Example of Trend-Adjusted Exponential Smoothing
For the data given below, generate a forecast for period 11 through 13 using trend-adjusted exponential smoothing. Use = 0.4 and = 0.3
Period |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
---|---|---|---|---|---|---|---|---|---|---|
Data values |
500 |
524 |
520 |
528 |
540 |
542 |
558 |
550 |
570 |
575 |
Solution: To use trend adjusted exponential smoothing, we first need an initial estimate of the trend. This initial estimate can be obtained by calculating the net change from the three changes in the data that occurred through the first four periods.
- Initial Trend Estimate = (528 - 500)/3 = 28/3 = 9.33
Using this initial trend estimate and the actual data value for period 4, we compute an initial forecast for period 5.
- Initial Forecast for period 5 = 528 + 9.33 = 537.33.
The forecasts and the associated calculations are shown in the table below.
Period |
Actual |
St-1 + Tt-1 = TAFt |
TAFt + 0.3(At -TAFt ) = St |
Tt-1 + 0.2(TAFt -TAFt-1 - Tt-1 ) = Tt |
---|---|---|---|---|
5 |
540 |
528 + 9.33 = 537.33 |
537.33 + 0.3(540 - 537.33) = 538.13 |
9.33 |
6 |
542 |
538.13 + 9.33 = 547.46 |
547.46 + 0.3(542 - 547.46) = 545.82 |
9.33 + 0.2(547.46 - 537.33 - 9.33) = 9.49 |
7 |
558 |
545.82 + 9.49 = 555.31 |
555.31 + 0.3(558 - 555.31) = 556.12 |
9.49 + 0.2(555.31 - 547.46 - 9.49) = 9.16 |
8 |
550 |
556.12 + 9.16 = 565.28 |
565.28 + 0.3(550 - 565.28) = 560.70 |
9.16 + 0.2(565.28 - 555.31 - 9.16) = 9.32 |
9 |
570 |
560.70 + 9.32 = 570.02 |
570.02 + 0.3(570 - 570.02) = 570.01 |
9.32 + 0.2(570.02 - 565.28 - 9.32) = 8.41 |
10 |
575 |
570.01 + 8.41 = 578.42 |
578.42 + 0.3(575 - 578.42) = 577.40 |
8.41 + 0.2(578.42 - 570.02 - 8.41) = 8.41 |
11 |
|
577.40 + 8.41 = 585.81 |
|
|
The forecast for period 11 is 585.81.