7 System Interaction View
	14.9.8 System Parametric View

	14.10 Chapter Summary
	References

	Part V Deploying MBSE
	P5.1 Overview
	15 Benefits of MBSE
	15.1 Introduction
	15.2 ''I know an Old Lady who swallowed a fly''
	15.3 ''I know an Old Lady who swallowed a spider''
	15.4 ''I know an old lady who swallowed a bird/cat/dog''.
	15.5 ''I know an old lady who swallowed a goat/cow''
	15.6 ''I know an old lady who swallowed a horse''

	16 The 'People'
	16.1 Introduction
	16.2 The MBSE Ontology (revisited)
	16.3 Teaching guide
	16.3.1 Different types of teaching
	16.3.2 Professional training
	16.3.2.1 Teaching Context – Stakeholder Roles

	16.4 Teaching as part of an undergraduate or postgraduate course
	16.4.1 Teaching Context – Stakeholder Roles and Use Cases
	16.4.2 A generic course structure
	16.4.2.1 The 'Introduction' section
	16.4.2.2 The 'Modelling Notation' section
	16.4.2.3 The 'Concepts' section
	16.4.2.4 The 'Example' section
	16.4.2.5 The 'Application' section
	16.4.2.6 Developing 'Course Work'
	16.4.2.7 Marking schedules

	16.4.3 Summary

	16.5 Competence
	16.6 The MBSE Stakeholder Roles
	16.7 Generic Competencies
	16.7.1 Example Competency Scope
	16.7.2 Generic Competency Scope – Evidence Types

	16.8 Bespoke Competencies
	16.8.1 Example Competency Scope
	16.8.2 Bespoke Competency Scope – Evidence Types

	16.9 Generic vs. specific Competencies
	16.10 Defining a bespoke Competency Framework
	16.10.1 The 'Bespoke Competency Definition' Process
	16.10.1.1 The 'identify ontology' Activity
	16.10.1.2 The 'identify source framework' Activity
	16.10.1.3 The 'identify competencies' Activity
	16.10.1.4 The 'define concept-related competencies' Activity
	16.10.1.5 The 'define process-related competencies' Activity
	16.10.1.6 The 'define skill-related competencies' Activity
	16.10.1.7 The 'review' Activity

	16.10.2 The 'Bespoke Framework Definition' Process
	16.10.2.1 The 'analyse bespoke framework' Activity
	16.10.2.2 The 'define levels' Activity
	16.10.2.3 The 'define evidence types' Activity
	16.10.2.4 The 'review' Activity

	16.10.3 Competency assessment

	16.11 Summary
	References

	17 The 'Process'
	17.1 Introduction
	17.2 Defining the Process
	17.2.1 The ACRE Process
	17.2.2 The ACRE Process – the Process Content View (PCV)

	17.3 Using the Process
	17.3.1 Example use – quick and dirty Process
	17.3.2 Example use – semi-formal Process
	17.3.3 Example use – formal Process
	17.3.4 Summary of process implementation

	17.4 Deploying the Process
	17.4.1 'Make process available'
	17.4.2 'Make process accessible'
	17.4.3 'Ensure awareness of process'
	17.4.4 'Ensure appropriate presentation'
	17.4.5 'Ensure value of process'
	17.4.6 'Provide feedback mechanism'
	17.4.7 'Ensure consistency'
	17.4.8 'Contribute to wider initiative'

	17.5 Compliance mapping with best practice
	17.5.1 Automated compliance

	17.6 Summary
	References

	18 The 'Tool'
	18.1 Introduction
	18.2 Considering the types of Tools available
	18.2.1 The 'Individual Tool'
	18.2.1.1 The 'PAPS' Tool
	18.2.1.2 The 'Automated Tool'

	18.2.2 The 'Tool Chain'
	18.2.2.1 The 'Closed' Tool Chain
	18.2.2.2 The 'Open' Tool Chain
	18.2.2.3 The 'Heterogeneous' Tool Chains
	18.2.2.4 The 'Integrated' Tool Chains

	18.2.3 'Tool Capability'
	18.2.3.1 'Office Capability'
	18.2.3.2 'Support Capability'
	18.2.3.3 'Modelling Capability'

	18.2.4 Summary

	18.3 Understanding the Need for the Tool
	18.3.1 Pemberton's cooking analogy

	18.4 Using Tools with existing Processes
	18.4.1 Example Tool realisation – quick and dirty Process
	18.4.2 Example Tool realisation – semi-formal process
	18.4.3 Example Tool realisation – formal Process
	18.4.4 Guidance for using Tools

	18.5 Considering Tool selection
	18.5.1 'Provide modelling capability'
	18.5.2 'Ensure compatibility with modelling language'
	18.5.3 'Understand operational environment'
	18.5.4 'Provide interoperability'
	18.5.5 'Ensure vendor's quality of service'
	18.5.6 'Ensure compatibility with the process model'
	18.5.7 'Provide capability'
	18.5.8 'Provide application functionality'
	18.5.9 'Decide on tool'

	18.6 Tool evaluation
	18.6.1 The MonTE Processes
	18.6.2 MonTE – the Process Content View
	18.6.3 Information View
	18.6.4 Process Instance View

	18.7 Summary

	19 Model Structure and Management
	19.1 Introduction
	19.2 Model structure
	19.3 Model management
	19.3.1 Version management
	19.3.2 Model access
	19.3.3 Sandboxing
	19.3.4 Correctness through scripting

	19.4 Chapter summary
	Reference

	20 Model Maturity
	20.1 Introduction
	20.2 Maturity
	20.2.1 Technology maturity
	20.2.2 Process maturity
	20.2.3 Individual maturity

	20.3 Modelling for TRLs
	20.4 Readiness levels for models
	20.5 Assessment approach
	20.6 Applying Model Maturity
	20.7 Conclusions
	References

	Part VI Annex
	P6.1 Overview
	Appendix A Ontology and Glossary
	A.1 Introduction
	A.2 Ontology
	A.3 Glossary

	Appendix B Summary of SysML Notation
	B.1 Introduction
	B.2 Structural Diagrams
	B.2.1 Block Definition Diagrams
	B.2.2 Internal block Diagrams
	B.2.3 Package Diagrams
	B.2.4 Parametric Diagram
	B.2.5 Requirement Diagrams

	B.3 Behavioural Diagrams
	B.3.1 State machine diagrams
	B.3.2 Sequence diagrams
	B.3.3 Activity diagrams
	B.3.4 Use case diagrams

	B.4 Auxiliary Concepts
	B.4.1 Allocations

	B.5 Relationships between diagrams

	Appendix C Process Model for ISO15288:2015
	C.1 Introduction
	C.2 Requirement Context View
	C.3 Stakeholder View
	C.4 Process Structure View
	C.5 Process Content View
	C.5.1 Process Content View – Agreement Process Group
	C.5.2 Process Content View – Organisational Project-Enabling Process Group
	C.5.3 Process Content View – Technical Management Process Group
	C.5.4 Process Content View – Technical Process Group

	References

	Appendix D Competency Framework
	D.1 Introduction
	D.2 MBSE Competency Framework – Levels
	D.2.1 Level 1 – Awareness
	D.2.2 Level 2 – Support
	D.2.3 Level 3 – Lead
	D.2.4 Level 4 – Expert

	D.3 Evidence Types
	D.3.1 Level 1 – Awareness
	D.3.2 Level 2 – Support
	D.3.3 Level 3 – Lead
	D.3.4 Level 4 – Expert

	D.4 MBSE Competency Framework – Competency Areas
	D.5 MBSE Competency area – MBSE concepts
	D.6 MBSE Competency area – Life Cycle Process
	D.7 MBSE Competency area – Technical Skill
	D.8 MBSE Competency area – Soft Skill
	D.9 Competency Scopes
	D.10 Generic scopes
	D.11 Competency Scope – 'Configuration Manager'
	D.12 Competency Scope – 'Assessment Manager'
	D.13 Competency Scope – 'Requirement Manager'
	D.14 Competency Scope – 'Process Manager'
	D.15 Competency Scope – 'Project Manager'
	D.16 Competency Scope – 'Primary Assessor'
	D.17 Competency Scope – 'Secondary Assessor'
	D.18 Competency Scope – 'Requirement Engineer'
	D.19 Competency Scope – 'Systems Modeller'
	D.20 Competency scope – 'Tester'
	D.21 Competency scope – 'Reviewer'
	D.22 Competency scope – 'Author'
	D.23 Competency scope – 'Process Modeller'
	D.24 Competency scope – 'Builder'
	D.25 Competency scope – 'SoS Engineer'
	D.26 Competency scope – 'MBSE Champion'
	D.27 Competency scope – 'MBSE Mentor'
	D.28 Competency scope – 'MBSE Trainer'

	Appendix E The MBSE Memory Palace
	E.1 Introduction to the memory palace
	E.2 Strange days
	E.3 Strange days revisited
	E.4 Summary
	References

	Index
	Back Cover

